Spectra, Hydrogen Spectrum, Bohr's Model

1.	The energy of an ele	ectron present in 1	3ohr's second orbit of hydrogen a	tom is (E - 2001)				
	1) -1312 J atom ⁻¹		$2) - 328 \text{ kJ mol}^{-1}$					
	$3) - 328 \text{ J mol}^{-1}$		4) – 164 kJ mol ⁻¹					
2.	Splitting of spectral lines under the influence of strong magnetic field is called							
				(AFMC)				
	1) Stark effect		2) Zeeman effect					
	3) Photoelectric eff	ect	4) None of these					
3.	of first Balmer line		Salmer series of H-atom is 1520	0 cm ⁻¹ . The wave number (HT 92)				
	1) 15200 cm ⁻¹		2) 60800 cm ⁻¹					
	3) 76000 cm ⁻¹		4) 136,800cm ⁻¹					
4.	What are the values of n ₁ and n ₂ respectively for line in the Lyman series of hydrogen atomic							
	spectrum?			(E 2001)				
	1) 3 and 5	2) 2 and 3	3) 1 and 3	4)1 and 4				
5.	If the electron of electron is	a hydrogen ato	om is present in the first orbi	it, the total energy of the (E-2003)				
	$1) \frac{-e^2}{r}$	2) $\frac{-e^2}{r^2}$	$3) \frac{-e^2}{2r}$	4) $\frac{-e^2}{2r^2}$				
6.	The angular mom		ectron present in the excited s	tate of hydrogen is 1.5h/. (M- 2006)				
	1) Third orbit		2) Second orbit					
	3) Fourth orbit		4) Fifth orbit					
7.	The wavelength of a spectral line emitted by hydrogen atom in the Lyman series is $16/15R$ cm. What is the value of n_2 ? (R = Rydberg constant) (E – 2007)							
	1) 2	2) 3	3) 4	4) 1				
8.	What is the lowest energy of the spectral line emitted by the hydrogen atom in the Lyman series? ($h = Planck$ constant, $c = Velocity$ of light, $R = Rydberg$ constant) (M- 2005)							
	$1) \frac{5hcR}{36}$	$2) \frac{4hcR}{3}$	$3) \frac{3hcR}{4}$	$4) \frac{7hcR}{144}$				
9.	Bohr's radius for is	the Hydrogen at	tom (n=1) is $0.53A^{\circ}$.The radiu	s for the first excited state (CBSE1998)				
	1)0.13A°	2) 1.06A°	3)4.77A°	4) 2.12A°				
10)	The wavelength of	visible light is		(AIIMS 1998)				
	1)2000-3700A°		2)7800-8900A°					
	3)3800-7600A°		4)500-1200A°					
11.	The Velocity of the	e electron in the	2nd orbit of Hydrogen atom is	(ATTM62001)				
	1)10 06 \(106 /2		0) 10 00, 106,	(AIIMS2001)				
	1)10.96×106 m/sec		2) 18.88×10 ⁶ m/sec					
	3) 1.888×10 ⁶ m/sec		4) 1.094×10^6 m/sec					

www.sakshieducation.com

12.	In Hydrogen atom energy of the electron in first excited state is-3.4eV. Then kinetic energy in same orbit is (CBSE2002)									
	1)+3.4eV	2)+6.8eV	3) -13.6eV	4)+13.6eV					
13.	The ratio of Rad	liusof 4th and 2nd or	rbits of H- atom is		(BHU2003)					
	1)2	2)4	3) 3	4)6					
14.	When the electron in hydrogen atom jumps fr radiation will be		ps from 4th orbit into	the first orl	st orbit, the frequency of (CBSE2004)					
	1) 1.54×10 ¹⁵	2) 1.03×10 ¹⁵	3) 3.08×10^{15}	4) 2.0×10 ¹⁵					
15.	The radius of first orbit in H-atom is R, then radius of first orbit in will be (PMT2009)									
	1) R/9	2) R/3	3) 3R	4	4)9R					
16.	In Bohr series of lines of hydrogen spectrum, the third line from the red end corresponds to which one of the following inter-orbit jumps of the electron for Bohr orbits is an atom of hydrogen. (2002 A.I.E.E.E)									
	$1) 5 \rightarrow 2$	$2) \ 4 \rightarrow 1$	3) $2 \rightarrow 5$	4	$)$ 3 \rightarrow 2					
17.	What are the values of n_1 and n_2 respectively for H_β line in the Lyman series of hydrogen atomic									
	spectrum?				(E-2000)					
	1) 3 and 5	2) 2 and 3	3) 1 and 3	4	4) 2 and 4					
18.	What is the wavelength of H_{β} line the Balmer series of hydrogen spectrum?									
	(R = Rydberg constant)			(M-2000)						
	1) 36/5R	2) 5R/36	3) 3R/16	4) 16/3R					
	1)2 2) 2	3)4 4)4	KEY 5)3 6)1	7)3	8)3					
	1)2 2)2	3)4 4)4	3)3 0)1	1)3	6)3					
	9) 4 10)3	11)4 12)1	13)2 14)3	15)2	16)1					
	17)3 18)1									
6										

www.sakshieducation.com

Hints

1.
$$E_n = \frac{-1312}{n^2} = \frac{-1312}{2^2} KJ / mole$$

3. for same spectral line,
$$\frac{\overline{v_H}}{\overline{v_{Li^{+2}}}} = \frac{Z_H^2}{Z_{Li^{+2}}^2} = \frac{1^2}{3^2}$$

6.
$$mvr = \frac{nh}{2\pi} = \frac{1.5h}{\pi}, n = 3$$

7.
$$\frac{1}{\lambda} = R(\frac{1}{{n_1}^2} - \frac{1}{{n_2}^2}), R(\frac{1}{1^2} - \frac{1}{n^2}) = \frac{15R}{16}$$
 n=4

8. Lowest energy is for

$$H_{\alpha, \frac{1}{\lambda}} = R(\frac{1}{n_1^2} - \frac{1}{n_2^2}) = R(\frac{1}{1^2} - \frac{1}{2^2}) = \frac{3R}{4}$$
$$\Delta E = \frac{hc}{\lambda} = hc(\frac{3R}{4}) = \frac{3hcR}{4}$$

14.
$$\frac{1}{\lambda} = R(\frac{1}{n_1^2} - \frac{1}{n_2^2}).v = \frac{c}{\lambda}$$