SIMPLE PENDULUM

1. The period of oscillation of a simple pendulum is independent of amplitude (for small values only), length being constant.
2. At constant length, the period of oscillation of a simple pendulum is independent of size, shape or material of the bob.

Time period of a simple pendulum $(T)=2 \pi \sqrt{\frac{L}{g}}$. Where
$l=$ length of the simple pendulum
$\mathrm{g}=$ acceleration due to gravity at a place.
3. Tension in the string of simple pendulum
a. $\mathrm{T}_{\min }=\mathrm{mg} \operatorname{Cos} \theta$ (when bob is at extreme position)
b. $T=m g(3-2 \operatorname{Cos} \theta)($ When bob is at any position)

Where θ is any angular amplitude
4. $\mathrm{I}-\mathrm{T}^{2}$ graph of a simple pendulum is straight line passing through origin.
5. l-T graph of a simple pendulum is parabola.
6. At the point of intersection of $l-\mathrm{T}$ graph and $l-\mathrm{T}^{2}$ graph of a simple pendulum
i) $\mathrm{T}=1$ second
ii) $\mathrm{n}=1 \mathrm{~Hz}$.
iii) $I=\frac{\mathrm{g}}{4 \pi^{2}} \cong 25 \mathrm{~cm}$ On the surface of the earth
7. If $L=\infty$ (infinity). $T=2 \pi \sqrt{\frac{R}{g}}=84.5 \mathrm{~min}$.

8. If $L=R, \quad T=2 \pi \sqrt{\frac{R}{2 g}}=\frac{84.5}{\sqrt{2}} \mathrm{~min}$
9. If L is very small compared to Radius of the earth, $\quad T=2 \pi \sqrt{\frac{\ell}{g}}$
10. Restoring Force on the bob of the pendulum is $F=m g \sin \theta$.

11. Seconds pendulum:

i) The simple pendulum whose time period equal to 2 seconds is called seconds pendulum.
ii) The length at place where $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$ is 100 cm .
iii) Since $T=2 \mathrm{sec}, \mathrm{L}=\frac{\mathrm{g}}{\pi^{2}}$
iv)For two places, change in length $=\frac{g_{1} \sim g_{2}}{\pi^{2}}$

APPLICATION

i) When the elevator is going up with an acceleration a, then its time period is given byT $=2 \pi \sqrt{\frac{L}{g+a}}$
ii) When the elevator is moving down with an acceleration a, then its time period is given by

$$
T=2 \pi \sqrt{\frac{L}{g-a}}
$$

iii) When the elevator is at rest or moving up or down with constant velocity the time period is given by

$$
\mathrm{T}=2 T=2 \pi \sqrt{\frac{L}{g}}
$$

iv) When the elevator is moving down with an acceleration (-a) then its time period is given by

$$
T=2 \pi \sqrt{\frac{L}{g+a}}
$$

v) In case of downward accelerated motion is a $>\mathrm{g}$ the pendulum turns upside and oscillates about the highest point with $T=2 \pi \sqrt{\frac{L}{a-g}}$
vi) If a simple pendulum of length 'L' suspended in a car that is travelling with a constant speed around a circle of radius 'r', Then its time period of oscillation is given by

$$
T=2 \pi \sqrt{\frac{L}{\sqrt{g^{2}+\left(\frac{v^{2}}{r}\right)^{2}}}}
$$

vii) If a simple pendulum of length ' L ' suspended in car moving horizontally with acceleration ' a ' is given by $_{T=2 \pi} \sqrt{\frac{L}{\sqrt{g^{2}+a^{2}}}}$.
The equilibrium position is inclined to the vertical by an angle ' θ '. Where $\theta=\tan ^{-1}\left(\frac{\mathrm{a}}{\mathrm{g}}\right)$ opposite to the acceleration.
viii) If the bob of a simple pendulum is given a charge ' q ' and is arranged in an electric field of intensity 'E' to oscillate.
a) Opposite to g, \rightarrow Electric force E_{q} will be opposite to the force $m g$. Hence $g^{1}=g-\frac{E q}{m}$.Then $T_{1}=2 \pi \sqrt{\frac{1}{g-\frac{E q}{m}}}$. So time period increases.
b) In the direction of $\mathrm{g} \rightarrow$ Electric force Eq will be in the direction of force $m g$. Hence $g^{1}=g+\frac{E q}{m}$ then $T_{1}=2 \pi \sqrt{\frac{1}{g+\frac{E q}{m}}}$ so time period
 decreases.
c) Perpendicular to $\mathrm{g} \rightarrow$ Electric force E_{q} will be perpendicular to the force mg . Henceg ${ }^{1}=$ $\sqrt{g^{2}+\left(\frac{E q}{m}\right)^{2}}$ Then $T_{1}=2 \pi \sqrt{\frac{1}{\sqrt{g^{2}+\left(\frac{E q}{m}\right)^{2}}}}$. So time period decreases.
ix) If a simple pendulum of length L is suspended from the ceiling of a cart which is sliding without friction on an inclined plane of inclination ' θ '. Then the time period of oscillations is given by T $=2 \pi \sqrt{\frac{\mathrm{~L}}{\mathrm{~g} \cos \theta}}$ since the effective acceleration changes from g to $\mathrm{g} \cos \theta$.
x) A simple pendulum fitted with a metallic bob of density d_{s} has a time period T . When it is made to oscillate in a liquid of density d_{1} then its time period increases. $\quad T=2 \pi \sqrt{\frac{l}{g\left(1-\frac{d_{1}}{d_{s}}\right)}}$
12. Time period of Torsion pendulum $T=2 \pi \sqrt{\frac{I}{C}} \quad I=$ moment of Inertia about the suspension wire $C=$ couple per unit twist.
13. When a hole is drilled along the diameter of the earth and if a body is dropped in it, it moves to and from about the centre of the earth and is in S.H M. with a time period of

$$
\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{R}}{\mathrm{~g}}}=84.6 \text { minutes }
$$

