- Oxidation of alcohols to acids involves formation and cleavage of bonds. Which of the following possibilities is valid in the process?
 - Formation of C=O bond and C-L
 cleavage of O-H and C-H bonds.
 - 2.7 Formation of C=O bonds and cleavage of O-H bond.
 - Formation of C=O bonds and cleavage of C-H bonds.
 - Formation of C=O bond and cleavage of O-H and C-H bonds.
- Suppose the Sun somehow becomes a black hole without change in its mass. Then this black hole will pull into itself
 - 1. all the planets
 - 2. only Mercury.
 - all planets from Mercury to Mars
 - 4. none of the planets
- Which of the following animals does not have modified legs used for flight?
 - (1) Sparrow

6

9

18

12

14

9) 50

92 37

105

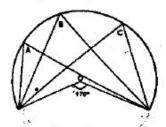
- (2) Bat
- (3) Flying squirrel
- (4) Butterfly
- Droplets of a herbicide solution form various shapes on a leaf as shown.

Assuming that the droplets have the same volume, the trend in the rates of herbicide uptake would be

- 1. A>B>C
- 2 B>A>C

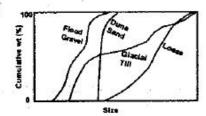
- 3. B > C > A 4. C > A > B
- 5. What is the minimum number of cards you need to uncover from the top of a well-shuffled deck of 52 playing cards, to ensure that you have two cards of a suit?

(1) 41 page


(4) 5

- 6. A long cylinder has an axially placed two-bladed fan spinning inside it. Bullets are shot through the cylinder at a constant rate. If the number of blades is increased to four, the number of bullets
 - 1. missing the blades is halved.
 - missing the blades is reduced by one-fourth.
 - 3. hitting the blades is doubled.
 - hitting the blades remains the same.
 - A jar containing an iron block B was floating on water in a bigger container. The block was taken out and put into water. As a result, the level of water in the container will

- 1. rise
- 2. fall
- remain the same
- rise or fall depending upon the mass of the block
- A room has a west-facing window with glass panes. Which of the following is the most effective way to prevent the room from getting hot in summer?


- Cover the inside of the glass pane by a black paper.
- Cover the outside of the glass pane by an aluminum foil.
- Cover the outside of the glass pane by a white thermocol sheet.
- Cover the inside of the glass pane by a white thermocol sheet.
- 9. A polypeptide of 300 amino acids has tyrosine at the 157th position. If the tyrosine codon mutates to a nonsense codon, what would be the size of the polypeptide in this mutated organism?
 - (1) 157
- (2) 156
- (3) 299
- (4) 144
- 10. After bubbling air through pure water (pH = 7.0), its pH decreased. Which of the following is responsible for the pH change?
 - (1) Nitrogen (2) Carbon dioxide
 - (3) Oxygen (4) Helium
- 11. Which of the following caused disruption of air-traffic in Europe after the volcanic eruption in Iceland in the year 2010?
 - Risk of engine damage by volcanic ash.
 - Increased local temperature.
 - Reduced visibility due to volcanic gases.
 - Presence of toxic gases.
- 12. A segment of a circle (slightly greater than a semicircle, whose centre is O) is given below. Identify the correct statement regarding the three angles A, B and C.

- A is equal to B but not equal to C.
- A, B and C are equal and have a value of 85°.
- A, B and C are unequal.
- 4. A, B and C are each equal to
- 13. Three boys A, B and C kicked three balls horizontally from the edge of the roof of a building. The horizontal distances traversed by these balls before hitting the ground are d_A , d_B , d_C respectively, with $d_A > d_B > d_C$. If t_A , t_B and t_C are the times taken to hit the ground respectively, then
 - (1) $t_A > t_B > t_C$ (2) $t_A < t_B < t_C$
 - (3) $t_A > t_B < t_C$ (4) $t_A = t_B = t_C$
- 14. A swinging door is to be stopped by driving a wedge between the floor and the door. The most favourable position of the wedge is close to the
 - outer edge of the door because even a small frictional force can provide adequate torque to stop the door swing.
 - outer edge of the door because the frictional force is the largest at the outer edge.
 - hinged edge of the door because the moment of force is smallest near the hinge.
 - hinged edge of the door because there is friction in the hinge.

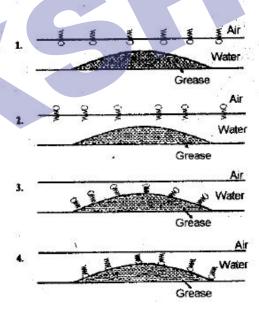
- (1) carbon (2) hydrogen
- (3) calcium (4) oxygen

16. The figure shows cumulative weight percent curves for different types of sediments. Which type of sediment has the narrowest size distribution?

- 1. Dune sand
- 2. Glacial till
- 3. Flood gravel
- 4. Loess

17. A number system consists of digits 0, 1, 2, 3, 4 and 5. What is the decimal equivalent of 15 in this number system?

- **(1)** 15 **(2)** 13
- (3) 11 (4) 12


18. Absolute water content in the air in the equatorial region is measured to be 18 g m⁻³ and the same is 4 g m⁻³ in the polar region. However, the values of relative humidity reported are 60% and 78%, respectively. This could be because

- equatorial region is warmer and therefore the atmosphere has a higher water holding capacity.
- winds are stronger in the polar region.
- polar région is ice-covered and therefore its atmosphere has a higher water content.

- of higher snowfall in the polar region.
- 19. The simple representation of a detergent molecule is given below:

Which one of the following representations describes the interaction of the detergent molecule in a system composed of grease and water)

20. Parents with blood groups A and AB have two children. Which of the following cannot be the blood groups of their children?

