KYPY QUESTION PAPER -STREAM SA
October 31, 2010

PART B

MATHEMATFES

1 In a triangie $A B C, D$ ard E are poirts on $A B, A C$ respectively such that $D E$ is parailel to $B C$. Suppose $B E$, $C D$ intersect at O. If the areas of the triangles $A D E$ and $O D E$ are 3 and I cespectively, find the area of the triangle $A B C$, with justification.
(5 Marks)
Answer:

2 Leela and Madan pooled their music CD s and sold them. They got as many rupees for each CD as the total number of CD's they sold. They share the money as follows Leela first takes 10 rupees, then Madan takes 10 rupees and they continue taking 10 rupees alternately till Madan is left out with less than 10 rupees to take. Find the amount that is left out for Madan at the end, with justification.
(5 Marks)

Answer:

(a) Show that for every natural number n relatively prime to 10 , there is another natural number m all of whose digits are I's such that n divides m. (3 Marks)
(b) Hence or otherwise show that every positive rational number can be expressed in the form $\frac{a}{10^{6}\left(10^{c}-1\right)}$ for some natural numbers a, b, c.
(2 Marks)

PHYSICS

4 Consider the two circuits P and Q, shown below, which are used to measure the unknown resistance R.

In each case, the resistance is estimated by using Ohm's law $\mathrm{R}_{\mathrm{ct}}=$ V/I, where V and I are the readings of the voltmeter and the ammeter respectively. The meter resistances, R_{v} and R_{A} are such thut $R_{A} \ll \mathrm{R}_{\mathrm{A}} \ll \mathrm{R}_{\mathrm{y}}$. The internal resistance of the battery may be ignored. The absolute error in the estimate of the resistance is dentuled by $\delta \mathrm{R}=\left|\mathrm{R}-\mathrm{R}_{\mathrm{e} x}\right|$.
(a) Express δR_{p} in terms of the giver resistance values
(2 marks)
(b) Express $\delta \mathrm{R}_{\mathrm{Q}}$ in terms of the given resistance values.
(2 marks)
(c) For what value of R will $\delta \mathrm{R}_{\mathrm{P}} \approx \delta \mathrm{R}_{\mathrm{Q}}$?
(1 mark)

Answer:

6 A block of mass m is sliding on a fixed frictionless concave surface of radius R. It is released from rest at point P which is at a height of $H \ll R$ from the lowest point Q .

Q
(a) What is the potential energy as a function of B, taking the lowest point Q as the reference level for poterntial encigy?
(I mark)
(b) What is the kinetic energy as a function of θ ? (1 mark)
(c) What is the time taken for the particle to reach from point P to the lowest puint Q ?
(2 marks)
(d) How much forec is exerted by the block on the concave surface at the point Q ?

Answer:

CHEMISTRY

7 Copper in an alloy is estimatedby dissolving in conc. nitric acid. In this process copper is carrverted to cupric nitrate with the evclution of nitric exide (NO). The mixture when treated with potassium iodide forms cupric iodide, which is unstable and decomposes to euprous iodide and iodine.
The amount of copper in the alloy is estimated by titrating the liberated jocline with sodium thiosulfare. The reactions are:
a $\mathrm{Cu}+\mathrm{b} \mathrm{HNO}_{3}$
c $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{dNO}+z \mathrm{H}_{2} \mathrm{O}$
f CoH_{2}
g $\mathrm{Cu}_{2} \mathrm{I}_{2}+\mathrm{hI}_{2}$
i $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{C}_{3}+\mathrm{H}_{2} \rightarrow$
$k \quad \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6 \mathrm{i}} \quad l \mathrm{NaI}$
(fill up the blanks)
(a) The coefficients are: $\mathrm{a}=$ \qquad , b \qquad , $\mathrm{c}=$ \qquad ,
$\mathrm{d}=$ \qquad and $\mathrm{e}=$ \qquad -
(1 mark, no partial marking)
(b) The coefficients are: $\mathrm{f}=$ \qquad g - \qquad and $1-$ \qquad -
(1 mark, no partial marking)
(c) The coefficients are: $\mathrm{i}=$ \qquad $j=$ \qquad , $k=$ \qquad and $l=$ \qquad $-$
(1 mark, no partial marking)
(d) If 2.54 g of 1_{2} is evolved from a 2.0 g sample of the alloy, what is the percentage of copper in the alloy? (atomic weights of iodine and cepper are 127 and 63.5, respectively).
(2 marks, no partial marking)

Answer:

8 You have been given fou: bottles marked A, B, C and D each containing one of the organic compounds given below

1

1

III

IV

The following observations were made.
(i) The compound in tre bottle A did not dissolve in either I N NaOH or I N HCl .
(ii) The compound in the bottle B disselved in 1 N NaOH but not in 1 N HCl .
(iii) The compound in the bottle C dissolved in both 1 N NaOH and 1 N HCl .

