HYDROGEN BOND

- 1. The states of hybridization of boron and oxygen atoms in boric acid (H₃BO₃) are respectively
 - (A) sp³ and sp²
 (B) sp² and sp³
 (C) sp² and sp²
 (D) sp³ and sp³
- 2. The correct order of the hybridization of the central atom in the following species NH₃, [PtCl₄]²⁻, PCl₅ and BCl₃ [2001]
 - (A) dsp^2 , dsp^3 , sp^2 and sp^3 (B) sp^3 , dsp^2 , dsp^3 , sp^2 (C) dsp^2 , sp^2 , sp^3 , dsp^3 (D) dsp^2 , sp^3 , sp^2 , dsp^3
- 3. Specify the coordination geometry around and hybridization of N and B atoms in a 1: 1 complex of BF₃ and NH₃ [2002]

(A) N: tetrahedral, sp	³ ; B: tetrahedral, sp ³	(B) N: pyramidal, sp ³	; B: pyramidal, sp ³	
(C) N: pyramidal, sp	³ ; B: planar, sp ²	(D) N: pyramidal, sp ²	³ : tetrahedral, sp ³	
The linear structure	e is assumed by:	G		[1991]
(A) SnCl ₂	(B) NH ₃	(C) CO ₂	(D) NO ₂	

5. Which of the following statements are correct?

- (A) The bond angle of NCl₃ is greater than that of NH₃.
- (B) The bond angle in PH_3 is greater than that of PF_3 .

The geometry of H₂S and its dipole moment are

(C) and are isostructural

4.

5.

(D) It is not necessary that in TBP structure the lone pairs always would occupy the equatorial positions.

[1999]

(A) angular and non-zero(B) angular and zero(D) linear and zero

7.	The bond order in NO is 2.5 while that in NO ⁺ is 3. Which of the following statements is true for these two species?							
	(A) Bond length in NO ⁺	is equal to that in NO	(B) Bond length in NO i	s greater than in NO ⁺				
	(C) Bond length in NO ⁺	is greater than in NO	(D) Bond length is unpre	edictable				
8.	Which of the following molecules/ions does not contain unpaired electrons?							
	(A) N ₂ ⁺	(B) O ₂	(C) 0 ₂ ^{2–}	(D) B ₂				
9.	The cyanide ion, CN [−] a	and N ₂ are isoelectronic.	But in contrast to CN ⁻ ,]	N ₂ is chemically inert, because [1992]	e of			
	(A) Low bond energy			G				
	(B) absence of bond polar	rity						
	(C) unsymmetrical electron distribution							
	(D) presence of more num	nber of electrons in bondin	g orbitals	V				
10.	Among KO ₂ , AlO ₂ ⁻ , Ba	NO ₂ and NO ₂ ⁺ , unpaired	electron is present in	[1997]				
	(A) NO_2^+ and BaO_2	(B) KO ₂ and AlO ₂ ^{$-$}						
	(C) KO ₂ only	(D) BaO ₂ only						
11.	The correct order of inc	creasing C—O bond leng	th of CO, CO ^{2–} , CO ₂ is	[1999]				
	(A) $\text{CO}_3^{2-} < \text{CO}_2 < \text{CO}_2$	(B) $CO_2 < CO_3^{2-} < CO_3^{2-}$						
	(C) CO $< CO_3^{2-} < CO_2^{2-}$	(D) CO $<$ CO ₂ $<$ CO ₃ ²⁻						
12.	The common features a	mong the species CN ⁻ , C	O and NO ⁺ are	[2001]				
	(A) bond order three and	isoelectronic						
	(B) bond order three and	weak field ligands						
	(C) bond order two and π	-acceptors						
	(D) isoelectronic and wea	k field ligands						

