SIMPLE PENDULUM

- 1. The period of oscillation of a simple pendulum is independent of amplitude (for small values only), length being constant.
- 2. At constant length, the period of oscillation of a simple pendulum is independent of size, shape or material of the bob.

Time period of a simple pendulum (T) = $2\pi \sqrt{\frac{L}{g}}$. Where

l =length of the simple pendulum

- g = acceleration due to gravity at a place.
- 3. Tension in the string of simple pendulum
 - a. $T_{min} = mg \cos \theta$ (when bob is at extreme position)
 - b. $T = mg (3 2 \cos\theta)$ (When bob is at any position)

Where θ is any angular amplitude

- 4. I T^2 graph of a simple pendulum is straight line passing through origin.
- 5. *l*-T graph of a simple pendulum is parabola.
- 6. At the point of intersection of *l*-T graph and $l-T^2$ graph of a simple pendulum

i) T = 1 second
ii) n = 1 Hz.
iii)
$$I = \frac{g}{4\pi^2} \approx 25$$
cm On the surface of the earth
 $L = \infty$ (infinity). $T = 2\pi \sqrt{\frac{R}{g}} = 84.5$ min.

8. If
$$L = R$$
, $T = 2\pi \sqrt{\frac{R}{2g}} = \frac{84.5}{\sqrt{2}} \min$

9. If L is very small compared to Radius of the earth,

$$\begin{array}{c} \mathbf{Y} \\ \mathbf{T} \\ \mathbf{T} \\ \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \end{array}$$

10. Restoring Force on the bob of the pendulum is $F = mg \sin \theta$.

11. Seconds pendulum:

7. If

i) The simple pendulum whose time period equal to 2 seconds is called seconds pendulum.

 $T = 2\pi \sqrt{\frac{\ell}{g}}$

ii) The length at place where $g = 9.8 \text{ m/s}^2$ is 100 cm.

iii)Since T = 2 sec, L =
$$\frac{g}{\pi^2}$$

www.sakshieducation.com

iv)For two places, change in length = $\frac{g_1 \sim g_2}{\pi^2}$

APPLICATION

- i) When the elevator is going up with an acceleration a, then its time period is given by $T = 2\pi \sqrt{\frac{L}{q+a}}$
- ii) When the elevator is moving down with an acceleration a, then its time period is given by $T = 2\pi \sqrt{\frac{L}{\alpha - a}}$
- iii) When the elevator is at rest or moving up or down with constant velocity the time period is given by

$$T = 2T = 2\pi \sqrt{\frac{L}{g}}$$

iv) When the elevator is moving down with an acceleration (-a) then its time period is given by

$$T = 2\pi \sqrt{\frac{L}{g+a}}$$

- v) In case of downward accelerated motion is a > g the pendulum turns upside and oscillates about the highest point with $T = 2\pi \sqrt{\frac{L}{a-g}}$
- vi) If a simple pendulum of length 'L' suspended in a car that is travelling with a constant speed around a circle of radius 'r', Then its time period of oscillation is given by $T = 2\pi \sqrt{\frac{L}{\sqrt{g^2 + \left(\frac{v^2}{r}\right)^2}}}$
- vii) If a simple pendulum of length 'L' suspended in car moving horizontally with acceleration 'a' is given by $_{T=2\pi\sqrt{\frac{L}{\sqrt{g^2+a^2}}}}$.

The equilibrium position is inclined to the vertical by an angle ' θ '. Where $\theta = \tan^{-1}\left(\frac{a}{g}\right)$ opposite to the acceleration.

- viii) If the bob of a simple pendulum is given a charge 'q' and is arranged in an electric field of intensity 'E' to oscillate.
 - a) Opposite to g, \rightarrow Electric force E_q will be opposite to the force mg. Hence $g^1=g-\frac{Eq}{m}$. Then

$$T_1=2\pi \sqrt{\frac{1}{g-\frac{Eq}{m}}}$$
. So time period increases.

b) In the direction of $g \rightarrow \text{Electric force Eq will be in the direction of}$ force mg. Hence $g^1 = g + \frac{\text{Eq}}{m}$ then $T_1 = 2\pi \sqrt{\frac{1}{g + \frac{\text{Eq}}{m}}}$ so time period

decreases.

- c) Perpendicular to $g \rightarrow \text{Electric force } E_q$ will be perpendicular to the force mg. Henceg¹ = $\sqrt{g^2 + \left(\frac{Eq}{m}\right)^2}$ Then $T_1 = 2\pi \sqrt{\frac{1}{\sqrt{g^2 + \left(\frac{Eq}{m}\right)^2}}}$. So time period decreases.
- ix) If a simple pendulum of length L is suspended from the ceiling of a cart which is sliding without friction on an inclined plane of inclination ' θ '. Then the time period of oscillations is given by T = $2\pi \sqrt{\frac{L}{g\cos\theta}}$ since the effective acceleration changes from g to g cos θ .
- **x**) A simple pendulum fitted with a metallic bob of density d_s has a time period T. When it is made to oscillate in a liquid of density d_1 then its time period increases. $T = 2\pi \sqrt{\frac{l}{g\left(1 \frac{d_l}{d}\right)}}$
- 12. Time period of Torsion pendulum T = $2\pi \sqrt{\frac{1}{C}}$ I = moment of Inertia about the suspension wire C = couple per unit twist.
- **13.** When a hole is drilled along the diameter of the earth and if a body is dropped in it, it moves to and from about the centre of the earth and is in S.H M. with a time period of

from about the centre of the earth and is in T
T =
$$2\pi \sqrt{\frac{R}{g}} = 84.6$$
 minutes