de-Broglie wave theory, Heisenberg uncertainity principle

1. The de Broglie wavelength of a ball of mass 1Kg having Kinetic enery 0.5j is

(AIIMS2006)

1) 6.626X10⁻³⁴ m 2) 13.2X10⁻³⁴ m

3) 10.28X10⁻²¹ cm 4) 6.626X10⁻³⁴A°

2. The uncertainity in measurement of velocity of an electron with in a distance of 0.1A° is

(AIPMT2006)

- 1) $5.79X10^8 ms^{-1}$ 2) $5.79X10^5 ms^{-1}$
- 3) $5.79X10^6 ms^{-1}$ 4) $5.79X10^7 ms^{-1}$
- 3. In an atom, an electron is moving with a speed of 600m/s with an accuracy 0.005%,the uncertainity in its position will be (AIEEE2009)
 - 1) $1.52X10^{-4}m$ 2) $5.10X10^{-3}m$
 - 3) $1.92X10^{-3}m$ 4) $3.84X10^{-3}m$

4. Calculate the wavelength associated with a proton moving at 1.0X10³m/s (AIEEE2009)

1) 0.032nm 2) 0.40nm 3) 2.5nm 4) 14.0nm

a body of mass x Kg is moving with a speed of 100m/s.Its de Broglie wavelength is
6.626X10⁻³⁵m.Hencc x is (karnataka 2009)
1) 0.25kg
2) 0.15kg
3) 0.2kg
4) 0.1kg

6. If the de Broglie wavelength of a particle of mass m is 100 times its velocity, then its value in terms of m and h is (j&k 2009)

- 1) $\frac{1}{10}\sqrt{\frac{m}{h}}$ 2) $10\sqrt{\frac{h}{m}}$ 3) $\frac{1}{10}\sqrt{\frac{h}{m}}$ 4) $10\sqrt{\frac{m}{h}}$
- The de-Broglie wavelength associated with a particle of mass 1 kg moving with a velocity of 10 ms⁻¹ is (M 98)
 - 1) 6.63 x 10⁻³⁵m 2) 6.63 x 10⁻³⁴m 3) 6.65 x 10⁻³³ m 4) 6.63 x 10⁻³²m

www.sakshieducation.com

www.sakshieducation.com

www.sakshieducation.com

Hints

1.	$\lambda = \frac{h}{\sqrt{2mkE}}$
2.	$\Delta v = \frac{h}{4\pi\Delta x \cdot m}$
3.	$\Delta x = \frac{h}{4\pi m . \Delta V}$
4.	$\lambda = \frac{h}{mv}$
5.	$m = \frac{h}{\lambda v}$
6.	$\lambda = \frac{h}{m\nu}$
7.	$\lambda = \frac{h}{mv.} = \frac{6.625 \times 10^{-34}}{1 \times 10} = 6.625 \times 10^{-35} m$
8.	$\lambda \alpha \frac{1}{m}$
9.	$\lambda = \frac{h}{mv}$
10.	$\Delta x = \Delta p, \ \Delta x = m\Delta v, \ \Delta V = \frac{h}{4\pi m \Delta x}, \ \Delta V = \frac{h}{4\pi m m \Delta V}, \ \Delta V^2 = \frac{h}{4\pi m^2}, \ \Delta V = \frac{1}{2m} \sqrt{\frac{h}{\pi}}$
5	