13. V	13. Which of the following are isoelectronic and isosteructural? NO ₃ ⁻ , CO ₃ ²⁻ , SO ₃ [2003]							
	(A) NO_3^- , CO_3^{2-} (B) SO_3 , NO_3^- (C) ClO_3^- , CO_3^{2-} (D) CO_3^{2-} , SO_3^-							
14.	Among the following, t	he paramagnetic co	mpound is	[2007]]			
	(A) Na ₂ O ₂	(B) O ₃	(C) N ₂ O	(D) KO ₂				
15.	The species having bo	nd order different fr	rom that in CO is	ĺ	2007]			
	(A) NO ⁻	(B) NO ⁺	(C) CN ⁻	(D) N ₂				
16.	Planar structure is sho	own by		[AIIMS	2007]			
	A) CO_3^{2-} B) BCl ₃	C) N(SiH ₃)3	D)all	G				
17.	Which of the following	g does not have a co	-ordinate covalent bond	? [CPMT2008	3]			
	(A) SO ₂	(B) H N O ₃	(C) H ₂ SO ₃	(D) HNO ₂				
18.	In which of the followi	ing, the central atob	does not have Sp3 hybr	idisation? [AIPMT201	0]			
	A. CH_4 B. SF_4	C. BF ₄ ⁻	D. NH_4^+					
19.	Which of the following	g is Linear?		[AFMC2008]				
	A. XeF_4 B. XeF_2	$_2$ C. SO ₂ D. Cl	F3					
20.			IF _{3,} XeF ₄ SF ₄ , Whic	h of the following does no	ot describe the			
	shape of any of these is			[AIPMT2011]				
01			C. See-saw D. T-shape		(2001)			
21.			Tetrahedral d.	(CPMT 2000: AIIM Trigonal	182001)			
C	a. Pyramidal b. Linear c. Tetrahedral d. Trigonal							

22.	The shape	of I F_5 is				(CPMT2001)
	a. Pentagor	nal bipyramidal	b. S	quare pyramidal	l	
	c. octahedr	al	d. tri	igonal planar		
23.	The As F_5 r	nolecule is trigonal pyra	amidal The hybri	id orbital used by	y the As-atom	for bonding are
						(AIIMS2000)
	a. $d_{x^2-y^2}$, s, p	$\mathcal{P}_{y}, \mathcal{P}_{z}$	b. <i>s</i> , <i>p</i>	$p_x, p_y, p_{z,}d_{z^2}$		
	c. $d_{x^2-y^2}, d_z$	$_2$, s , p_x , p_y	d. d_{xy}	$, s, p_x, p_y, p_z$		
24.	Ion which o	of the following the angle	e between the two	o covalent bonds	is greatest?[.	HPMER 2001]
	a. H_2O	b. NH_3	c. <i>CH</i> ₄	d. <i>CO</i> ₂		
25.	BCl_3 is a p	planar molecule because	e its hybridization	n is:		[BHU 2000]
	a. SP^3	b. Sp^3d	c. <i>Sp</i>	2	d. Sp	
26.	The ratio o	of π and σ bonds in be	nzeneis:			[BHU 2000]
	a. 1:3	b. 1:4	c. 1:6		d. 1:9	
27.	Which of t	he following molecules v	will form a linear	· polymeric struc	ture due to h	ydrogen bonding?
						[AIPMT 2000]
	a. NH_3	b. H_2O	c. H	Cl	d. <i>HF</i>	
28.	Which of t	he following is not a par b. N ⁺ ₂	ramagnetic?			[AIPMT 2000]
	a. NO	b. N ⁺ ₂	c. CC)	d. O_{2}^{-}	
	A 4					
E						
4						

29.	Which of the followi	ng two are isostructura	[,	AIPMT 2001][BHU 2007]	
	a. XeF_2, IF_2^-	b. NH_3, BF_3	$c.CO_3^{2}$, SO_3^{2-}	d. <i>PCl</i> ₅ , <i>ICl</i>	5
30.	In which of the follo	wing bond angle is ma		[AIPMT 2001]	
	a. <i>NH</i> ₃	b. NH_4^+	c. <i>PCl</i> ₃	d. <i>SC</i>	
31.	Which of the follow	ing has $p\pi - d\pi$ bond	ing?		[AIPMT 2002]
	a. No_3^-	b. So_3^{2-}	c. Bo_3^{3-}	d. <i>Co</i>	2-
32.	The number of σ and	nd π -bonds present in	1-buten-3-yne are:		[AFMC 2000]
	a. 7 σ and 5 π b. 6 σ	σ and 4π c. 6	σ and 6 π d. 7 σ a	and 3π	
33.	Both BF_3 and NF_3	are covalent but BF_3	molecule is non-po	olar while <i>NF</i>	is polar because:
	a. Boron is a metal wl	nile nitrogen is a gas		\bigcirc	
	b. BF_3 is a planar but	t NF_3 is pyramidal			
	c. atomic size of boro	n is smaller than nitroge	n		
	d. B-F bond has no di	pole moment while N-F	bond has dipole mo	oment	
34.	NH_3 is added to BH	73 by:			[AFMC 2001]
	a. ionic bond	b. Covalent bond			

c. Dative bond d. Molecular bond

COLS'

