CHEMICAL EQUILIBRIUM

1.	The pH of 0.01 M solution of acetic acid is 5.0. What are the values of [H ⁺]	and K _a
	respectively?	(E-2010)

1)
$$1 \times 10^{-4} \text{ M}$$
, 1×10^{-8} 2) $1 \times 10^{-5} \text{ M}$, 1×10^{-9}

2)
$$1 \times 10^{-5} \text{ M}$$
, 1×10^{-9}

3)
$$1 \times 10^{-5} \text{ M}$$
, 1×10^{-8} 4) $1 \times 10^{-3} \text{ M}$, 1×10^{-8}

4)
$$1 \times 10^{-3} \text{ M} \cdot 1 \times 10^{-8}$$

Solution; Ans;3

$$[H^{+}] = \sqrt{K_a.C}$$
, As $P^{H} = 5$, $[H^{+}] = 10^{-5}$, $C = 0.01$

$$K_a = [H^+]^2 / C = [10^{-5}]^2 / 0.01 = 10^{-8}.$$

What is the $P^{\mbox{\scriptsize H}}$ of a solution obtained by dissolving 0.0005 mole of the strong electrolyte, 2. calcium hydroxide, Ca(OH)2 to form 100 ml of a saturated solution (aqueous)?

$$(K_W = 1.0 \times 10^{-14} \text{ mole}^2 \text{litre}^{-2})$$

(AFMC 1999)

Ans; 3

Solution;[OH⁻]=Normality of base=0.0005X2X1000/100 =10⁻²

$$P^{OH} = -\log 10^{-2} = 2$$
, $P^{H} = 14-2=12$

3. A: According to Bronsted theory, a subtance can function as an acid as well as a base

R: Acid reacts with a base to produce a salt.

(M-2010)

- 1) 'A' and 'R' are true, 'R' is correct explanation of 'A'.
- 2) 'A' and 'R' are true. 'R' is not correct explanation of 'A'.
- 3) 'A' is true and 'R' are false. 4)both A and R are false

50 ml of H_2O is added to 50 ml of 1 x 10^{-3} M barium hydroxide solution. What is the P^H of the resulting solution? (E - 2008)

1) 3.0 2) 3.3

3) 11.7 4) 11.0

Ans:4

5. Of the given anions, the strongest Bronsted base is

(AFMC 2001)

1)
$$ClO^{-}$$
 2) ClO_{3}^{-} 3) ClO_{2}^{-} 4) ClO_{4}^{-}

Ans: 1

www.sakshieducation.com

Identify Bronsted - Lowry acids in the reaction given below? 6.

[M - 2008]

$$\begin{bmatrix} Al(H_2O)_6 \end{bmatrix}^{3 +} + HCO_3^{-} \qquad \qquad \begin{bmatrix} Al(H_2O)_5 (OH) \end{bmatrix}^{2 +} + H_2CO_3$$

The correct answer is

1) A, C

2) A, D

3) B, D

4) B, C

Ans; 2

Among the following relatively strong base is 7.

(AFMC 2004)

1) HSO₄⁻ 2) NO₃⁻ 3) CH₃COO⁻ 4) C*l*⁻

Ans; 3

4) 4 5) 3

6)3

7)3

Which of the following is not a conjugate acid - base pair

(E - 2007)

1) HPO_3^{2-} , PO_3^{3-}

2) $H_2PO_4^-$, HPO_4^{2-}

3) $H_2PO_4^-$, H_3PO_4

4) $H_2PO_4^-$, PO_3^{3-}

Ans; 4

Which of the following is a Lewis acid? [M2005] 9.

1) HCOO-

2) H₂SO₄

3) SiF₄

4) H₂S

Ans; 3

10. Conjugate base of HSO₄⁻ is

(M-2006)

1) H₂SO₄

2) $H_2SO_4^{2-}$

3) SO_4^{2-}

4) H⁺

Ans; 3