9 Assume that a human body requires 25010 keal of energy each day for metabolic activity and sucruse is the only source of energy, as per the equation
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})+12 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+11 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ;$ $\mathrm{AH}=-5.6 \times 10^{6}$. A .
(a)

(fill up the blanks)

a) The encrey requirement of the human body per day is
\qquad kJ.
(b) The mass of sucrose recuired to provide this encrgy is \qquad g and the volune of CO_{2} (at SIP)
produced is \qquad litres.
($2+2$ marks, no partial marking)
(iv) The compound in the botle D did no: cissolec in 1. N NaOH but dissolved in 1 N HCl .

(fill up the blanks)

(a) Indicate the componinds in: bottle A $B=$ \qquad , bottle $\mathrm{C}=$ \qquad and bottle $D=$
(b) The compound with the highest selubility in distilled water is \qquad $-$

$$
\text { (} 4 \times \perp \text { mark }=4 \text { marks, rio partial marking) }
$$ - 1

(1 mark, no partial marking)
(indicate the answers by the compound numbers)

BIOLOGY

10 Mohini, a resident of Cliendigarh went to Shimla with her parents. There she found the same plant that they have in their beckyard, at home. However, she observed that while the plants in their backyard bore white flowers, those in Shimla had pink flowers. She brought home some sceds of the plant from Shimla and planted them in Chancigarh Upon performing self-brceding for several generations she found that the plan: from Shima produced only white flowers.
(a) According to you what might be the reason for this observation - genetic or environmental factors?
(1 mark)
(b) Suggest a simple experiment to determino whether tiis variation is genctic in nature.
(2 marks)
(c) Suggest another experiment to check whether this veriation in flower coler is due to environmental factors.
(2 marks)

Answer:

11 The break-down of glucose in a call oceurs in any of the following pathways:

Three) experiments (A, B, C) have been set up. In each experiment, a flask contains the organism in growth medrom, glucose and a brown dye that changes its colour to

Organism in Culture Medlum + Glucose + Dye

yellow when the pH docreases. The mouti of the flask is attached to a test tube containing lime water (Calciam Hydroxide; as shown in the figurei. In C , but not in A and B, air is removed from the flask before beginning the experimen:

After a period of growth, the following observations were made:

A: Lime water turns milky; the dye colour remains the same.

B: The dye colour changes; lime water does not turn milky.
C: Lime water turns milky; the dye colour remains the same.
(a) Question : Idertify which of the reactions in the pathways depicted above is taking place in each experiment. Give reasons for your answer. (4 marks)
(b) Question : Identify which of the reactions in the pathweys depicted above is expected to ocour in Red Blood Cells (RBCs).
(1 mark)
Answer:

12 A scientst has a house just heride a busy highway. He collects leaves from some plants growing in his garden to do radio-curben dating (to estimate the age of the plant by estimating the amount of a radipisotope of cavion in its tiss.es). Surprisingly the radio-carbon dating shows that the plant is a few theersand years old!
(a) Was the result of the radic-carbon dating wrong or can you propuse a rason for such an observation? (3 marks)
(b) What sigtple experiment can be done to test the reason that you heve proposed?
(2 marks)
Q. 1

Solution:

We denote the area of traingle $P Q R$ by $[P Q R]$. We see that $[B O D]$ and $[C O E]$ are equal. Let the common value be x, and let $[B O C]=t$. Using the fact that the ratio of areas of two triangles having equal altitudes is the same as the ratio of their respective bases, we obtain

$$
\frac{x}{1}=\frac{B O}{O E}=\frac{t}{x}
$$

This gives $t=x^{2}$. Now $A D E$ and $A B C$ are similar so that

$$
\frac{[A D E]}{[A B C]}=\frac{D E^{2}}{B C^{2}}=\frac{[O D E]}{[O B C]},
$$

since $O D E$ and $O C B$ are also similar. This implies that

$$
\frac{3}{4+2 x+t}=\frac{1}{t}
$$

which simplifies to $t=2+x$. Using $t=x^{2}$, we get a quadratic in $x: x^{2}-x-2=0$. Its solution are $x=2$ and $x=-1$. Since x cannot be negative, $x=2$ and $t=4$. Thas $[A B C]=4+2 x+t=4+4+4=12$.