35.	Ionic bond formation between Aand B can	take place only if:		[AFMC 2001]
	a. ionization energy of A is less and electron	affinity of B is more		
	b. If ionisation energy of both A and B are me	ore		
	c. Both have equal electron affinities			
	d. none of the above			
36.	Ethene molecule contains:			[AMU 2000]
	a. One π -bondsd and five σ -bonds	b. Two π -bonds	only	
	c. Two π -bonds and four σ -bonds	d. Four π -bonds	and σ -bonds	
37.	Which of the following species is diamagnee	etics?		[AMU 2001]
	a. O_2 b. O_2^{2-} c. C_2	D_2^- d.	O_2^+	
38.	MO configuration of He_2^- is:	٠. ([AMU 2001]
	a. $\sigma ls^2 \sigma ls^2 \sigma 2s^1$ b. $\sigma ls^2 \sigma ls^2 \sigma 2s^2$	c. $\sigma 1s^2 \sigma 1s^1 \sigma 2s^2$	d. $\sigma 1s^2 \sigma 1s^1 \sigma 2s$,1
39.	The orbitals of same energy level providin	g the most efficient o	verlapping are:[PN	IT(HARYANA)2000]
	a. sp-sp b. $sp^2 - sp^2$	c. $sp^3 - sp^3$	d. all of the these	
40.	What is the correct sequence of bond orde	r?	[PMT (HARYAN	NA) 2000; BHU 2004]
	a. $O_2^+ > O_2 > O_2^-$ b. $O_2^- > O_2^+ > O_2$	c. $O_2^- > O_2^+ > O_2$	d. $O_2 > O_2^+ > O_2^-$	+ 2
41.	The number of <i>SP</i> ³ - hybrid carbons in 2-	butyne is : :	[PMT	(HARYANA)2001]
	a. 1 b. 2	c. 3	d. 4	
G	a. $O_2 > O_2 > O_2$ The number of SP^3 - hybrid carbons in 2- a. 1 b. 2			

42. Anti bonding molecular orbital is formed by (**DPMT 2000**) a. addition opf wave function of atomic orbitals b. subtraction of way e functions of atomic orbitals. c. multiplication of wave function of atomic orbitals d. none of the above 43. (DPMT 2000) In lewis formula of O_3 there are a. $2\sigma_{1}\pi_{4}$ lone pairs b. $1\sigma, 2\pi$, 1 lone pairs d. $2\sigma_{1}\pi_{6 \text{ lone pairs}}$ c. 2σ , 2π , 3 lone pairs The number possible resonating structures for CO_3^{2-} ion is: [PMT (MP) 2000] 44. a. 9 b. 6 c. 3 d. 2 45. The correct order of bond angles in the molecule H_2O , NH_3 , CH_4 and CO_2 is: [PMT (KERALA) 2001] a. $H_2O > NH_3 > CH_4 > CO_2$ b. $H_2O < NH_3 < CO_2 < CH_4$ C. $H_2O > NH_3 < CH_4 > CO_2$ d. $CO_2 > CH_4 > NH_3 > H_2O$ 46. In OF_2 , number of bond pairs and lone pairs of electrons are respectively : [DPMT 2002] a. 2, 6 b. 2, 8 c. 2. 10 d. 2,9 47. Which of the following does not contain coordinate bond? [PMT (RAJASTHAN) 2002] c. CO_{2}^{2-} a. $BH_4^$ b. NH_4^+ d. H_3O^+ 48. Which of the following bonds requires the largest amount of energy to dissociate into the constituent atoms? [PMT (KERALA) 2003] b. C-H bond in CH_4 a. H - H bond in H_2 d. O = O bond in O_2 c. $N \equiv N$ bond in N_2