- -1. A and AB
- 2. B and AB
- 3. A and B
- 4. O and B

F

4. Oaki

- 21. Identify which of the following operators is *not* hermitian?
 - 1. $\frac{\hbar}{i}\frac{d}{dt}$
 - 2. $i\frac{d^2}{dx^2}$
 - $\frac{3}{dx^2}$
- The term symbol for the ground state of nitrogen atom is
 - 1. ${}^{3}P_{0}$
 - 2. 4P3/2
 - 3. ${}^{1}P_{1}$
 - 4. 4S3/
- 20 Bint
- P_A and P_B denote the populations of two energy states E_A and E_B, and E_A
 E_B. The correct statement when the temperature T₁ > T₂ is
 - 1. $P_A(T_1) > P_B(T_1)$, $P_A(T_2) < P_B(T_2)$ and $(P_A/P_B)_{T_1} > (P_A/P_B)_{T_2}$
 - 2. $P_A(T_1) \notin P_B(T_1)$, $P_A(T_2) > P_B(T_2)$ and $(P_A/P_B)_{T_1} < (P_A/P_B)_{T_2}$
 - 3. $P_A(T_i) < P_B(T_i), P_A(T_2) < P_B(T_2)$ and $(P_A/P_B)_{T_i} > (P_A/P_B)_{T_2}$
 - A. $P_A(T_1) < P_B(T_1), P_A(T_2) < P_B(T_2)$ and $(P_A/P_B)_{T_1} < (P_A/P_B)_{T_2}$

of a compound in liquid state (relaxation time = 1 s) is 0.1 Hz:

The uncertainty in the frequency (in Hz) of same compound in solid state (relaxation time = 10⁻⁴ s) is

- 1. 10⁻⁴
- 2. 100

- 3° 1000 4. 10⁻³
- 25. Which one of the following conductometric titrations will show a linear increase of the conductance with volume of the titrant added up to the break point and an-almost constant conductance afterwards.
 - 1. Y A strong acid with a strong base
 A strong acid with a weak base
 - 3. A weak acid with a strong base
 - 4. A weak acid with a weak base.
- 26. Flocculation value of K₂SO₄ is much less than that of KBr for Sol A. Flocculation value of CaCl₂ is much less than that of NaCl for Sol B. Which of the following statements is correct?
 - Sol A is negatively charged and Sol B is positively charged.
 - 2. Both the sols are negatively charged.
 - 3. Sol A is positively charged and Sol B is negatively charged.
 - 4. Both the sols are positively charged.
- For a system of constant composition, the pressure (P) is given by
 - 1. $-\left(\frac{\partial U}{\partial S}\right)_{s}$
 - 2. $-\left(\frac{\partial U}{\partial V}\right)_{S}$
 - 3. $\left(\frac{\partial V}{\partial S}\right)$
 - $4. \qquad \left(\frac{\partial U}{\partial V}\right)_{I}$

- 28. The value of d_{111} in a cubic crystal is 325.6 pm. The value of d_{333} is
 - 1. 325.6 pm
 - 2. 976.8 pm
 - 3. 108.5 pm
 - 4. 625.6 pm

The symmetry point group of ethane in its staggered conformation is

- 1. . C_{3v}
- D_{3d}
- D_{3h}
- Se

30.

For the reaction $C_2H_4(g) + 3O_2(g) \rightarrow$ $2CO_2(g) + 2H_2O(1)$, the value of ΔH -ΔU (in kJ) at 300 K and 1 bar is

- -5.0
- 0.0
- 2.5

5.0

The sodium D lines are due to ${}^2P_{y_1} \rightarrow {}^2S_{y_2}$ (ΔE_1) and ${}^2P_{y_2} \rightarrow {}^2S_{y_2}$

(ΔE₂) transitions. The splitting due to spin-orbit coupling in 2P state of the sodium atom is

- $\Delta E_2 + \Delta E_1$
 - $\Delta E_2 \Delta E_1$

The rate constant of a unimolecular 32. reaction was 2.66 × 10⁻³ s⁻¹ and 2.2 × 10-1 s-1 at T = 120 K and 360 K respectively. The rate constant (in s-1 units) at 240 K would be

- 2.4×10^{-2} 1.
- 2.4×10^{-1}
- 4.8×10^{-2}
- 1.8×10^{-3}

33. For a potentiometric titration, in the curve of emf (E) vs volume (V) of the titrant added, the equivalence point is indicated by

- $\left| dE / dV \right| = 0, \left| d^2E / dV^2 \right| = 0$
- $|dE/dV| = 0, |d^2E/dV^2| > 0$
- $|dE/dV| > 0, |d^2E/dV^2| = 0$
- $|dE/dV| > 0, |d^2E/dV^2| > 0$

The osmotic pressure (π) of a polymer sample at different concentrations (c) was measured at T(K). A plot of (π/c) versus c gave a straight line with slope (m) and intercept (c'). The number average molecular weight of the polymer is (R =gas constant)

- RT
- RT
- RT
- mRT

concentration undergoing decomposition was 0.1, 0.08 and 0.067mol L-1 after 1.0, 2.0 and 3.0 hr respectively. The order of the reaction is

- 2.
- 3.

A particle is constrained in a one-36. dimensional box of length 2a with potential $V(x) = \infty$; x < -a, x > a and V(x) = 0; $-a \le x \le a$. Energy difference between levels n = 3 and n = 2 is

- 3.