Q. 2

Solution: Let t be the total number of CD's that Leela and Madan together sold. Then they obtain t^{2} rupees together. Since Leela is the first one to take 10 rupees and also the last one to take 10 rupees, we must have

$$
t^{2}=10(\text { an odd number })+(\text { a number less than } 10)
$$

Suppose $t=10 q+r$, where r is the remainder when t is divided by 10 . Then $t^{2}=100 q^{2}+20 q r+r^{2}$. Comparing, we conclude that

$$
r^{2}=10(\text { an odd number })+(\text { a number less than } 10) .
$$

But we know that $0 \leq r<10$. Taking $r=0,1,2, \ldots, 9$, we see that $r=4$ or 6 (for other values of r, tens place in r^{2} is even). But then $r^{2}=16$ or 36 . Hence the amount left for Madan at the end is 6 rupees.

Q. 3

(a) Divide the $n+1$ numbers $1,11,111, \ldots, 111 \cdots 1$ (all having only 1 as digits) by n. Among the $n+1$ remainders so obtained, two must be equal as the possibilities for remainders are $0,1,2, \ldots, n-1$ which are n in number. Thus there must be two numbers $x=11 \cdots 1$ and $y=11 \cdots 1$ having say j digits and k digits respectively which leave the same remainders after division by n. We may take $j<k$. Now we see that $y-x$ is divisible by n. But $y-x=11 \cdots 100 \cdots 0$ where there are $k-j$ number of 1 's and remaining zeros. Since n is coprime to 10 , we see that n divides $m=11 \cdots 1$, a number having only 1's as its digits.
(b) If p / q is any rational number ($p>0, q>0$), then we may write $q=2^{r} 5^{s} t$, where t is coprime to 10. Choose a number m having only 1 's as its digits and is divisible by t. Consider $9 m$, which has only 9 as its digits and is still divisible by t. Let $k=9 m / t$. We see that

$$
q k=9 m 2^{r} 5^{s}=\left(10^{c}-1\right) 2^{r} 5^{s},
$$

where c is the number of digits in m. Hence we can find d such that $q d=10^{b}\left(10^{c}-1\right)$ (multiply by a suitable power of 2 if $s>r$ and by a suitable power of 5 if $r>s$). Then

$$
\frac{p}{q}=\frac{p d}{q d}=\frac{a}{10^{b}\left(10^{c}-1\right)}
$$

where $a=p d$.
Q. 4

Solution: For P: $I=I_{R}+I_{V}=V / R+V / R_{V}$
$R=\frac{V}{I}\left[\frac{R_{V}}{R_{V}-V / I}\right]$
$=R_{\text {est }}\left[\frac{1}{1-R_{\text {est }} / R_{V}}\right]$
$\approx R_{\text {est }}\left[1+R_{\text {est }} / R_{V}\right] \quad$ (neglecting higher order terms in $R_{\text {est }} / R_{V}$)
$\delta R_{\mathrm{P}}=\left|R_{\text {est }}-R\right|=R_{\text {est }}^{2} / R_{V} \approx \frac{R^{2}}{R_{V}}$
Alternatively,
$R_{\text {est }}=\frac{V}{I}=\frac{R_{V} R}{R_{V}+R}$
$\delta R_{\mathrm{P}}=\left|R_{\text {est }}-R\right|=R\left[\frac{R_{V}}{R_{V}+R}-1\right] \approx \frac{R^{2}}{R_{V}}$
For $\mathrm{Q}: V=I\left(R+R_{A}\right)$
$R=\mathrm{V} / I-R_{A}=R_{\text {est }}-R_{A}$
$\delta R_{\mathrm{Q}}=\left|R_{\text {est }}-R\right|=R_{A}$

If $R=\sqrt{R_{A} R_{V}}$, then $\delta R_{\mathrm{P}} / \delta R_{\mathrm{Q}}=R_{\text {est }}^{2} /\left(R_{A} R_{V}\right)=R_{\text {est }}^{2} / R^{2} \approx 1$
Q. 5

