P- BLOCK ELEMENTS

1. V	Which of the follow	ing statement is corr	rect?		[M-2012]
	i)Boron reacts with	conc.HNO ₃ to form N	Nitric oxide and bo	ric acid	
i	i) Boron reacts with	fused NaOH to form	H ₂ O ₂ and boric aci	d	
i	ii)Boron reacts with	SiO ₂ to form Si and	B_2O_3		
1	1) I, ii and iii 2)) i and iii 3)ii and	d iii 4) i and ii	i	
2. 1	The reaction that gi	ve CO ₂ as one of tl	ne product is		[M2012]
1) 3 C+ 4 HNO ₃ -)			
2	(a) 6 NaOH+ 2C→				
3	SnO ₂ +2C \rightarrow				
	, <u>-</u>	-400° C			>
4)	$Fe_2O_3+3C - \frac{250^{\circ}}{}$	→			
3. V	Which one of the fol	llowing is the minera	al for tin?		(E-2010)
	1) galena	2) cerussite 3)	cassiterite 4) a	nglesite	
4.	Identify B in the fe	ollowing reaction		~	$(\mathbf{E}\text{-}08)$
	$ m H_4SiO_4 - rac{1000^{\circ}}{-H_2}$	$\stackrel{\circ}{\longrightarrow} A \xrightarrow{\text{Carbon}} B + CO.$			
	1) Carborundum	2) Quartz 3) \$	Silica 4) C	Carbon	
5.	Aluminium becon	nes passive with			(M-2010)
	1) conc. HNO ₃	2) dil.H ₂ SO ₄	3) very dil. HNO ₃	4) conc. H ₂ S	O_4
6.					ctric discharge to form 'A rmula of B is (M - 2008)
	1) H ₃ BO ₃	2) B ₂ O ₃	3) $B_3N_3H_6$	4) B_2H_6	
7.	Duralumin is an a	alloy of			(AFMC2003)
	1) Al and Mg	2) Al, Mg and Ni	3) A <i>l</i> , Mg, Mn a	and Cu 4)	Al and Ni
8.		ith ammonia under o		ns to give a vari	ety of products. Which on (E-2010)
	1) B ₂ H ₆ . 2 NH ₃	2) $B_{12} H_{12}$	3) B ₃ N ₂	$_3$ H_6	4) $(BN)_n$
9.	A mixture of boron	n trichloride and hyd	lrogen is subjecte	d to silent electr	ic discharge to form A and
	HCl. A is mixed w	vith NH ₃ and heated	to 200°C to form	B.The formula o	of B is [E-2008]
	1) H ₃ BO ₃	2) B2O3	3) B_2H_6	$4)B_3N$	N_3H_6
10.	Which among the	following is not a be	orane?		
					[AMU2009]
1) B_2H_6	2) B_3H_6	3) B_4H_{10}	4) nor	ne of these