Spectra NMB

In the ¹⁹F NMR spectrum of PF₅, the number of signals and multiplicity, at

- 1. one, singlet
- 2. one, doublet

room temperature are

- 3. two, doublet
- 4. two, singlet
- 38. The correct statement regarding closo-{B_nH_n} species is:
 - If it always has -2 charge
 - 2. it always has +2 charge
 - 3. it is a neutral species
 - 4. it is more reactive than nido-, arachno-, and hypo-boranes
- 39. Lewis acidity of BCl₃, BPh₃ and BMe₃ with respect to pyridine follows the order
 - 1. $BCl_3 > BPh_3 > BMe_3$
 - 2. BMe₃ > BPh₃ > BCl₃
 - 3. $BPh_3 > BMe_3 > BCl_3$
 - 4. $BCl_3 > BMe_3 > BPh_3$
- 40. Superoxide dismutase contains the metal ions
 - 1. Zn(II) and Ni(II)
 - 2. Cu(II) and Zn(II)
 - 3. Ni(II) and Co(III)
 - Cu(II) and Fe(III)
- 41. The number of antibonding electrons in NO and CO according to MO theory are respectively:
 - 1. 1,0
 - 2. 2, 2
 - 3. 3, 2
 - 4. 2,3
- 42. The correct combination of metal, number of carbonyl ligands and the charge for a metal carbonyl complex [M(CO)_x]^{z-} that satisfies the 18 electron rule is
 - 1. M = Ti, x = 6, z = 1

2.
$$M = V, x = 6, z = 1$$

$$M = Co, x = 4, z = 2$$

4. $M = Mo, x = 5, z = 1$

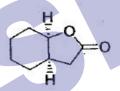
- 43. Among the following pairs, Q.
 - (A) oxygen-sulfur
 - (B) nitrogen-phosphorus
 - (e) phosphorus-arsenic
 - (D) chlorine-iodine

those in which the first ionization energies differ by more than 300 kJ mole are:

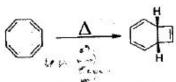
- 1. (A) and (C) only
- 2. (A) and (B) only
- 3. (B) and (C) only
- 4. (C) and (D) only
- 44. The stable cyclopentadienyl complex of beryllium is
 - 1. $[Be(\eta^5-C_5H_5)_2]$
 - 2. $[Be(\eta^5-C_5H_5)(\eta^3-C_5H_5)]$
 - 3. $[Be(\eta^1-C_5H_5)(\eta^3-C_5H_5)]$
 - 4. $[Be(\eta^1-C_5H_5)(\eta^5-C_5H_5)]$
- 45. The reaction between NH₄Br and Na metal in liquid ammonia (solvent) results in the products
 - 1. NaBr, HBr
 - 2. NaBr, H₂.
 - -3. H₂, HBr •
 - 4. NBr3, H2
- The material that exhibits the highest electrical conductivity among the following sulfur-nitrogen compounds is
 - 1. S4N4 = 30 -
 - 2. S7NH =
 - 3. $S_2N_2 =$
 - 9/ (SN),
- 47. Uranium fluorides co-precipitate with
 - CaF2
 - 2. AgF
 - LiF
 - (4) MgF:

- The acid-base indicator (HIn) shows a colour change at pH 6.40 when 20% of it is ionized. The dissociation constant of the indicator is
 - 9.95×10^{-8}
 - 3.95×10^{-6}
 - 4.5×10^{-8}
 - 6.0×10^{-8}
- The actual magnetic moment shows 49. a large deviation from the spin-only, formula in the case of

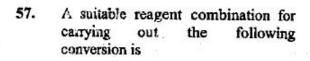
- The complex that absorbs shortest wavelength is


 - [CoF₆]³⁻⁵⁴⁶
 [Co(H₂O)₆]³⁺
 [Co(NH₃)₆]³⁺

 - $[Co(ox)_3]^{3-}(ox = C_2O_4^{2-})$
- Two a particles having speeds S1 51. and S2 have kinetic energies 1 and 2 MeV respectively; the relationship between S1 and S2 is:
 - 1. $S_1 = 2S_2$
 - 2. $S_2 = 2S_1$
 - 3. $S_2 = \sqrt{2}S_1$
 - 4. $S_1 = \sqrt{2}S_2$
- Green coloured Ni(PPh₂Et)₂Br₂, has 52. a magnetic moment of 3.20 B.M. The geometry and the number of isomers possible for the complex respectively, are
 - square planar and one
 - tetrahedral and one


- square planar and two
- tetrahedral and two
- The chemiluminescence method for 53. determining NO in environmental samples is based on formation of NO2* (excited) which is generally generated by reacting NO with

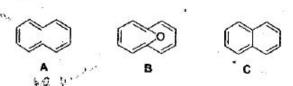
- O_2


In the IR spectrum, carbonyl absorption band for the following compound appear

- 1810 cm
- 1770 cm
- 1730 cm
- 1690 cm⁻¹
- Among the following compounds, t 55. formyl anion equivalent is
 - acetylene
 - nitromethane 2.
 - ethyl chloroformate 3.
 - 1, 4-dithiane
- In the following concerted reaction, the 56. product is formed by a

- 6π-disrotatory electrocyclisation
- 4π-disrotatory electrocyclisation
- 6π-conrotatory electrocyclisation
- 4π-conrotatory electrocyclisation

- trimethyl orthoacetate and ptoluenesulfonic acid
- trimethyl orthoacetate and sodium hydroxide
- 3. 2-methoxypropene and ptoluenesulfonic acid
- 2-methoxypropene and sodium hydroxide
- 58. The IUPAC name of the following compound is


- (R)-3-(prop-2-enyl)hex-5ynoic acid
- 2. (S)-3-(prop-2-enyl)hex-5-. ynoic acid
- 3. (R)-3-(prop-2-ynyl)hex-5enoic acid
 - (8)-3-(prop-2-ynyl)hex-5- k, enoic acid

In the mass spectrum of dodecahedrane ($C_{20}H_{20}$), approximate ratio of the peaks at m/z 260 and 261 is

- 1. 1:1
- 2. 5:1
- 3. 10:1
- 4. 20:1

60. The reaction given below proceeds through

- 61. Among the following drugs, the anticancer agent is
 - 1. captopril
 - Z. chloroquin
 - 3. camptothecin
 - 4. ranitidine
- 62. The reaction that involves the formation of both C-C and C-O bonds is
 - Diels-Alder reaction
 - 2. Darzen's glycidic ester condensation
 - aldol reaction -
 - 4. Beckmann rearrangement
- 63. Among A-C, the aromatic compounds are

- 1. A, B and C
- 2. A and B only
- 3. B and C only
- A: A and C only
- In the following Markonikov addition reaction, the products A and B are

- 1. homomers
- 2. enantiomers
- ✓. diastereomers
- 4. regioisomers

69.

