MEAN VALUE THEOREMS

Rolle'sTheorem :If a function $f:[a, b] \rightarrow R$ is such that
i) It is continuous on $[a, b]$
ii) It is derivable on (a, b) and
iii) $f(a)=f(b)$ then there exists at least one $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Lagrange's mean -value theorem or first mean - value theorem :

If a function $f:[a, b] \rightarrow R$ is such that
i) It is continuous on $[a, b]$.
ii)It is derivable on (a, b) then there exists at least one $c \in(a, b)$ such that $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$

VSAQ'S

1.Verify Rolle's theorem for the function $x^{2}-1$ on $[-1,1]$.

Sol.Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-1$
f is continuous on $[-1,1]$ and f is differentiable on $(-1,1)$
since $f(-1)=f(1)=0$ and
\therefore By Rolle's theorem $\exists \mathrm{c} \in(-1,1)$
Such that $\mathrm{f}^{\prime}(\mathrm{c})=0$
$\mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}=0$
$\therefore=\mathrm{f}^{\prime}(\mathrm{c})=0$
$2 \mathrm{c}=0 \Rightarrow \mathrm{c}=0$
The point $\mathrm{c}=0 \in(-1,1)$
Then Rolle's theorem is verified.
2. $\sin x-\sin 2 x$ on $[0, \pi]$.

Sol.Let $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}-\sin 2 \mathrm{x}$
f is continuous on $[0, \pi] f$ is differentiable on $(0, \pi)$
since $f(0)=f(\pi)=0$ and
\therefore By Rolle's theorem $\exists \mathrm{c} \in(0, \pi)$

Such that $\mathrm{f}^{\prime}(\mathrm{c})=0$
$f^{\prime}(x)=\cos x-2 \cos 2 x$
$\mathrm{f}^{\prime}(\mathrm{c})=0 \Rightarrow \cos \mathrm{c}-2 \cos 2 \mathrm{x}=0$
$\Rightarrow \cos \mathrm{c}-2\left(2 \cos ^{2} \mathrm{c}-1\right)=0$
$\cos \mathrm{c}-4 \cos ^{2} \mathrm{c}+2=0$
$4 \cos ^{2} c-\cos c-2=0$
$\cos \mathrm{c}=\frac{1 \pm \sqrt{1+32}}{8}=\frac{1 \pm \sqrt{33}}{8}$
$\therefore \mathrm{c}=\cos ^{-1}\left(\frac{1 \pm \sqrt{33}}{8}\right)$

3. $\log \left(x^{2}+2\right)-\log 3$ on $[-1,1]$.

Sol.Let $\mathrm{f}(\mathrm{x})=\log \left(\mathrm{x}^{2}+2\right)-\log 3$
f is continuous on $[-1,1]$ and f is differentiable on $(-1,1)$
since $f(-1)=f(1)=0 \therefore$ By Rolle's theorem $\exists c \in(-1,1)$
Such that $\mathrm{f}^{\prime}(\mathrm{c})=0$
$f^{\prime}(x)=\frac{1}{x^{2}+2}(2 x)$
$f^{\prime}(c)=\frac{2 c}{c^{2}+2}=0$
$2 \mathrm{c}=0 \Rightarrow \mathrm{c}=0$
The point $\mathrm{c}=0 \in(-1,1)$
4. It is given that Rolle's theorem holds for the function $f(x)=x^{3}+b x^{2}+a x$ on $[1,3]$ with $c=2 t+\frac{1}{\sqrt{3}}$. Find the values of a and b.
Sol. Given $f(x)=x^{3}+b x^{2}+a x$
$f^{\prime}(x)=3 x^{2}+2 b x+a$
$\therefore \mathrm{f}^{\prime}(\mathrm{x})=0 \Leftrightarrow 3 \mathrm{c}^{2}+2 \mathrm{bc}+\mathrm{a}=0$
$\Leftrightarrow \mathrm{c}=\frac{-2 \mathrm{~b} \pm \sqrt{4 \mathrm{~b}^{2}-12 \mathrm{a}}}{6}$
$\mathrm{c}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-3 \mathrm{a}}}{3}$
$2+\frac{1}{\sqrt{3}}=\frac{-b \pm \sqrt{b^{2}-3 a}}{3}$
$\frac{-b}{3}=2$ and $\frac{\sqrt{b^{2}-3 a}}{3}=\frac{1}{\sqrt{3}}$
$\Leftrightarrow \mathrm{b}=6$ and $\mathrm{b}^{2}-3 \mathrm{a}=3$
$\Rightarrow 36-3=3 \mathrm{a} \Rightarrow 33=3 \mathrm{a} \Rightarrow \mathrm{a}=11$
Hence $\mathrm{a}=11, \mathrm{~b}=-6$.
5. Find a point on the graph of the curve $y=x^{3}$, where the tangent is parallel to the chord joining $(1,1)$ and $(3,27)$.

