ALKALI METALS

SYNOPSIS

- * Lithium (Li), Sodium (N1), Potassium (K), Rubidium (R2), Cesium (Cs) and Francium (Fr) are called Alkali metals.
- * Francium is highly radioactive. Its longest-lived isotope ²²³Fr has a half-life of only 21 minutes.
- * Oxides of these metals dissolve in water giving strong alkalis. So these elements are known as alkali metals.
- * Abundance: The abundance in earth crust decreases with the increase in atomic weight.
- * Electronic configuration: These elements belong to s-block and their valence shell configuration is ns¹.
- * No element contains 18 electrons in their (n-1) shell.
- * Atomic volume: Atomic volume of alkali metals is highest in each period and goes on increasing down the group

Element	Li	Na	Κ	Rb	Cs
GMV in cm^3	13	24	46	56	71

- * Density: These elements have low densities when compared with the other metals.
- * Potassium is less dense than sodium due to
 - 1. Sudden large increase in the atomic size from Na to K.
 - 2. The presence of vacant d-orbitals
 - 3. Large inter0atomic distances in the crystal lattice.
- * Most electro positive element is Cs.
- * Hardness: These are soft metals. Softness further increases down the group due to decrease in the strength of metallic bond.
- * Valency & oxidation states: The alkali metal atoms show only +1 oxidation state, because their unipositive ions have the stable inert gas configuration $(s^2 or s^2 P^6)$ in the valence sheall.
- * Nature: Alkali metal ions (in the form of salts) are colorless and diamagnetic, since all the electrons are paired. Some of their compounds like $K_2Cr_2O_4$, $KMnO_4$ are colored which is due to their oxyanions.
- * Second ionization potential values of alkali metals are very high, because the second electron is to be removed from the ion with stable inert gas configuration.
- * Flame test: Alkali metals and their salts give flame colouration when heated with conc. HCl in Bunsen flame.
- * Exhibit colour due to absorption of visible light.
- * The characteristic flame colours of alkali metals are

Metal	Colour	λ in A^{0}
LI	Crimson red	6708
Na	Golden Yellow	5890
K	Lilac Blue	4404
Rb	Red-Violet	4202
Cs	Blue-Violet	4556
The melt	ing points order is	
Li > Na	>K>Rb>Cs	

* The boiling points order is Li > Na > K > Cs > Rb

*

* The increasing order of SRP values of alkali metals is Li < Cs < Rb < K < Na (SRP values –ve)

* The hydration enthalpies of alkali metal ions decrease with increase in ionic sizes.

 $Li^+ > Na^+ > K^+ > Rb^+ > Cs^+$

* Alkali metals when dissolved in liquid Ammonia in the absence of impurities form a deep blue colored solution.

$$M + (x + y) NH_{3} \rightarrow \left[M (NH_{3})_{x} \right]^{+} + \left[e (NH_{3})_{y} \right]^{-}$$

- * The blue colour of the solution is due to ammoniated (solvate4) electrons. (Note: In concentrated solution, the blue colour changes to bronze colour and become diamagnetic due to cluster formation).
- * The solutions are paramagnetic and on standing slowly liberated hydrogen resulting in the formation of amide.

 $M_{(am)}^+ + e^- + NH_3(liq) \rightarrow MNH_{2(am)} + 1/2H_2(g)$

- * The electrical conductivity of these solutions is by the movement of ions as well as electrons. Hence they are called mixed conductors.
- * Due to the presence of free electrons, these solutions act as powerful reducing agents.
- * The reactivity with water increase on descending the group from Li to Cs and Li<Na<K<Rb<Cs due to increase in electropositive character in the same order.
- * Ionic nature, reducing nature, solubility, basic nature increases from LiH to CsH.
- * LiH is thermally more stable
 - LiH > NaH > KH > RbH > CsH
- * With oxygen (Oxides): When alkali metals are heated in air, Li mainly gives Li_2O , sodium mainly gives sodium peroxide (Na_2O_6) and others give super oxides. (KO_2, RbO_2, CsO_2) .
- * Peroxides $(O_2^{2^-})$ are the salts of H_2O_2 . Therefore metal peroxides will give H_2O_2 on reaction with water or dil.acids.

 $Na_2O_2 + 2H_2O \rightarrow 2NaOH + H_2O_2$

* Concentrated peroxide solutions will give O_2 on reaction with water

$$2Na_2O_2 + 2H_2O \rightarrow 4NaOH + O_2$$

- * Na_2O_2 forms octahydrate crystals $Na_2O_2.8H_2O$
- * Na_2O_2 is also known as oxone
- * Even K_2O_2 can be used for the same purpose and it is much better than Na_2O_2
- * Na_2O_2 is used in qualitative analysis in the identification of chromium salts as it forms yellow colored chromate salts.

 $3Na_2O_2 + 2Cr(OH)_3 \rightarrow 2Na_2CrO_4 + 2NaOH + 2H_2O$

Super oxides are coloured and paramagnetic due to the presence of unpaired electron or odd electron bond.

Resonance structures of superoxide ion (O_2^-) :

$$\begin{bmatrix} \vdots \ddot{\mathbf{0}} \cdots \ddot{\mathbf{0}} \vdots \end{bmatrix}^{\mathsf{T}} \leftrightarrow \begin{bmatrix} \vdots \ddot{\mathbf{0}} \cdots \ddot{\mathbf{0}} \vdots \end{bmatrix}^{\mathsf{T}} \leftrightarrow \begin{bmatrix} \vdots \ddot{\mathbf{0}} \cdots \ddot{\mathbf{0}} \vdots \end{bmatrix}^{\mathsf{T}}$$

- * Super Oxides are paramagnetic in nature.
- * LiO_2 and NaO_2 are yellow in colour and are highly unstable.