The major product formed in the 65. following reaction is

Among A-C, the compounds which 66. can exhibit optical activity are

- 1. A, B and C
- 2. A and B only
- 3. A and C only
- 4. B and C only

The major product formed in the 67. following reaction is

An organic compound (MF: C₈H₁₀O) exhibited the following 'H NMR spectral data: δ 2.5 (3 H, s), 3.8 (3 H, s), 6.8 (2 H, d, J 8 Hz), 7.2 (2 H, d, J 8 Hz) ppm. The compound, among the choices, is

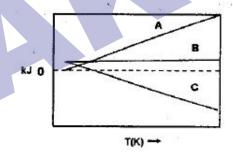
2-ethylphenol 4-methylanisole 4-methylbenzyl alcohol With respect to electrophilic aromatic substitution, reactivity order of pyrrole, pyridine and indole is

indole > pyrrole > pyridine

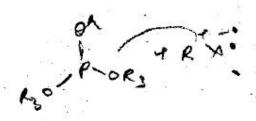
4-ethylphenol

pyrrole > pyridine > indole

pyrrole > indole > pyridine 3.


4. indole > pyridine > pyrrole

The most appropriate reagent suitable 70. for the conversion of 2-octyne into trans-2-octene is


- zinc and acetic acid
- 10% Pd/C 2
- lithium in liquid ammonia 3.
- hydrazine hydrate

PART C

- 71. Consider a n-type semiconductor whose $E_v = 0$, $E_c = 2.0$ eV and $E_d = 1.98$ eV. The correct statement among the following is
 - 1. $E_f = 1 \text{ eV}$ and is independent of T
 - E_f = 1.99 eV and remains independent of T
 - 3. $E_f = 1.99$ eV and increases towards 2.0 eV with increase of T
 - 4. E_f = 1.99 eV and decreases with increase of T
- Reaction of Fe(CO)₅ with OH leads to complex A which on oxidation with MnO₂ gives B. Compounds A and B respectively are
 - (1) [HFe(CO)₄] and Fe₃(CO)₁₂
- (2) [Fe(CO)₅(OH)] and Fe₂(CO)₉
- (3) [Fe(CO)₄]²⁻ and Mn₂(CO)₁₀
- (4) [HFe(CO)₄] and Fe₂O₃
- 73. For the reaction $H_2O(g) + C$ (graphite) $\rightleftharpoons CO(g) + H_2O(g)$, the variation of energy parameter ΔG° , ΔH° and $T\Delta S^{\circ}$ of the reaction over a large temperature range is shown below. The correct identification of the curves is given by

- (1) $A \rightarrow \Delta G^{\circ}$, $B \rightarrow \Delta H^{\circ}$, $C \rightarrow T\Delta S^{\circ}$
- (2) $A \rightarrow \Delta H^{\circ}$, $B \rightarrow \Delta G^{\circ}$, $C \rightarrow T\Delta S^{\circ}$
- (3) $A \rightarrow \Delta G^{\circ}, B \rightarrow T\Delta S^{\circ}, C \rightarrow \Delta H^{\circ}$
- (4) $A \rightarrow T\Delta S^{\circ}$, $B \rightarrow \Delta H^{\circ}$, $C \rightarrow \Delta G^{\circ}$
- 74. A sodalite cage in zeolites is
 - (1) a truncated tetrahedron
- (2) an icosahedron
- (3) a truncated octahedron
- (4) a dodecahedron
- 75. Two moles of a nonvolatile solute is dissolved in 48 mol of water and the resultant solution has a vapour pressure of 0.0392 bar at 300 K. If the vapour pressure of pure water at 300 K is 0.0400 bar, the activity coefficient of water in the solution is
 - (1) 0.96
- (2) 0.98
- (3) 1.00
- (4) 1.02

The final product(s) of the reaction

P(OR)₃ + R'X is/are

(1) R'PO(OR)2 and RX

[R'PO(OR)2]X

(3) [R'RPO₂(OR)]X

- ROR' and P(OR)2X
- 1 mol of CO2, 1 mol of N2 and 2 mol of O2 were mixed at 300 K. The entropy of mixing is 77.
 - (1) 6 R ln2
- (2) 8 R ln2

- For the eigenstates of the hydrogen atom, which of the following relations between the 78. expectation value of kinetic energy (T) and potential (V) holds true?
 - (1) $\langle T \rangle = \langle V \rangle$

 $(2) \quad 2\langle T \rangle = -\langle V \rangle$

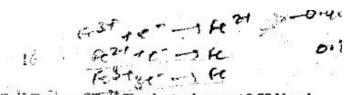
(3) $2\langle T \rangle = \langle V \rangle$

- $(4) \quad \langle T \rangle = -2 \langle V \rangle$
- For the liquid \rightleftharpoons vapour equilibrium of a substance, $\frac{dP}{dT}$ at 1 bar and 400 K is 8×10^{-3} bar 79. K-1. If the molar volume in the vapour form is 200 L mol-1 and the molar volume in the liquid form is negligible, the molar enthalpy of vapourisation is (1.0 bar L = 100 J)
 - (1) 640 kJ mol-1