www.sakshieducation.com

11. The hardest subs	[PMT2009]						
1) Iron	2) Steel	3) graphite	4) dian	nond			
12. SiO2 is reacted w	rith Na ₂ CO ₃ , What is	the gas liberated?	[,	AMU2009]			
1) CO	2)CO ₂	$3)O_2$	$4)O_{3}$				
13. White lead is			[C	PMT2007]			
1) Pb ₃ O ₄	2) PbO	3) 2PbCO ₃ .Pb(OH) ₂	4)Pb((CH ₃ COO) ₂ .Pb(OH)			
14. The stability of +1	14. The stability of +1 oxidation state increases in the sequence						
1)Al <ga<in<tl< td=""><td>2)Tl<in<ga<al< td=""><td>3)In<tl<ga<al< td=""><td>4)Ga<in<a< td=""><td>.l<tl< td=""></tl<></td></in<a<></td></tl<ga<al<></td></in<ga<al<></td></ga<in<tl<>	2)Tl <in<ga<al< td=""><td>3)In<tl<ga<al< td=""><td>4)Ga<in<a< td=""><td>.l<tl< td=""></tl<></td></in<a<></td></tl<ga<al<></td></in<ga<al<>	3)In <tl<ga<al< td=""><td>4)Ga<in<a< td=""><td>.l<tl< td=""></tl<></td></in<a<></td></tl<ga<al<>	4)Ga <in<a< td=""><td>.l<tl< td=""></tl<></td></in<a<>	.l <tl< td=""></tl<>			
15. The tendency of B	F ₃ , BCl ₃ and BBr ₃ to	behave as lewis acid o	lecreasing in	the sequence			
			[AIPMT2010]			
1) $BF_3>BCl_3>BBr_3$	2) $BCl_3 > BF_3 > F_3$	BBr_3					
3) BBr ₃ >BCl ₃ >BF ₃	4) $BBr_3 > BF_3 > BG$	Cl_3					
16. Which one of the fo	ollowing anion is pre	sent in the Chain stru	cture of silic	eates?			
		_		[AIPMT2007]			
1)Si ₂ O ₇ ⁻⁶	$2)(Si_2O_5^{2-})_x$	3) $(SiO_3^{2-})_x$	4)SiO ₄ -4				
17. Borax is used as a	cleaning agent becau	se on dissolving in wa	ter it gives				
				[AIIMS2006]			
1) alkaline solution	2) acidic solution	3)bleaching solution	n 4) colloi	dal solution			
18. The hybridization	of carbon in Fulleren	ne is					
				[AFMC 2002]			
1) SP3	2) SP ²	3) SP	4) SP3d				
19. The silicates which	n does not contain dis	crete anions are					
				[JIPMER2006]			
1) sheet silicates	2) cyclic silicates	3) ortho silicates	4) pyro s	ilicates			
4							
20. which of the follow	wing oxidation states	are the most characte	eristic for Le	ead and Tin			
Respectively							
447	Ť			[AIPMT2007]			
1)+4, +2	2) +2, +4	3) +4, +4	4) +2, +2				
21. Inorganic graphit	e is			[AFMC 2006]			
$1)B_3N_3H_6$	$2) (BN)_x$	3)SiC	4)Fe(CO) ₅				
22. Diamond is harder than graphite because							
				[AMU2006]			
1) graphite is planar							
3) graphite is SP ³ hybrid 4) none of these							
23. Boron shows single oxidation state due to absence of [AMU2006]							
1) inert pair effect	2) screening effect	3) isotope effect 4)none of thes	e			

www.sakshieducation.com

24. V	Which of the fol	lowing is aci	dic in na	ture			[AIIMS	2004]	
1) B	(OH) ₃	2) Al(OH	$I)_3$	3) Be(C	OH) ₂	4) Mg(OH	$[]_2$		
25 1	The liquefied n	notal ovnand	ling on s	alidificati	on is		[AFM(C 2007]	
	Al	2) Cu	ung on s	3) (4) Z		2007]	
,	and B are the	,	of carbo	,		,		verted to B.	A and F
	spectively are	compounds	or carbo	n. 11 on p	ussing ove	er rea not e	oke is con	verted to B.	z ana z
							(M-2	2010)	
1)	CO and CO ₂	2) CH ₄	and C ₂ F	H ₆	3) CO ₂	and CO	4) CCl ₄ a	nd CHCl ₃	
27. H	Hydrolysis of S	iCl ₄ gives co	ompound	d X and H	Cl. On h	eating to 10	00°C X loc	ses water a	nd forms
Y	. Identify X a	nd Y respect	ively				(M - 2008)		
1)) H ₄ SiO ₄ and	SiO ₂ 2) SiO	O ₂ and S	Si3) SiO ₂ :	and SiC	4	H ₄ SiO ₄ a	and SiC.	
	The chemical fo		_				[E20	_	
1) KAlSi ₃ O ₈	2) Na_3AlF_6	3)	$NaAlO_2$	4)	$K_2SO_4Al_2$	SO_4 ₃ .4 Al ($(OH)_3$	
29.In I	Diborane ,the H	H-B-H angle	s are nea	arly					
								MS2005]	
	60° . 120° 2)	95°,150°	3) 95°, 120	0	4) 120 ⁰ , 1			
_	uartz is a/an	-		. 4			[JIP	MER2003]	
,	sheet silicates	•	ortho sil						
3)	pyro silicates	4)	three d	imensiona					
				K	EY				
1) 2	2)1 3)3	4) 4	5)1	6)3	7)3	8)2	9) 4	10)2	
11) 4	12)2 13)3	14)1	15)3	16)3	17)1	18)2	19)1	20)2	
21) 2	22)1 23)1	24)1	25)3	26)3	27)1	28)1	29)3	30)4	