
Annual Through

CEEP-2012

the Candidate Total Marks: 120

Note: Before answering the questions, read carefully the instructions given on the OMR sheet. సూచన: ప్రశ్నలకు జవాబులు బ్రాయుటకు ముందు OMR జవాబు ప్రతములో ఇవ్వబడి<mark>న స</mark>ూచన<mark>లు జాగ్రత్తగా</mark> చదవండి.

SECTION - I (MATHEMATICS)

 $p \Leftrightarrow q =$ 1

Time: 2 Hours

(1) $(p \Rightarrow q) \lor (q \Rightarrow p)$

(2) $(q \Rightarrow p) \land (p \Rightarrow q)$. (4) $p \land q$

(3) $p \vee q$

- $\{x/x \in A \Delta B\} =$
 - $(1) \quad \{x/x \in A B\}$

- $(2), \{x/x \in B-A\}$
- (3) $\{x/x \in A \cup B, x \notin A \cap B\}$
- (4) None (ఏదీ కాదు)
- If $f(x) = x\sqrt{2} \frac{1}{x\sqrt{2}}$ then $\sqrt{2} = \frac{1}{x\sqrt{2}}$

$$f(x) = x\sqrt{2} - \frac{1}{x\sqrt{2}}$$
 මගාන $\sqrt{2} =$

- (1) $f(\sqrt{3}+1)$ (2) $f(\frac{\sqrt{3}+1}{2})$ (3) $f(\sqrt{3}-1)$ (4) $f(\frac{\sqrt{3}-1}{2})$
- If n(A) = 5, n(B) = 2 then the number of mappings from A to B is
 - n(A) = 5, n(B) = 2 అయిన A నుండి B కి గల ప్రమేయాల సంఖ్య
 - (1), 25
- (2) 10
- (3) 32
- (4) None (ඛ්ඨ පත්)

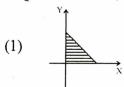
A root of the polynomial $x^{2011} + (-1)^{2012}$ is

$$x^{2011} + (-1)^{2012}$$
 అను బహుపదికి ఒక మూలము

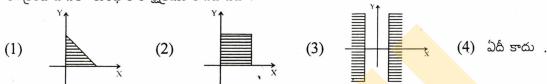
- (1) 1
- (2) 0
- (3) -1
- (4) None (ఏదీ కాదు)

CEEP-2012 A]

1



[Contd...


- If α , β are the roots of $x^2 3x 1 = 0$ then $\frac{1}{\alpha} + \frac{1}{\beta} =$ α, β లు $x^2 - 3x - 1 = 0$ కు మూలములైనచో $\frac{1}{\alpha} + \frac{1}{\beta} =$

- $(4) -\frac{1}{2}$

A non-convex region among the following is 7 ఈ క్రింది వానీలో కుంభాకార క్రేత్రము కానీది ఏది ?

- 8
- $(1) \quad 2012(2011)^{2011} \quad (2) \quad -2011(2011)^{2012} \quad (3) \quad -2012(2011)^{2011} \quad (4) \quad 2012(2011)^{2012}$

- $9 \qquad \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} =$

- (1) $\frac{1}{3\sqrt{2} 2\sqrt{3}}$ (2) $\frac{1}{3\sqrt{3} 2\sqrt{2}}$ (3) $\frac{1}{3\sqrt{2} + 2\sqrt{3}}$ (4) $\frac{1}{3\sqrt{3} + 2\sqrt{2}}$
- $\alpha 3\beta$, $\alpha \beta$, $\alpha + \beta$, $\alpha + 3\beta$ are four numbers forming
 - (1) An A.P. with common ratio 2β
- (2) A G.P. with common difference 2β
- (3) An A.P. with common difference 2β
- (4) A G.P. with common ratio 2β
- $\alpha-3\beta$, $\alpha-\beta$, $\alpha+\beta$, $\alpha+3\beta$ అను నాలుగు సంఖ్యలు దేనిని సూచిస్తాయి ?
- (1) 2β ි సాధారణ నిష్ప<mark>్రత్తిగా గల అ</mark>ంక్రశేఢి
- (2) 2eta పదాంతరము గల గుణ $ar{g}$ ఫి
- (3) 2β పదాంతరము గల అంక \overline{q} මේ
- (4) 2eta సాధారణ నిష్పత్తిగా గల గుణ (శేధి
- The series $\frac{1}{\sqrt{3}+\sqrt{2}}$, $\frac{-15}{\sqrt{3}+3\sqrt{2}}$, $\frac{-47}{\sqrt{3}+5\sqrt{2}}$,... forms an A.P. The common difference is 11
 - ఒక అంకశ్రేథిలోని పదములు $\frac{1}{\sqrt{3}+\sqrt{2}}$, $\frac{-15}{\sqrt{3}+3\sqrt{2}}$, $\frac{-47}{\sqrt{3}+5\sqrt{2}}$,... అయిన, పదాంతరము ఎంత ?
- (3) $-2\sqrt{2}$
- (4) None (ఏదీ కాదు)