(2) 100 kJ mol-1

(3) 80 kJ mol-1

- (4) 64 kJ mol⁻¹
- The correct order of acidity among the following species is 80.
 - 1. $[Na(H_2O)_6]^+ > [Ni(H_2O)_6]^{2+} > [Mn(H_2O)_6]^{2+} > [Sc(H_2O)_6]^{3+}$
 - 2. $[Sc(H_2O)_6]^{3+} > [Ni(H_2O)_6]^{2+} > [Mn(H_2O)_6]^{2+} > [Na(H_2O)_6]^{4+}$
 - 3. $[Mn(H_2O)_6]^{2+} > [Ni(H_2O)_6]^{2+} > [Sc(H_2O)_6]^{3+} > [Na(H_2O)_6]^{4+}$
 - 4. [Sc(H₂O)₆]³⁺ > [Na(H₂O)₆]⁺ > [Ni(H₂O)₆]²⁺ > [Mn(H₂O)₆]²⁺
- The Langmuir adsorption isotherm is given by $\theta = \frac{Kp}{1+Kp}$, where p is the pressure of the 81. adsorbate gas. The Langmuir adsorption isotherm for a diatomic gas A2 undergoing


dissociative adsorption is

$$(1) \quad \theta = \frac{Kp}{1 + Kp}$$

$$(2) \quad \theta = \frac{2Kp}{1 + 2Kp}$$

(3)
$$\theta = \frac{(Kp)^2}{1+(Kp)^2}$$

(4)
$$\theta = \frac{(Kp)^{1/2}}{1 + (Kp)^{1/2}}$$

- 82. The standard electrode potentials (E°) of Fe³⁺/Fe²⁺ and Fe²⁺/Fe electrodes are +0.77 V and -0.44 V respectively at 300 K. The E° of Fe³⁺/Fe electrode at the same temperature is
 - (1) 1.21 V
- (2) 0.33 V
- (3) -0.11 V
- (4) -0.04 V
- 83. Which of the following is true for the radial part of the hydrogen atom wavefunctions $R_{nl}(r)$ (n: principal quantum number) and the nodes associated with them?
 - 1. The radial part of only s function is non-zero at the origin and has (n-1) nodes.
 - 2. The radial part of s function is zero at the origin and has n number of nodes.
 - 3. All radial functions have values of zero at the origin and have (n-1) nodes.
 - 4. The radial parts of all s functions are zero at the origin and have no nodes.
- 84. For non-degenerate perturbation theory for ground state, with $E_0^{(0)}$ as zeroth order energy, $E_0^{(1)}$ as the first-order perturbation correction and E_0 as the exact energy, which of the following is true?
 - (1) $(E_0^{(0)} + E_0^{(1)})$ is always equal to E_0
- (2) $(E_0^{(0)} + E_0^{(1)}) \le E_0$

(3) $(E_0^{(0)} + E_0^{(1)}) \ge E_0$

- (4) $E_0^{(0)} \leq (E_0 + E_0^{(1)})$
- 85. Observe the following electronic transitions of a diatomic molecule.
 - $(\mathring{A}) \qquad ^{1}\Sigma_{g}^{*} \rightarrow ^{3}\Sigma_{g}^{*}$
- $(B) \qquad ^{1}\Sigma_{\nu}^{+} \rightarrow ^{1}\Sigma_{s}^{*}$
- $(C) \quad {}^{1}\Delta_{u} \to {}^{1}\Sigma_{g}^{+}$
- (D) ${}^{1}\Pi_{g} \rightarrow {}^{1}\Sigma$

The allowed transitions are

- 12126
- (1) (A) and (C) only

(2) (B) and (D) only

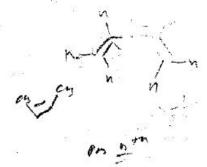
(3) (A), (B) and (C) only

- (4) (A), (C) and (D) only
- An excited triplet state wavefunction of hydrogen molecule with the electronic configuration $\sigma_{\nu}^{1}\sigma_{\nu}^{1}$ has the following space part
 - (1) $\sigma_{g}(1)\sigma_{u}(2)$

- (2) $\sigma_g(1)\sigma_u(2)+\sigma_u(1)\sigma_g(2)$
- (3) $\sigma_g(1)\sigma_u(2)-\sigma_u(1)\sigma_g(2)$
- (4) $\sigma_g(1)\sigma_g(2)+\sigma_u(1)\sigma_u(2)$

The NMR spectrum of AX₃ exhibits lines at $\delta = 2.1$ and 2.3 ppm (for X type protons) and $\delta = 4.1$, 4.3, 4.5 and 4.7 ppm (for A type protons), measured from TMS with an instrument operating at 100 MHz. The chemical shift (in ppm) of A and X protons and coupling constant (in Hz) are respectively.

(1) 4.4, 2.2 and 20


(2) 2.2, 4.4 and 10

(3) 2.2, 4.4 and 5

(4) 4.3, 2.1 and 20

The character table of the C2v point group is given below:

Czv	E	C_2	$\sigma_{\!\scriptscriptstyle V}$	σ'_{v}	
Aı	1	1	1	1	
A ₂	1	1	-1	-1	
$\mathbf{B}_{\mathbf{I}}$	1	-1	1	-1	
B ₁ B ₂	1	-1	-1	1	
	100	150		A. F.2	1

The two functions $\phi_1 = p_1 + 2p_2 + 2p_3 + p_4$ and $\phi_2 = 2p_1 - p_2 - p_3 + 2p_4$ (where p_k is the porbital on the k^{th} atom of cis-butadiene and σ_V is the molecular plane) belong to

- (1) A₁ and A₂ respectively
- (2) Both A2

(3) Both B₂

(4) B₁ and B₂ respectively

If θ_r denotes the characteristic temperature of rotation, then the magnitude of $\{\theta_r(H_2) \cdot \theta_r(D_2)\}/[\theta_r(HD)]^2$ (assume the bond lengths to be the same for all the molecules) is

- (1) 2/3
- (2) 3/2
- (3) 8/9
- (4) 9/8
- 90. The overall reaction for the passage of 1.0 Faraday of charge in the following cell

is given by (t denotes the transport numbers)