Solution: (a) Object is at $2 f$, so the image is formed at the same distance from the lens (20 cm) to the right. (b) Since light has to retrace its path, the mirror should be placed so that the previous image is at its center of curvature. Thus the mirror must be placed 30 cm to the right of the lens. (c) For the plane mirror, reflection forms an image 40 cm to the right of the lens. Using the lens formula, we see that the final image is formed at a distance of $40 / 3 \mathrm{~cm}$ to the left of the lens.
Q. 6

Solution: (a) $V(\theta)=m g R(1-\cos \theta)$, (b) $m g H-m g R(1-\cos \theta)$, (c) For $H \ll R$ the body executes SHM with a time period of $\frac{1}{2 \pi} \sqrt{\frac{R}{g}}$ - the time taken for it to travel from P to Q will be a quarter of this, i.e. $\frac{1}{8 \pi} \sqrt{\frac{R}{g}}$. (d) At the lowest point, the speed is given by $\frac{1}{2} m v^{2}=m g H$. So, $T-m g=\frac{m v^{2}}{R}=\frac{2 m g H}{R}$, and thus $T=m g\left(1+\frac{2 H}{R}\right)$.

Q. 7

Answers:
(a) $\mathrm{a}=3, \mathrm{~b}=8, \mathrm{c}=3, \mathrm{~d}=2$ and $\mathrm{e}=4$.
(b) $\mathrm{f}=2, \mathrm{~g}=1, \mathrm{~h}=1$.
(c) $\mathrm{i}=2, \mathrm{j}=1, \mathrm{k}=1, \mathrm{l}=2$
(d) 2.54 g of $\mathrm{I}_{2}=1 / 100 \mathrm{~mole}$ of I_{2}
$=2 / 100 \mathrm{gm}$ atom of Cu

$$
\% \mathrm{Cu}=(2 / 100) \mathrm{X}(63.5 / 2)=63.5 \%
$$

Q. 8

Answers:
Bottle A = III, Bottle B = II, Bottle C = IV, Bottle D = I

Compound with the highest solubility in distilled water: IV
Q. 9

Answers:
(a) $2500 \times 4.184 \mathrm{~kJ}=10460 \mathrm{~kJ}$
(b) 342 g of sucrose produces 5600 kJ of energy. To provide 10460 kJ we need 10460x 342/5600 g = 638 g
$638 \mathrm{~g} / 342 \mathrm{~g} \mathrm{x} 12$ x $22.4 \mathrm{~L}=501 \mathrm{~L}$
Q. 10

Answers: (a) Difference in flower color is most likely due to environmental factors
(b) Perform cross breeding between the plants from Chandigarh and those from Shimla to find out whether we get any pink flower or flowers with any shade of color between pink and white in the F1 generation
(c) Grow the plants from Chandigarh in Shimla and check whether they still produce white flowers or bear pink flowers
Q. 11

Answers:
(a) In experiment A , ethanol fermentation occurs producing CO_{2}, turning lime water milky. Since acid is not produced the dye colour does not change.

In experiment B, lactic acid fermentation takes place, which produces acid but does not produce CO_{2}. Hence dye colour changes to yellow but the lime water does not turn milky .

In experiment C , since the lime water turns milky, ethanol fermentation is occurring. In addition, since removal of air did not affect the reaction, the fermentation is anaerobic and yeast must be the organism in the flask.
(b) In RBCs, lactic acid fermentation occurs.
Q. 12

Answers:
(a) The result of the radio-carbon dating was correct.

Reason: Vehicles running on the highway beside the house emitted carbon dioxide from the combustion of petrol or diesel, which are fossil fuels. The carbon in this carbon dioxide, coming from living material that has been converted into petroleum millions of years ago, would get assimilated into the tissues of the plant as it uses carbon dioxide from the surrounding atmosphere for photosynthesis. Therefore tissues of the plant, when used for radio-carbon dating, would show the age of the plant to be many thousands of years old.
(b) A simple experiment to test the validity of this explanation would be to collect seeds from the plant and grow them in a plot of land away from the highway or other sources of carbon dioxide coming from the burning of fossil fuels. Radio-carbon dating of plants growing from these seeds should show them as young plants.