- 12 $f(x) = \frac{\sin x}{\sin x + \cos x} \Rightarrow f(x) + f\left(\frac{\pi}{2} x\right) =$
- (3) $\frac{\sqrt{3}}{2}$

- $\sin \theta = K \implies \frac{1}{\sin \theta \left(1 \frac{1}{1 \cos^2 \theta}\right)} =$
- (1) $\frac{K}{K+1}$ (2) $\frac{K}{K-1}$ (3) $\frac{K}{(K+1)(K-1)}$ (4) None (ఏదీ కాదు)

CEEP-2012_A]

2

[Contd...

14
$$\sin^2 32^\circ + \sin^2 58^\circ =$$

(1)
$$\sin^2 58^\circ + \cos^2 42^\circ$$

(3)
$$\cos^2 58^\circ + \cos^2 32^\circ$$

15
$$\sec^2 27^\circ - \cot^2 63^\circ =$$

$$(1)$$
 3

$$16 \quad \csc^2 42^\circ - \tan^2 48^\circ =$$

$$(1)$$
 -1

(2)
$$\sqrt{3}$$

$$\sin^2 33^\circ - \sec^2 47^\circ =$$

(1)
$$\cos^2 57^\circ - \csc^2 43^\circ$$

(3)
$$\sin^2 57^\circ - \sec^2 43^\circ$$

18
$$\tan^2 52^\circ + \sin^2 9^\circ =$$

(1)
$$\sec^2 52^\circ + \cos^2 9^\circ - 2$$

(3)
$$\sec^2 52^\circ - \cos^2 9^\circ$$

19
$$\csc^2 10^\circ - \sin^2 40^\circ =$$

(1)
$$\tan^2 10^\circ + \sec^2 40^\circ$$

(3)
$$\tan^2 10^\circ - \sec^2 40^\circ$$

$$20 \quad \sin\frac{\pi}{2} =$$

(1)
$$\cos^2 50^\circ + \cos^2 40^\circ$$

(3)
$$\sin^2 40^\circ + \tan^2 50^\circ$$

$$21 \quad \cos\frac{\pi}{2} =$$

(1)
$$\cos^2 40^\circ + \sin^2 40^\circ$$

(3)
$$\cos^2 40^\circ - \sin^2 50^\circ$$

22
$$(x+1)^2 + (y+2)^2 = 25 \Rightarrow$$

(1)
$$x = 25 \cos \theta - 1$$
, $y = 25 \sin \theta - 2$

(3)
$$x = 5\cos\theta - 1, y = 5\sin\theta - 2$$

23
$$(x-3)(y-4)=49 \Rightarrow$$

(1)
$$x = 3\cos\theta + 7$$
, $y = 4\sec\theta + 7$

(3)
$$x = 3\cos\theta - 7$$
, $y = 4\sec\theta - 7$

24
$$(x+1)(y+3) = 25 \Rightarrow$$

(1)
$$x = \sin \theta + 5$$
, $y = \csc \theta + 5$

(3)
$$x = \sin \theta - 5$$
, $y = \csc \theta - 5$

CEEP-2012_A]

(2)
$$\cos^2 58^\circ + \sin^2 32^\circ$$

(4) None (ఏదీ కాదు)

(4) None (ఏదీ కాదు)

(4) None (ఏదీ కాదు)

(2)
$$\csc^2 43^\circ - \sin^2 57^\circ$$

(2)
$$\sec^2 52^\circ - \cos^2 9^\circ + 1$$

(4) None (ఏదీ కాదు)

(2)
$$\cot^2 10^\circ + \cos^2 40^\circ$$

(4) None (ఏదీ కాదు)

(2)
$$\cos^2 40^\circ - \sin^2 50^\circ$$

(4) None (ఏదీ కాదు)

(2)
$$\cos^2 40^\circ - \cos^2 50^\circ$$

(4) None (ఏదీ కాదు)

(2)
$$x = 5\cos\theta + 1$$
, $y = 5\sin\theta + 2$

(4) None (ఏదీ కాదు)

(2)
$$x = 7\cos\theta + 3$$
, $y = 7\sec\theta + 4$

(4)
$$x = 7\cos\theta - 3$$
, $y = 7\sec\theta - 4$

(2)
$$x = 5\sin\theta - 1$$
, $y = 5\csc\theta - 3$

(4)
$$x = 5\sin\theta + 1, y = 5\csc\theta + 3$$

[Contd...