- (1) $t_+KCl(a_1) \rightarrow t_+KCl(a_2)$
- (2) $t_+ KCl(a_2) \rightarrow t_+ KCl(a_1)$
- (3) $L KCl(a_1) \rightarrow L KCl(a_2)$
- (4) t. KCl(a2) → t. KCl(a1)
- 91. A system consisting of 4 identical and distinguishable particles, each possessing three available states of 1, 2 and 3 units, has 10 units of energy. The number of ways, W, in which these conditions are satisfied is
 - (1) 2
- (2) 4
- (3) 6
- S# 10
- 92. The molar conductivities at infinite dilution (Λ_m⁰) for Na₂SO₄, K₂SO₄, KCl, HCl and HCOONa at 300 K are 260, 308, 150, 426 and 105 S cm⁻² mol⁻¹ respectively. Hence Λ_m⁰ for formic acid in the same unit and at the same temperature is

6.1

- (1) 381
- (2) 405
- (3) 429
- (4) 531

If the displacement vectors of all atoms in *cis*-butadiene are taken as the basis vectors, the characters of the reducible representation of E, C_2 , σ_v (molecular plane) and σ_v are

- 1, 30, 10, 30, 0
- 2. 30, 0, 10, 0
- 3. 30, 20, 0, 0
- 4. 30. 0. 20. 0

P1 +2P2 + 2P2 + Py 2P1 - P2 - P3 + 2P2

62 Or 6

S/79 SW/11-1CE-2A

1: 1

94.	In least square fitting of a data set $\{X_i, Y_i\}$ to the equation $Y = A \cdot X$, the regression				
	coefficient (A) is estimated by	27	52%		

$$(1) \quad \sum Y_i^2 / \sum X_i^2$$

(2)
$$\sum X_i Y_i / \sum X_i^2$$

(3)
$$\sum X_i Y_i / \sum Y_i^2$$

$$(4) \quad \sum X_i^2 / \sum Y_i^2$$

At any temperature for the following reaction (D and T are deuterium and tritium 95. respectively) correct statement is

(A)
$$HCI+F \rightarrow HF+C$$

(A)
$$H Cl + F \rightarrow HF + Cl$$
 (B) $DCl + F \rightarrow DF + Cl$ (C) $TCl + F \rightarrow TF + Cl$

(C)
$$TCI + F \rightarrow TF + C$$

- (A) is fastest
- (B) is fastest
- (C) is fastest
- All the above reactions have the same rate constant

An example of a relaxation method of measuring rates is

- spectroscopic monitoring of product concentration 1.
- stopped flow technique
- 3. temperature jump experiments
- measurement of spectral line widths

$$2A \stackrel{K_1}{\longleftarrow} A_2$$
 (fast equilibrium)

$$A_2 + C \xrightarrow{k_2} P + 2A$$
 (slow)

by steady state approximation would be

(1)
$$K_1K_2k_3[A]^3[B]$$

(2)
$$K_2K_1k_3[A][B]^3$$

(3)
$$K_1K_2k_3[A][B]^2$$

The vibrational energy levels, v'' = 0 and v' = 1 of a diatomic molecule are separated by 2143 cm⁻¹. Its anharmonicity constant (ω_ex_e) is 14 cm⁻¹. The values of ω_e (in cm⁻¹) and first overtone (cm⁻¹) of this molecule are respectively.

Ex. 14 well-28e

99.	The addition polymerization of M (monom	er) involves the follo	involves the following stages:		
10	(I = initiator; R = free radical)		- 1 F		

$$I \xrightarrow{k_1} R$$
 (initiation)
 $R + M \xrightarrow{k_2} RM$
 $RM + M \xrightarrow{k_3} RM_2$ and so on
 $RM_n + M_n R \xrightarrow{k_3} R - M_n - M_n - R$

The rate constant for free radical formation is $2 \times 10^{-3} \text{ s}^{-1}$. The initial concentration of initiator is 10^{-3} mol dm⁻³. The overall rate of the reaction is 4×10^{-3} mol dm⁻³, s⁻¹. Assuming steady state approximation for free radical, the kinetic chain length is

- (1) 2000
- (2) 8×10^9
- (3) 20
- (4) 200

The electronic spectrum of $[CrF_6]^3$ shows three bands at 14,900 cm⁻¹, 22400 cm⁻¹ and 34,800 cm⁻¹. The value of Δ_0 in this case is

- (1) 5,500 cm⁻¹
- (2) 14,900 cm⁻¹
 - (3) 22,400 cm⁻¹
- (4) 34,800 cm

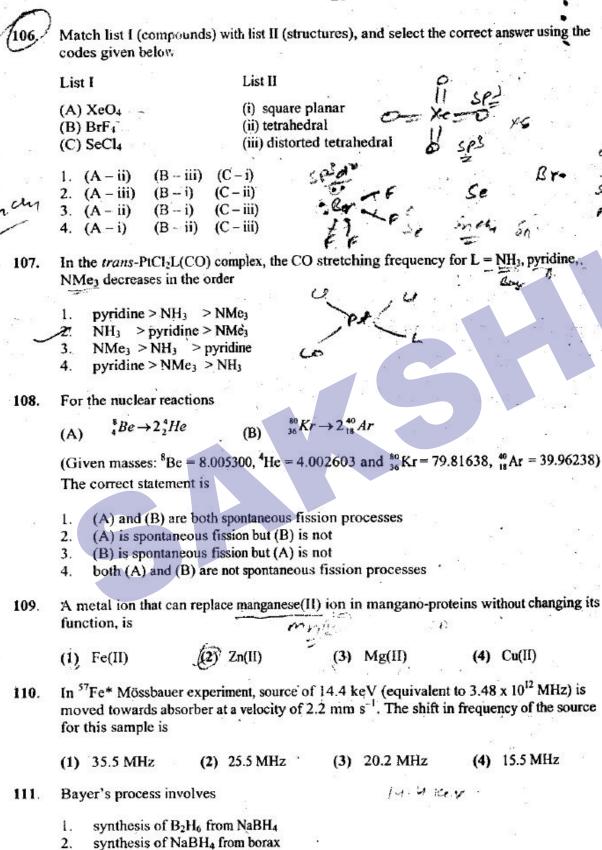
101. Among the following pairs, those in which both species have similar structures are:

