STATES OF MATTER

1. Volueme occupied by $\mathbf{7 g m}$ of Nitrogen at $27^{*} \mathrm{C}$ and $750 \mathrm{~mm} \mathbf{H g}$ pressure is
(BHU1997)
1)2.46litre
2) 4.24 litre
3.)6.24litre
3) 8.42 litre

Hint:PV=(W/M)RT
2. For an ideal gas the graph between PV/RT and T is
1)

2)

3)
3. One mole of argon will have least density at
(E-1998)

1) STP
2) $0^{\circ} \mathrm{C}, 2 \mathrm{~atm}$
3) $273^{\circ} \mathrm{C}, 2 \mathrm{~atm}$
4) $273^{\circ} \mathrm{C}, 1 \mathrm{~atm}$

Hint: 'd 'is proportional to p / T
4. What are the conditions under which the relation between ' V ' and ' n ' are plotted (2001)

1) At constant P
2) At constant P, V
3) At constant T, V
4) At constant P, T
5. The volume-temperature graphs of a given mass of an ideal gas at constant pressures are shown below. What is the correct order of pressures?
1) $P_{1}>P_{3}>P_{2}$
2) $P_{1}>P_{2}>P_{3}$
3) $P_{2}>P_{3}>P_{1}$

4) $P_{2}>P_{1}>P_{3}$
6. At standard pressure and temperature conditions the density of a gas in g.lit ${ }^{\mathbf{1}}$, whose molecular weight is $\mathbf{4 5}$
(1996)
1) 2
2) 22.4
3) 11.2
4) 1000

Hint: at STP, d=GMW/22.4
7. The volume of 2.8 g of carbon monoxide at $27^{\circ} \mathrm{C}$ and 0.821 atm pressure is
$\left(R=0.0821\right.$ lit-atm $\left.\mathbf{~ m o l}^{-1} \mathbf{K}^{-1}\right)$
(1998)

1) 1.5 lit
2) 0.3 lit
3) 3 lit
4) 30 lit
5) 7.5 gr of a gas occupies a volume of 5.6 lit at NTP. The gas is
(2001)
6) CO_{2}
7) CH_{4}
8) NO
9) SO_{2}
9. What is the density (in $\mathrm{g} \mathrm{lit}^{\mathbf{- 1}}$) of CO_{2} at 400 K and exerting a pressure of 0.0821 atm $\left(\mathrm{R}=0.0821\right.$ lit atm $\left.\mathrm{mol}^{-\mathbf{1}} \mathrm{k}^{\mathbf{- 1}}\right)$
1) 0.01
2) 0.11
3) 2.5
4) 44
10. The volume of a gas measured at $27^{\circ} \mathrm{C}$ and 1 atm pressure is $\mathbf{1 0}$ litres. To reduce the volume to 5 litres at $\mathbf{1 ~ a t m}$ pressure, the temperature required is
(AFMC)
1) 75 K
2) 150 K
3) 225 K
4) 300 K
11. The density of a gas ' S ' at 2 atm and $27^{0} \mathrm{C}$ is $1.3 \mathrm{gm} / \mathrm{lit}$. Then the gas ' S ' may be
1) CH_{4}
2) O_{2}
3) SO_{2}
4) CO_{2}

HINT: PM=dRT
12. The weight of $112 \mathbf{~ m l}$ of oxygen at $S T P$, on liquifaction would be
(DPMT)

1) 0.32 g
2) 0.64 g
3) 0.16 g
4) 0.96 g
13. A gaseous mixture of three gases A, B and C has a pressure of 10 atm . The total number of moles of all the gases is 10 . The partial pressure of A and B are 3 and 1 atm respectively. If C has a molecular weight of 2 , what is the weight of C in grams present in the mixture?
(1998)
1) 6
2) 3
3) 12
4) 8
14. The total pressure of a mixture of 6.4 grams of oxygen and 5.6 grams of nitrogen present in a 2 lit vessel is $\mathbf{1 2 0 0} \mathbf{m m}$. What is the partial pressure of nitrogen in $\mathbf{~ m m}$?
1) 1200
2) 600
3) 900
4) 200
15. At $\mathbf{2 7}^{\circ} \mathrm{C}$, a closed vessel contains a mixture of equal weights of helium (mol. wt $=\mathbf{4}$), methane (mol.wt $=16$) and sulphur dioxide ($\mathbf{m o l} . \mathrm{wt}=64$). The pressure exerted by the mixture is $\mathbf{2 1 0} \mathbf{~ m m}$. If the partial pressure of helium methane and sulphurdioxide are $\mathbf{P}_{\mathbf{1}}$, P_{2} and P_{3} respectively, which one of the following is correct?
(E-2002)
1) $P_{3}>P_{2}>P_{1}$
2) $P_{1}>P_{2}>P_{3}$
3) $P_{1}>P_{3}>P_{2}$
4) $P_{2}>P_{3}>P_{1}$
16. x gm of water is mixed with 69 gm of ethanol. The mole fraction of ethanol in the resulting solution is 0.6 . What is the value of ' x ' in gm
1) 54
2) 36
3) 180
4) 18
17. A and B are ideal gases. The molecular weights of A and B are in the ratio of $1: 4$. The pressure of a gas mixture containing equal weights of A and B is P atm. What is the partial pressure (in atm) of B in the mixture?
(E-2005)
1) $P / 5$
2) $P / 2$
3) $P / 2.5$
4) $3 P / 4$
18. Gas eqation $\mathbf{P V}=\mathrm{nRT}$ is obeyed by
(BHU2000)
1)isothermal process only
2) adiabatic process only
3)both 1 and 2
4)none
19. The molecular weight of a gas which diffuses four times faster than $\mathbf{O 2}$ is
(AFMC2002)
1) 2
2) 4
3) 8
4) 16
5) The rms speed of Hydrogen is $\sqrt{7}$ times the rms speed nitrozen. If Tis the temprature of the gas, then
6) $T_{H_{2}}=T_{N_{2}}$
7) $T_{H_{2}}>T_{N_{2}}$
8) $T_{H_{2}}<T_{N_{2}}$
4)none
1)3
9) $1 \quad 3) 4$
10) $4 \quad 1 \quad 1$
11) 2
12) 1
3
13) 3
14) 2
$\begin{array}{llllllllll}\text { 11) } 2 & \text { 12) } 1 & 13) \\ 3 & \text { 14) } 2 & \text { 15) } 2 & \text { 16) } 4 & \text { 17) } 1 & 18) 3 & 19) 2 & 20) 3\end{array}$