www.saksmeducation.com									
49.	The ONO angle is n	naximum in:		[AIIMS 2004]					
	a. NO_3^-	b. NO_2^-	c. <i>NO</i> ₂	d. NO_2^+					
50.	Which statement is	s true for N_3^- ion?		[AIIMS 2004]					
	a. It has a non – linea	ar structure							
	b. It is called pseudo	halogen							
	c. The average oxida	tion state of N in the ion	is -1						
	d. It is isoelectronic	with NO_2							
51.	Among the following	ng, the pair in which tw	vo species are not isost	cructural is : [AIIMS 2004]					
	a. SiF_4 and SF_4	b. IO_3^- and XeO_3^-	c. BH_4^- and NH_4^+	d. PF_6^- and SF_6^-					
52.	In regular octahed	ral molecule MX_6 , the	e number of <i>XMX</i> bo	nds at 180° is : [AIPMT 2004]					
	a. 3	b. 2	c. 6	d. 4					
53.	H_2O is dipolar wh	nereas BeF_2 is not, It	is because :	[AIPMT 2004]					
	a. electro negativity	of F is greater than that o	of O						
	b. H_2O involves H	– bonding whereas Bel	F_2 is a discrere unit						
	c. H_2O is linear and	d BeF_2 is angular							
	d. H_2O is angular a	and BeF_2 is linear							
54.	In BrF ₃ molecule,	, the lone pairs occupy o	equatorial position ar	ound Br atom to minimize.					
	a. lone pair – bond p	air repulsions only							
	b. lone pair – lone p	air repulsions only[AIPM	MT 2004]						
	c. bond pair – bond p	bair repulsions only							
	d. lone pair – bond p	air as well as lone pair –	lone pair repulsions						
G									
4									

55.	Which hybridizations has su	lphur in SO_2 ?		[PMT (HARYANA) 2003]
	a. sp^2	b. sp^3d^2	c. sp^3	d. <i>sp</i>
56.	The hybridizations of nitrog	gen in NO_2^+ , NO_3^- and	$1 NH_4^+$ are respective	ely : [PMT(HARYANA)2005]
	a. sp , sp^3 and sp^2		b. sp , sp^2 and sp	, ³
	c. sp^2 , sp and sp^3		d. $sp^2 sp^3$ and sp^3	,
57.	The correct sequence of hybr	ridization of methane, o	ethane and acetylene	is: [CPMT 2003]
	a. sp^2 , sp^3 , sp	b. <i>sp</i>	p, sp^2, sp^3	G
	$c. sp^3$, sp^2 , sp	d. <i>sp</i>	p^3 , sp , sp^2	•
58.	Hybridizations present in C	CIF ₃ is:	+	[CPMT 2005]
	a. $s^2 d^2$	b. sp^3	c. dsp^2	d. sp^3d
59.	Electron deficient molecule	is :		[CPMT 2005]
	a. <i>CCI</i> ₄	b. <i>PCl</i> ₅	c. <i>BF</i> ₃	d. <i>SF</i> ₆
60.	The number of $\sigma_{ m and}\pi_{ m bon}$	ıds in allyl isocyanide a	_{re [} СН ₂₌ СН_ СН ₂ :	-NC] [CPMT 2006]

$_{a.9}\sigma_{,3}\pi$	b.9 σ ,9 π
$c.3\sigma_{,4}\pi$	$b.9\sigma,9\pi$ d. 5 $\sigma,7\pi$
	•
CU	

KEY

1) a	2)b	3) a	4) c	5)c	6) a	7) d		8) c	9) b	10) c	
11) d	12) a	a 1	3) a	14) d	15) a	16) d	17) d	18) a	19) b	20) b	
21) a	22) b	23	8) b	24) d	25) c	26) b	27) d	28) c	29) a	30) b	
31) b	32) d	1 33	8) b	34) c	35) a	36) a	37) b	38) a	39) a	40) a	
41) 2	42) b) 4.	3) d	44) c	45) d	46) b	47) c	48)c	49)d	50) b	
51) a	52) a	ı 5.	3) d	54) d	55) a	56) b	57) c	58) d	59) c	60) a	
					*		6				
				+							
C			7								