CHEMICAL EQUILIBRIUM

1. The equilibrium constant for the reaction $\mathbf{N}_{2}+\mathrm{O}_{\mathbf{2}} \rightleftarrows \mathbf{2 N O}$ is K_{1} and for the reaction $\mathbf{2 N O}+\mathrm{O}_{\mathbf{2}} \rightleftarrows \mathbf{2} \mathbf{N O}_{\mathbf{2}}$ is K_{2}. The equilibrium constant K for the reaction $\mathbf{N O}_{\mathbf{2}} \rightleftarrows \mathbf{1} / \mathbf{2} \mathbf{N}_{\mathbf{2}} \mathbf{+ O}_{\mathbf{2}}$ at same temperature is
[AIPMT2011]
1/ $\mathrm{K}_{1} \mathrm{~K}_{2}$
2) $1 / 2 \mathrm{~K}_{1} \mathrm{~K}_{2}$
3) $1 / 4 K_{1} K_{2}$
4) $\left[1 / K_{1} K_{2}\right]^{1 / 2}$
Ans:4
5) The value of ΔH for the reaction $X_{2}(g)+4 Y_{2}(g) \rightleftarrows \mathbf{2 X Y} 4(g)$ is less than zero, Formatioon of is favoured by
[AIPMT2011]
1)high pressure and low temperature
6) high pressure and high temperature
7) low pressure and low temperature
8) low pressure and high temperature

Ans: 1
3) For the reaction $\mathrm{AB}(\mathrm{g}) \rightleftarrows \mathbf{A}(\mathrm{g})+\mathrm{B}(\mathrm{g}), \mathrm{AB}$ is 33% dissociated at a total pressure of P. Therefore, P is related to K_{P} as
[AMU2010]

1) $P=K_{P}$
2)) $P=3 K_{P}$
3)) $P=4 K_{P}$
4)) $P=8 K_{P}$

Ans:4
4) At 3000 K , the equilibrium pressures of $\mathrm{CO}_{2}, \mathrm{CO}$ and CO_{2} are $0.6,0.4$ and 0.2 atm respectively. K for the reaction $2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ is
[BHU2010]

1) 0.088
2)) 0.0533
3)) 0.133
4)) 0.177

Ans:1
5) In which of the following K_{C} and K_{P} are not equal?
[PMT2010]

1) $2 \mathrm{NO}(\mathrm{g}) \rightleftarrows \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
2) $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
3) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{g})$
4) $2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{CO}(\mathrm{g})$

Ans; 4
6) $\quad K_{1}$ and K_{2} are the equilibrium constants of the two reactions, given below
i. $1 / 2 \mathbf{N}_{2}+\mathbf{3} / 2 \mathrm{H}_{2} \rightleftarrows \mathrm{NH}_{3}$
ii. $\mathbf{N}_{\mathbf{2}} \mathbf{+ 3 \mathbf { H } _ { 2 }} \rightleftarrows \mathbf{2} \mathrm{NH}_{3}$.Therefore K and K * are related as
[PMT2009]

1) $K_{1}=K_{2}^{2}$
2) $K_{1}=K_{2}^{1 / 2}$
3) $\mathrm{K}_{1}=2 \mathrm{~K}_{2}$
4) $K_{1}=K_{2}$

Ans; 2
7. $\quad A_{(g)}+3 B_{(g)} \rightleftarrows 4 C_{(g)}$ Initial concentration of A is equal to that of B. The equilibrium concentration of A and C are equal. K_{c} is equal to,
[Kerala -2005(E)]

1) 0.08
2) 8
3) $1 / 8$
4) 80

Ans;2
8. In a 500 ml flask, the degree of dissociation of PCl_{5} at equilibrium is $\mathbf{4 0 \%}$ and the initial amount is $\mathbf{5}$ moles. The value of equilibrium constant in mole lit $^{\mathbf{- 1}}$ for the decomposition of PCl_{5} is
(E-2008)

1) 3.33
2) 2.66
3) 5.32
4) 4.66

Ans;2
9. What is the effect of a ten-fold increase in pressure on K_{p} in the reaction at equilibirum $\mathbf{N}_{\mathbf{2}(\mathrm{g})}+\mathbf{3} \mathbf{H}_{\mathbf{2}}(\mathrm{g}) \rightleftarrows \mathbf{2} \mathbf{N H}_{\mathbf{3}(\mathrm{g})}$?

1) A ten-fold increase
2) A ten-fold decrease
3) No change 4) Equal to K_{C}

Ans;3
10. In the reaction $2 \mathrm{SO}_{3(\mathrm{~g})} \rightleftarrows \mathbf{2 S O}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}, \mathrm{SO}_{3(\mathrm{~g})}$. is 50% dissociated at $27^{0} \mathrm{C}$ when the equilibrium pressure is 0.5 atm . Hence partial pressure of $\mathrm{SO}_{3(\mathrm{~g})}$ at Equilibrium is (M-2007)

1) 0.5 atm
2) 0.3 atm
3) 0.2 atm
4) 0.1 atm Ans;3
