THERMODYNAMICS

1. Assume each reaction is carried out in an open container. For which reaction will $\Delta H = \Delta U$?

(CBSE (MED. 2006)

1.
$$H_2(g) + Br_2(g) \rightarrow 2HBr(g)$$

1.
$$H_2(g) + Br_2(g) \rightarrow 2HBr(g)$$
 2. $C(s) + 2H_2O(g) \rightarrow 2H_2(g) + CO_2(g)$

3.
$$PCl_5(g) \rightarrow PCl_3(g) + Cl_2(g)$$

3.
$$PCl_5(g) \to PCl_3(g) + Cl_2(g)$$
 4. $2CO(g) + O_2(g) \to 2CO_2(g)$

Ans; 1

2. Consider the following reactions at $1000^{\circ}C$:

1.
$$Zn(s) + \frac{1}{2}O_2(g) \rightarrow ZnO(s) : \Delta G^0 = -360 \text{kjmol}^{-1}$$

2. C (graphite) + $\frac{1}{2}O_2(g) \rightarrow CO(g)\Delta G^0 = -460kj/mol$

Choose the correct statement at $1000^{\circ}C$

(PMT (KERALA)2006)

- A) zinc can be oxidized by oxidized by carbon monoxide
- B) ZnO can be reduced by graphite
- C) Both (a) and (b) are true
- D) Both (a) and (b) are false
- E) Carbon monoxide can be reduced by zinc.

Ans;B

3. For a phase change:

(AIIMS 2006)

$$H_2O(l) \longleftrightarrow H_2O(s)$$
 at $0^{\circ}C,1$ bar

1)
$$\Delta G = 0$$

2)
$$\Delta S = 0$$

1)
$$\Delta G = 0$$
 2) $\Delta S = 0$ 3) $\Delta H = 0$ 4) $\Delta U = 0$

4)
$$\Delta U = 0$$

Ans:1

A reaction is non-spontaneous when

(AMU (MEDICAL) 2006)

1)
$$\Delta H$$
 is +ve, ΔS is -ve

2) both
$$\Delta H$$
 and ΔS are –ve

3)
$$\Delta$$
 His-ve and Δ S is+ve

5.	The enthalpy	and entropy	changes for	the reaction:

$$Br_2(l) + Cl_2 \Longrightarrow 2BrCl(g)$$

are 30 k j mol^{-1} and 105 j K^{-1} mol^{-1} respectively . The temperature at which the reaction will be equilibrium is (CBSE(MED) 2006)

- 1) 285.57k
- 2) 273.k
- 3) 450k
- 4) 300k

Ans;1

- 6. If 150kj of energy is needed for muscular work to walk a distance of 1 km, then how much of glucose one has to consume to walk a distance of 5 km, provided only 30% of energy is available for muscular work. The enthalpy of combustion of glucose is 3000 kj mol^{-1} (PMT (KERALA)2007)
 - 1) 75 g
- 2) 30g
- 3) 180g
- 4) 150g
- 5) 45g

Ans;4

7. The enthalpy of combustion of cyclohexane, cyclohexene and $\,H_{2}\,$ are resperature , are respectively -3920,-3800and -241 kj mol⁻¹ The heat of hydrogenation of cyclohexene is

(AIIMS2007)

- 2) 121 kj mol^{-1} 3) -242 kj mol^{-1} 4) 242 kj mol^{-1}

Ans;1

- 8. In a closed container, a liquid is stirred with a paddle to increase the temperature, which of the following is true (PMT PB.)2007)
 - 1) $\Delta U = w \neq o, q = 0$
- 2) $\Delta U = w = o, q \neq 0$
- 3) $\Delta U = 0, w = q \neq 0$ 4) $w = 0, \Delta U = q \neq 0$