- (A) N₃, XeF₂
- (C) [CIF₂]⁺, [ICl₂]
- (B) [ICl4], [PtCl4]2-
- (D) XeO₃, SO₃
- 1. (A) and (B) only
- 2. (A) and (C) only
- 3. (A), (B) and (C) only
- 4. (B), (C) and (D) only

102. The number of metal-metal bonds in the dimers, [CpFe(CO)(NO)]₂ and [CpMo(CO)₃]₂ respectively, are

- (1) two and two
- (2) two and three
- (3) one and two
- zero and one

103. The reduction of nitrogen to ammonia, carried out by the enzyme nitrogenase, needs


- (1) 2 electrons
- (2) 4 electrons
- (3) 6 electrons
- (4) 8 electrons

104. In the titration of 50 mL of 0.1 M HCl with 0.1 M NaOH using methyl orange as an indicator, the end point (color change) occurs as pH reaches 4.0. The titration error is

- (1) -0.2%
- (2) -84.7%
- (3) +0.2%
- (4) +84.7%

105. The styx code of B₄H₁₀ is

- (H) 4120
- (2) 4220
- (3) 4012
- (4) 3203

synthesis of NaBH₄ from B₂H₆

synthesis of B₃N₃H₆ from B₂H₆

3. 4.

112.	A true statement about base hydrolysis of [Co()	VH ₃) ₅ Cl] ²⁺ is,
,		an s
	1. it is a first order reaction	CoNHANNI
7	-2. the rate determining step involves the disse	ociation of chloride in [Co(NH ₃) ₄ (NH ₂)Cl]
	3. the rate is independent of the concentration	to the base
	4. the rate determining step involves the abst	raction of a proton from [Co(1113)501]
		serie of 1 butene to give ethylene and 3-
113.	#16 - #401일 USD USB 2016USD 등 1200CC AN USB #	lesis of 1-butene to give early total
	hexene is	
2	2	2 /
	CL PCy3 C6H5	+ 1
	$CI \stackrel{PCy_3}{Ru} \stackrel{C_6H_5}{=} (1) CI \stackrel{PCy_2}{PCy_2} \qquad 2) Na_2PdCl_4 \qquad ($	3) Co ₂ (CO) ₈ , H ₂ (4) RhCl(PPh ₃) ₃
	(1) Cl PCy ₃ 2) Na ₂ PdCl ₄ (
82	89	eth.
114.	. The correct order of d-orbital splitting in a trigo	onal bipyramidal geometry is
	The second secon	1.48
	(1) $d_z^2 > d_{xz}, d_{yz} > d_{x^2-y^2}, d_{xy}$ (2)) $d_{xz}, d_{yz} > d_x^2 - y^2, d_{xy} > d_z^2$
	(3) $d_x^2 - y^2$, $d_{xy} > d_z^2 > d_{xz}$, d_{yz}	$d_z^2 > d_x^2 - d_x^2 - d_x^2$, $d_{xy} > d_{xz}$, d_{yz}
115.	For the following outer sphere electron transfer	r reactions,
IIJ.	The state of the s	
	$[Co(NH_3)_6]^{2+} + [Co^*(NH_3)_6]^{3+} \rightarrow [Co(NH_3)_6]^3$	+ [Co*(NH ₃) ₆] ²⁺
	$ \frac{\left[\text{Co(NH3)}_{6}\right]^{2+} + \left[\text{Co*(NH3)}_{6}\right]^{3+} \rightarrow \left[\text{Co(NH3)}_{6}\right]^{3}}{\left[\text{Ru(NH3)}_{6}\right]^{2+} + \left[\text{Ru*(NH3)}_{6}\right]^{3+} \rightarrow \left[\text{Ru(NH3)}_{6}\right]^{3}} $	+[Ru*(NH ₃) ₆]*
	the rate constants are 10^{-6} M ⁻¹ s ⁻¹ and 8.2 x 10	M s respectively. This difference in the
	rate constants is due to	
	1. a change from high spin to low spin in Co	* and high spin to low spin in Ru
	- C 1'1 '. As least onin in Co	* and low spin to high spin in Ru*
	2. a change from high spin to low spin in Co	* and the low spin state remains unchanged
-	3. a change from low spin to high spin in Co	
	4. a change from low spin to high spin in Co	* and high spin to low spin in Ru*
		98
116.	 The greater stability of ((CH₃)₃C-CH₂-)₄Ti (A) compared to that of ((CH ₃) ₂ CH-CH ₂ -) ₄ Ti
110.	(B) is due to	+
	4	- 41- (n cy (2)
	 hyperconjugation present in complex (A) 	
100	β-hydride elimination is not possible in c	omplex (A)
	3. steric protection of titanium from reactive	species in complex (A)
	 the stronger nature of Ti-C bond in comp 	olex (A)
10000000000		ium in (Ca()(O.). 32- are recnectively
117.	The coordination number and geometry of cer	ium in [Ce(NO3)6] are respectively,
	5 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2) 6 and trigonal prism
i	(1) O and obtained on	A A CONTRACTOR CONTRAC
1	(3) 8 and cubic	12 and icosahedron

have co (No.

(3) 8 and cubic

A compound A having the composition FeCoHaO; shows one signal at 2.5 ppm and 118. another one around 5.0 ppm in its HNMR spectrum. The IR spectrum of this compound shows two bands around 1900 and 1680 cm⁻¹. The compound follows the 18 electron rule. of the following statements for A, the correct one is/are

- It has η5-Cp group
- It has a terminal CO ligand (B)
- It has a CH3 ligand
- It has Fe-H bond

(1) (A) and (B) only

(2) (C) only

(3) (A) and (C) only

(4) (B) and (D) only

In bacterial rubredoxin, the number of iron atoms, sulfur bridges and cysteine ligands are 119.