3

25
$$(x-2)^2 - (y-3)^2 = 16 \Rightarrow$$

(1)
$$x = 2 \sec \theta + 4$$
, $y = 2 \tan \theta + 4$

(2)
$$x = 4 \sec \theta + 2$$
, $y = 4 \tan \theta + 3$

(3)
$$x = 2 \sec \theta - 4$$
, $y = 2 \tan \theta - 4$

(4)
$$x = 4 \sec \theta - 2$$
, $y = 4 \tan \theta - 3$

26
$$1 + \sin \theta + \sin^2 \theta + \sin^3 \theta + ... + ... \infty =$$

(1)
$$\sec^2 \theta + \sec \theta \tan \theta$$

(2)
$$\sec^2 \theta - \sec \theta \tan \theta$$

(3)
$$\csc^2\theta + \csc\theta \cot\theta$$

(4)
$$\csc^2\theta - \csc\theta \cot\theta$$

27
$$1 + \cos\theta + \cos^2\theta + \cos^3\theta + ... \text{ to } \infty =$$

(1)
$$\frac{\sin\frac{\pi}{2}}{\tan\frac{\pi}{4} - \cos\theta}$$
 (2)
$$\frac{\cos\frac{\pi}{2}}{\cot\frac{\pi}{4} - \cos\theta}$$
 (3)
$$\frac{\sin\frac{\pi}{2}}{\tan\frac{\pi}{4} + \cos\theta}$$
 (4)
$$\frac{\cos\frac{\pi}{2}}{\cot\frac{\pi}{4} + \cos\theta}$$

$$(2) \quad \frac{\cos\frac{\pi}{2}}{\cot\frac{\pi}{4} - \cos\theta}$$

(3)
$$\frac{\sin\frac{\pi}{2}}{\tan\frac{\pi}{4} + \cos\theta}$$

$$\frac{\cos\frac{\pi}{2}}{\cot\frac{\pi}{4} + \cos\theta}$$

28 Point of intersection of the lines
$$x + y = 2012$$
 ; $x - y = 1$ is $x + y = 2012$; $x - y = 1$ රිභූව භූරයන් ඩීරයාන

29 Slope intercept form of the line
$$\frac{x}{a} + \frac{y}{b} = 1$$
 is

$$\frac{x}{a} + \frac{y}{b} = 1$$
 అను రేఖ యొక్క వాలు ఖండన రూపము

(1)
$$y = -\frac{b}{a} x - b$$
 (2) $y = -\frac{b}{a} x + b$ (3) $y = -\frac{b}{a} x + a$ (4) $y = -\frac{b}{a} - a$

$$(2) \quad y = -\frac{b}{a} x + b$$

$$(3) \quad y = -\frac{b}{a} x + a$$

$$(4) \quad y = -\frac{b}{a} - a$$

The line
$$y = x + 1$$
 passes through the points $y = x + 1$ అను రేఖ ఏ బిందువుల గుండా పోతుంది ?