9.	The value of Δ H - Δ	U for the follo	owing reac	tion at 27° C wil	l be [AMU(MED. 2007)				
	$2NH_3(g) \to N_2(g)3H_2(g)$								
	1) 8.314X273(-2)	2) 8.314X3	00X(-2)	3) 8.314X273X	2 4) 8.314X300X2				
	Ans;2								
10.	Unit of entropy is:				(PMT (Punjab)2007)				
	1) $jk^{-1}mol^{-1}$ 2) jm	ol^{-1} 3) j^{-1}	$K^{-1}mol^{-1}$	4) <i>jkmol</i> ⁻¹					
	Ans;1								
11.	For a reaction to be spontaneous in neither direction, which of the following is/ are								
	correct regarding the closed system. (BHU (mains)2007)								
	$1) \ (\Delta G)T, p = 0$	2) $(\Delta G)T, p <$	< 0 3)	$(\Delta S)U, v=0$	4) $(\Delta S)U, v > 0$				
	Codes:								
	a. 1,2 and 3are correct b. 1 and 2 are correct								
	c. 2 and 4 are correct	d. 1 a	and 3 are co	rrect					
	Ans;d								
12.	Given that bond energies of H- H and Cl -Cl bonds are 430kj/mol and 240 kj /mol								
	respectively ΔH_f for HCl is -90kj/mol Bond enthalpy of HCl is (CBSE (MED. 2007)								
	1) 380kj <i>mol</i> ⁻¹	2) 425KJ mo	l^{-1} 3.	$245 \text{ KJ} mol^{-1}$	4. 290KJ <i>mol</i> ⁻¹				
	Ans;2								
13.	The mount of heat relesed, when 20 mL of 0.5 M NaOH is mixed with 100 mL of 0.1 M								
	HCl, is x kj The heat of nenutralization (in kj mol^{-1}) is (BHU (mains 2007)								
	1) -100x	2) -50x	3)+100x		4) +50x				

14. for the gas phase reaction, (CBSE PMT Pre. 2008)

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

Which of the following conditions are correct

- 1) Δ H<0, Δ S<0
- 2. Δ H>0 and Δ S<0
- 3. Δ H=0, Δ S<0
- 4. Δ H> 0 and Δ S> 0

Ans:4

15. Which of the following is correct (BHU(screening)2008)

- 1) $C_v = \left(\frac{\partial U}{\partial T}\right)_P$ 2) $C_P = \left(\frac{\partial H}{\partial T}\right)_V$ 3) $C_P C_V = R$ 4)

Ans;3

what will be the heat of formation of methane, if the heat of combustion of carbon is "-x" **16.**

formation of water is "-y" kj and heat of combustion of methane is"-z" kj kj, heat of

(AIIMS 2008)

- 1) (-x-y+z) kj
- 3) (-x-2y-z) kj 4) (-x-2y+z)kj

Ans;4

4.48 L of on ideal gas at S.T.P. requires 12 calories to raise its temperature by 15 C^0 at **17.** constant volume The C_n of the gas is (PMT (kerala2009)

- 1) 3cal
- 2) 4cal
- 3) 7cal
- 4)6cal
- 5)9cal

Ans;2

For vaporisation of water at 1 atmospheric pressure the value of Δ H and Δ S are 40.63 18. $kj mol^{-1}$ and 108.8j $K^{-1} mol^{-1}$ respectively The temperature when Gibbs free energy change (ΔG) for transformation will be zero, is (CBSE (PMT)2010)

- 1) 273.4 K
- 2) 393.4K
- 3) 373.4 K
- 4) 293.4 K

www.sakshieducation.com

19. The heat liberated when 1.89 g of of benzoic acid is burnt in a bomb calorimeter at $25^{\circ}C$ increases the temperature of 18.94kg of water by 0. $632^{\circ}C$ if the specific heat of water at $25^{\circ}C$ is 0.998 cal g^{-1} deg g^{-1} , the specific heat of combustion of benzoic acid is

(AFMC 2010)

1) 88.11 kcal

2) 771.4 kcal

3) 98.1.1 kcal

4) 871.2 kcal

Ans;2

20. Standard entropies of X_2, y_2 and X_2, y_2 are 60, 40 and 50 $JK^{-1}mol^{-1}$ respectively. For the reaction $\frac{1}{2}X_2 + \frac{3}{2}Y_2 \longleftrightarrow XY_3 : \Delta H = -30kj$ To be at equilibrium, the temperature should be (CBSE (PMT)2010)

1) 750 K

2) 1000K

3) 1250 K

4) 500K