- * KO_2 and CsO_2 are orange but RbO_2 is brown coloured.
- * Li_2O_2 is white, Na_2O_2 and Cs_2O_2 are yellow coloured. Rb_2O_2 is dark brown, K_2O_2 is orange coloured.
- * The monoxides of Li, Na and K are colourless. But the monoxides of Rb and Cs are coloured. Rb_2O -Yellow: Cs_2O -Orange.
- * The solubility of the hydroxides increases from *LiOH* to *CsOH*
- * Cesium halides have body centered cubic lattice.
- * Li^+ has maximum degree of hydration and for this reason lithium salts are mostly hydrated E.g. LiCl. 2 H_2O
- * The solubilities of bicarbonates in water is less than that of the carbonates.
- * $NaHCO_3$ is sparingly soluble in water while Na_2CO_3 is water soluble.
- * Except Li_2CO_3 the other carbonates are stable and they decomposing only at very high temperatures. $Li_2CO_3 \rightarrow Li_2O + CO_2$
- * The stability increases from Li_2CO_3 to Cs_2CO_3
- * Thermal stability of alkali metal carbonates increases from Li_2CO_3 to Cs_2CO_3 . It is because of an increase in the size of cation.
- * In alkali metals Li exhibit anomalous behavior. Due to
 - 1. exceptionally small atomic and ionic size and
 - 2. high polarizing power (i.e. change/radius ration)
 - 3. Lack of presence of vacant d-orbitals
- * Lithium shows diagonal relationship with magnesium.
- * Alkyl litiums are similar to Grignard reagents
- * Sodium: It is the most abundant element in 1-A group.
- * It is used in the preparation of compounds like Na_2O_2 , $NaNH_2$, NaCN etc.
- * Na-Pb alloy is used in the preparation of tetraethyl lead (TEL) which is used as antiknocking agent in petrol.
- * Potassium (K)
- * Na^+ and K^+ play important role in Biology.
- * 20% NaOH is formed in the central compartment. Reactions during electrolysis:

Ionisation of brine: $NaCl \rightarrow Na^+ + Cl^-$

- At graphite anode: $2Cl^- \rightarrow Cl_2^- + 2e^-$
- At Hg cathode: $Na^+ + e^- + Hg \rightarrow Na Hg$
- At Hg anode: $Na Hg \rightarrow Na^+ + e^- + Hg$

At Fe cathode: $2Na^+ + 2e^- + 2H_2O \rightarrow 2NaOH + H_2$

Instead of H_2 gas, sodium is formed in the outer compartments because the discharge potential of sodium is lowered in presence of Hg cathode.

Sodium Carbonate:

* Decahydrated sodium carbonate $(Na_2CO_3.10H_2O)$ is called washing soda or salt soda.

- * Anhydrous sodium carbonate is called soda ash or soda.
- * It is prepared by
 - 1. Solvay or ammonia soda process.
- * Solvay process or Ammonia soda process:
 - Raw materials: Brine, limestone, little NH_3
 - By-product: CaCl₂

Intermediate product: NaHCO₃

Recycled products: NH_3 and CO_2

Impurities in Brine solution: Calcium & Magnesium salts.

These are removed in the form of carbonate precipitates.

Precipitation of $NaHCO_3$ in Carbonation tower is due to common ion effect.

Solution from carbonation tower Consists of: $NaHCO_3$ and NH_4Cl

- * It is suitable method to prepare Na_2CO_3 because of low solubility of $NaHCO_3$.
- * K_2CO_3 can not be manufactured by Solvay's process because KHCO₃ is more soluble in water.

*
$$Na_2CO_3.10H_2O \rightarrow Na_2CO_3.7H_2O \rightarrow Na_2CO_3.H_2O$$

* It's aqueous solution is basic due to hydrolysis of CO_3^{2-1}

 $CO_3^{2-} + H_2O \rightarrow HCO_3^- + OH^-$

$$CO_3^{2-} + 2H_2O \rightarrow H_2CO_3^{-} + 2OH^{-}$$

- * It liberates CO_2 when treated with mineral acids stronger than H_2CO_3 acid.
- * $Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2$ $Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + H_2O + CO_2$
- * It reacts with sulphur and SO_2 to give hypo

 $Na_2CO_3 + SO_2 \rightarrow Na_2SO_3 + CO_2$

 $Na_2SO_3 + S \rightarrow Na_2S_2O_3$

- * When fused with silica it gives sodium silicate or water glass. $Na_2CO_3 + SiO_2 \rightarrow Na_2SiO_3 + CO_2$
- * It causes the precipitation of salt solution as their carbonates. $MgCl_2 + Na_2CO_3 \rightarrow MgCO_3 + 2NaCl$

 $ZnSO_4 + Na_2CO_3 \rightarrow ZnCO_3 + Na_2SO_4$

* It is used in the manufacture of glass, caustic soda and water glass, Borax, Soap power.

- * It is used for softening of water.
- * It is used in laundries, paper and in dye industry.
- * It is used in sizing of paper.
- * It is used in petroleum refining.
- * It is used in preparation of ultramarine.
- * Sodium bicarbonate or Baking soda $(NaHCO_3)$
- * It is prepared by Solvay's process.
- * It is also obtained by saturating Na_2CO_3 solution with CO_2

- * It is a white crystalline substance preparation $Na_2CO_3 + CO_2 + H_2O \rightarrow 2NaHCO_3$
- * *NaHCO*₃ Solution gives yellow colour with methyl orange and it does not give any colour with phenolphthalein.
- * It is used as a fire extinguisher.
- * It is used as an antacid.
- * It is used in making baking powders.
- * It is used in the preservation of butter.
- * It is used in the treatment of wool and silk.
- * It is used in effervescent drinks.