Sol.Given Points (1, 1) and (3, 27).
Slope of chord $=\frac{27-1}{3-1}=13$
Given $\mathrm{y}=\mathrm{x}^{3}$

$$
\begin{aligned}
& \frac{d y}{d x}=3 x^{2} \\
& \Rightarrow \text { Slope }=3 x^{2} \\
& 13=3 x^{2} \Rightarrow x^{2}=\frac{13}{3} \\
& \Rightarrow x=\sqrt{\frac{13}{3}}=\frac{\sqrt{39}}{3} \\
& y=x^{3}=\left(\frac{\sqrt{39}}{3}\right)^{3}=\frac{39 \sqrt{39}}{27}=\frac{13 \sqrt{39}}{9}
\end{aligned}
$$

\therefore The point on the curve is $\left(\frac{\sqrt{39}}{3}, \frac{13 \sqrt{39}}{9}\right)$
6. Find ' c ', so that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ in the following case. $f(x)=x^{2}-3 x-1, a=-11 / 7$, $b=13 / 7$.
Sol. $f(b)=f\left(\frac{13}{7}\right)=\frac{169}{49}-\frac{3(13)}{7}-1$
$\frac{169-273-49}{49}=\frac{-153}{49}$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{a})=\mathrm{f}\left(\frac{-11}{7}\right)=\frac{121}{49}-\frac{3(-11)}{7}-1 \\
& \quad=\frac{121+231-49}{49}=\frac{303}{49} \\
& \mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}-3 \\
& \mathrm{f}^{\prime}(\mathrm{c})=2 \mathrm{c}-3
\end{aligned}
$$

Given $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

$$
2 c-3=\frac{\frac{-153}{49}-\frac{303}{49}}{\frac{13}{7}+\frac{11}{7}}=\frac{\frac{-456}{49}}{\frac{24}{7}}
$$

$$
2 c-3=\frac{-456}{49} \times \frac{7}{24}=\frac{-19}{7}
$$

$$
2 c=\frac{-19}{7}+3=\frac{2}{7} \Rightarrow c=\frac{1}{7}
$$

7. Verify the Rolle's theorem for the function $\left(x^{2}-1\right)(x-2)$ on [-1, 2]. Find the point in the interval where the derivate vanishes.
Sol.Let $f(x)=\left(x^{2}-1\right)(x-2)=x^{3}-2 x^{2}-x+2$
f is continuous on $[-1,2]$
since $f(-1)=f(2)=0$ and
f is differentiable on $(-1,2)$
\therefore By Rolle's theorem $\exists \mathrm{c} \in(-1,2)$
Let $\mathrm{f}^{\prime}(\mathrm{c})=0$

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}-4 \mathrm{x}-1 \\
& 3 \mathrm{c}^{2}-4 \mathrm{c}-1=0 \\
& \mathrm{c}=\frac{4 \pm \sqrt{16+12}}{6}=\frac{4 \pm \sqrt{28}}{6} \\
& \Rightarrow \mathrm{c}=\frac{2 \pm \sqrt{7}}{3}
\end{aligned}
$$

8. Verify the conditions of the Lagrange's mean value theorem for the following function. In each case find a point ' c ' in the interval as stated by the theorem. $\sin x-\sin 2 x$ on $[0, \pi]$.
Sol.Let $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}-\sin 2 \mathrm{x}$
f is continuous on $[0, \pi]$ and
f is differentiable on $(0, \pi)$
Given $f(x)=\sin x-\sin 2 x$
$f^{\prime}(x)=\cos x-2 \cos 2 x$
By Lagrange's mean value than $\exists \mathrm{c} \in(0, \pi)$
such there
$\mathrm{f}^{\prime}(\mathrm{c})=\frac{\mathrm{f}(\pi)-\mathrm{f}(0)}{\pi-0} \Rightarrow \cos \mathrm{c}-2 \cos 2 \mathrm{c}=0$
$\Rightarrow \cos \mathrm{c}-2\left(2 \cos ^{2} \mathrm{c}-1\right)=0 \Rightarrow \cos \mathrm{c}-4 \cos ^{2} \mathrm{c}+2=0$
$\Rightarrow 4 \cos ^{2} \mathrm{c}-\cos \mathrm{c}-2=0 \Rightarrow \cos \mathrm{c}=\frac{1 \pm \sqrt{1+32}}{8}=\frac{1 \pm \sqrt{33}}{8}$
$\Rightarrow \mathrm{c}=\cos ^{-1}\left(\frac{1 \pm \sqrt{33}}{8}\right)$