	Fe atom	sulfur bridge	cysteine	F C.	w	in
1.	à	4 .	4	454	Jav	*
φ2. 3.	2	2 2	2	fer 32		*
4.	1	0	4	cesh	Le Tou	

In the following reaction, the product formed and the mechanism involved are 120.

- and is formed by addition-elimination mechanism
- and is formed by benzyne mechanism
- and is formed by benzyne mechanism
- and is formed by S_N2 displacement

teres

An optically active compound enriched with R-enantiomer (60% ee) exhibited $[\alpha]_D + 90^\circ$. If the $[\alpha]_D$ value of the sample is -135° , the ratio of R and S enantiomers would be

- (1) R: S = 1:19
- (2) R: S = 19:1

(3) R: S=1:9

(4) R: S = 9:1

122. Match the amino acids with their structures:

- 1. i-a ii-e iii-c
- 2. i-c ii-d iii-b.
- 3. i-a ii-b iii-d
- 4: i-c ii-a iii-b

pe th Paul NP

123. Statement I. U(VI) is more stable than Nd(VI). Statement II. The valence electrons in U are in 5f, 6d and 7s orbitals

1. Statements I and II are correct and Statement II is correct explanation of I

et for

A 10

10

C.L

OK

- 2. Statement I and II are correct but Statement II is not an explanation for Statement I
- 3. Statement I is correct and Statement II is incorrect
- 4. Statements I and II both are incorrect

124. The major products A and B in the following reaction sequence are

1.
$$A =$$
 Br
 $B =$
 N_3
 N_3

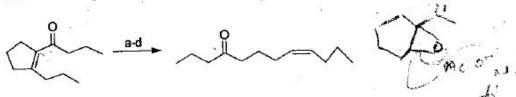
The major products A and B in the following reaction sequence are

1.
$$A = \bigcirc_{Br}^{O \leftarrow OEt} \quad B = \bigcirc_{Br}^{O \leftarrow OEt} \quad 2. \quad A = \bigcirc_{Br}^{O \leftarrow OEt} \quad B = \bigcirc_{D \leftarrow OEt}^{OEt}$$

An organic compound having molecular formula C15H14O exhibited the following ¹H and ¹³C NMR spectral data.

¹H NMR: δ 2.4 (s), 7.2 (d, J=8 Hz), 7.7 (d, J=8 Hz).

¹³C NMR: δ 21.0, 129.0, 130.0, 136.0, 141.0, 190.0.


The compound is

Identify appropriate reagents A and B in the following reactions. 127.

 $B = BH_3.Me_2S$ 3. $A = LiBH_4$

 $B = LiBH_4$ $A = BH_3.Me_2S$

The correct sequence of the reagents to be employed in the following transformation is 128.

(a) m-CPBA; (b) TsNHNH2; (c) AcOH; (d) H2, Pd/BaSO4 1.

(a) H₂O₂, NaOH, (b) NH₂NH₂; (c) AcOH; (d) H₂, Pd/C

(a) m-CPBA; (b) TsNHNH2; (c) NaOH; (d) H2, Pd/C3 (a) H2O2, NaOH; (b) TsNHNH2; (c) AcOH; (d) H2, Lindlar's catalyst 129. Reaction of 11.6 g of the aldehyde A with 462 mg of Wilkinson's catalyst provided 9.2 g of alkene B. The mol % of the catalyst used and the yield of the reaction, approximately, are

- (1) 1.0 mol%; and 80%
- (2) 1.0 mol%; and 90% 11 2 222
- (3) 0.1 mol%; and 90%

- (4) 0.2 mol%; and 80%
- 130. The major products A and B in the following reaction sequence are

1. NH₄Cl, NaCN

131. The major products A and B in the following reaction sequence are

132. The major products A and B in the following reaction sequence are

Appropriate H NMR chemical shifts (δ) for the protons A-D for the following compound

134. The major product formed in the following reaction sequence is

135. Citronellol A on oxidation with pyridinium chlorochromate (PCC) followed by treatment with aq. sodium hydroxide gives the product B (IR: 1680 cm⁻¹); whereas oxidation with PCC in the presence of sodium acetate gives product C (IR: 1720 cm⁻¹). Compounds B and C are

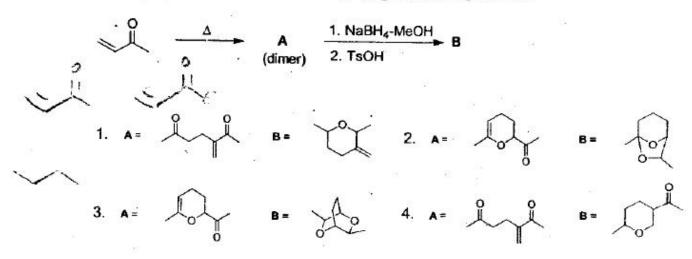
136. Match the following starting compounds with corresponding products in photochemical reactions:

Starting material

i. B. Products

a. B. H. O

ii. C. OH


d. OH

e. OH

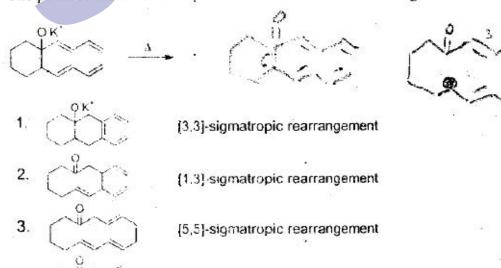
137. The major products A and B in the following reaction sequence are

138. The major products A and B of the following reaction sequence are

139. The major products A and B in the following reaction sequence are

140. The major products A and B in the following reaction sequence are

141. The correct reagents for effecting the following reactions are


1.
$$A = Me^{S_0} \bigcirc A$$
 $A = Me^{S_0} \bigcirc A$
 A

142. The major product A and B of the following reaction sequence are

143. The major products A and B in the following synthetic sequence are

144. The major products A and B in the following synthetic strategy are

145. The product formed and the process involved in the following reaction are

[1.5] sigmatropic rearrangement