CHEMICAL EQUILIBRIUM

1.	The equilibrium constant for the reaction $N_2+O_2 \Longrightarrow 2NO$ is K_1 and for the reaction $2NO+O_2 \Longrightarrow 2NO_2$ is K_2 . The equilibrium constant K for the reaction								
		$1/\ K_1\ K_2$	2) 1/2 K ₁ K ₂	3) 1/4 K ₁ K ₂	4)[$1/ K_1 K_2]^{1/2}$				

Ans:4

2)

The value of $\triangle H$ for the reaction $X_2(g) + 4Y_2(g) \rightleftharpoons 2XY_4(g)$ is less than zero, Formatioon of is favoured by [AIPMT2011]

- 1)high pressure and low temperature
- 2) high pressure and high temperature
- 3) low pressure and low temperature
- 4) low pressure and high temperature Ans: 1

For the reaction $AB(g) \rightleftharpoons A(g) + B(g)$, AB is 33% dissociated at a total pressure of P. 3) Therefore, P is related to K_P as [AMU2010]

- 1) $P=K_P$
- 2)) $P=3 K_P$
- 3)) $P=4 K_P$ 4)) $P=8K_P$

Ans:4

At 3000K, the equilibrium pressures of CO₂, CO and CO₂ are 0.6, 0.4 and 0.2 atm 4) respectively. K for the reaction $2CO_2(g) \rightleftharpoons 2CO(g) + O_2(g)$ is [BHU2010]

- 1) 0.088
- 2)) 0.0533
- 3)) 0.133 4)) 0.177

Ans:1

In which of the following K_C and K_P are not equal? 5)

[PMT2010]

- 1) $2NO(g) \rightleftharpoons N_2(g) + O_2(g)$ 2) $SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g)$
- 3) $H_2(g) + I_2(g) \longrightarrow 2HI(g)$ 4) $2C(s) + O_2(g) \longrightarrow 2CO(g)$

Ans; 4

 K_1 and K_2 are the equilibrium constants of the two reactions, given below

i. $\frac{1}{2}$ N₂ + $\frac{3}{2}$ H₂ \Longrightarrow NH₃

ii. $N_2+3H_2 \rightleftharpoons 2NH_3$. Therefore K and K* are related as

[PMT2009]

- 1) $K_1 = K_2^2$ 2) $K_1 = K_2^{1/2}$ 3) $K_1 = 2K_2$ 4) $K_1 = K_2$

Ans; 2

www.sakshieducation.com

7.	A _(g) +3B _(g) concentration	B. The equilibrium [Kerala -2005(E)]						
	1) 0.08	2) 8	3) 1/8		4) 80			
	Ans;2							
8.				_		is 40% and the initial		
	amount is 5 n of PCl ₅ is	noles. The valu	e of equilib	rium consta	nt in mole lit ⁻¹	for the decomposition (E-2008)		
	1) 3.33	2) 2.66	3) 5.32	4) 4.66				
	Ans;2							
9.	What is the effect of a ten-fold increase in pressure on $\mathbf{K}_{\mathbf{p}}$ in the reaction at equilibirum							
	$N_{2(g)} + 3H_{2(g)}$	$g) \rightleftharpoons 2NH_3$	(g) ?			(M-2010)		
	1) A ten-fold i	ncrease 2) A t	en-fold deci	rease 3)	No change 4) E	Equal to K _C		
	Ans;3							
10.	In the reaction $2SO_{3(g)} \rightleftharpoons 2SO_{2(g)} + O_{2(g)}$, $SO_{3(g)}$ is 50% dissociated at 27^0C when the equilibrium pressure is 0.5 atm. Hence partial pressure of $SO_{3(g)}$ at Equilibrium is (M - 2007)							
	1) 0.5 atm Ans;3	2) 0.3 a	tm 3) 0.2 :	atm	4) 0.1 atm			