31 Slope of the line
$$\frac{2x}{3} + \frac{3y}{2} + 2012 = 0$$

$$\frac{2x}{3} + \frac{3y}{2} + 2012 = 0$$
 రేఖ యొక్క వాలు

(1)
$$\frac{4}{9}$$

(2)
$$-\frac{4}{9}$$

(3)
$$\frac{9}{4}$$

$$(4) -\frac{9}{4}$$

33 If
$$\frac{16}{a+7} + \frac{16}{b+7} = 1$$
 then line $\frac{x}{a+7} + \frac{y}{b+11} = \frac{1}{4}$ passes through

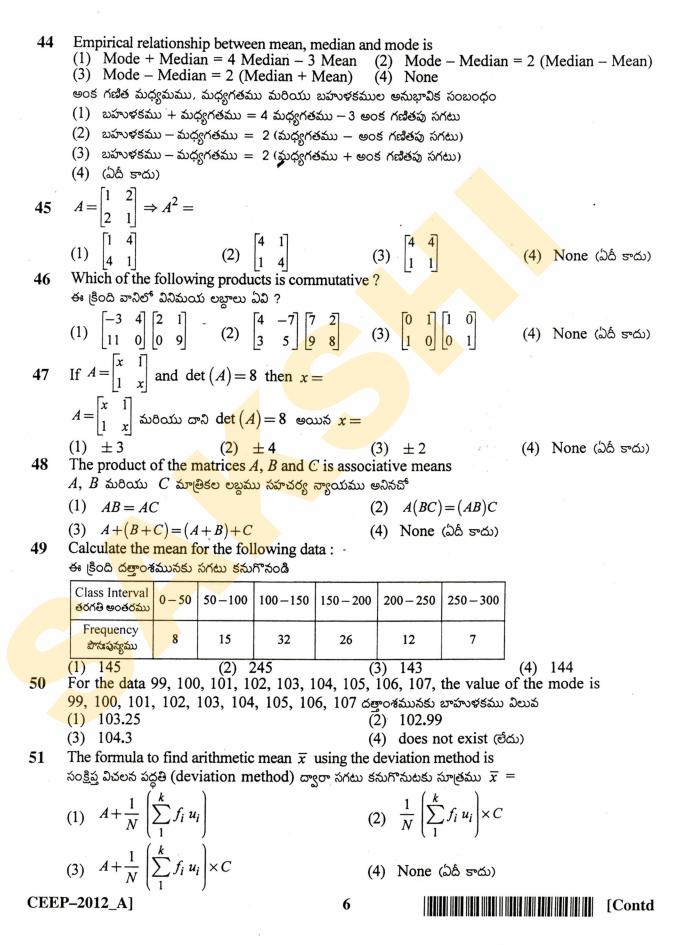
$$\frac{16}{a+7} + \frac{16}{b+7} = 1$$
 అయిన $\frac{x}{a+7} + \frac{y}{b+11} = \frac{1}{4}$ అను రేఖ ఏ బిందువు గుండా పోవును ?

$$(1) \quad \left(\frac{1}{a+7}, \frac{1}{b+11}\right)$$

(2)
$$\left[\frac{1}{4(a+7)}, \frac{1}{4(b+11)}\right]$$

(3)
$$\left(\frac{4}{a+7}, \frac{4}{b+11}\right)$$

CEEP-2012_A]


(

2.1	C16					
34	General form of the line $y = 2x + 3$ is					
	y = 2x + 3 అను రేఖ యొక్క సాధారణ రూపము					
	(1) $y = 2x - 3$ (2) $y = 3x - 2$			(4)	None (a	යි පක්)
35	Intercepts made by the line $y = 5x - 1$ on the					
	నిరూపాక్షాలపై $y=5x-1$ అను రేఖ చేయు అంతర	စ္မာဝဏစာ				
	(1) $\frac{1}{5}$, 1 (2) $-\frac{1}{5}$, 1	(3)	$\frac{1}{2}$ -1	(4)	$-\frac{1}{5}, \frac{1}{5}$	
	(1) 5,1	(3)	5'	(+)	5 ' 5	
36	Area of the triangle formed by the line $\frac{x}{4} + \frac{x}{5}$	$\frac{v}{z} = 1$ wi	th the coordinate a	xes is	3	
		100				
	నిరూపాక్షాలతో $\frac{x}{4} + \frac{y}{7} = 1$ అను రేఖ ఏర్పరచు త్రిభుణ	ಮು ಯು	క్క వైశాల్య <mark>మ</mark> ు			
	(1) 28 sq. units (28 చ. యూనిట్లు)		14 sq. units (14 చ	యూనిక్ష	ນ)	
	(3) 56 sq. units (56 ක්. యూనిట్లు)		None (ఏదీ కాదు)			
37	Among the following, two parallel lines are					
,	క్రింది వానిలో ఏది రెండు సమాంతర రేఖల్ని సూచిస్తుంది	?				
	(1) $2x+2y+13=0$, $x+2y+11=0$			x+	y + 11 = 0) *
• •	(3) $3x-2y+1=0$, $4x-3y+2=0$					
38	Equation of the altitude through (8, 2) of the					
	(8, 2), (4, 6), (-1, 5) బిందువులతో ఏర్పడి న త్రిమ					
	(1) $x-5y-42=0$ (2) $x+5y+42=0$					
39	The points $A(3,4)$, $B(2,-1)$, $C(-4,3)$ form		gle. If D and E are	the m	id-points	of AB and
	AC respectively, then the slope of the line		* .		•	
	A(3,4) , $B(2,-1)$, $C(-4,3)$ బిందువులతో ఏర్పడి		మునకు AB మరియు	AC	లకు మధ్య ఓ	<u>ందువులు</u>
	వరుసగా D మరియు E అ <mark>యిన, DE</mark> యొక్క వాల					
	(1) $\frac{2}{3}$ (2) $-\frac{2}{3}$	(3)	3.	(4)	$-\frac{3}{2}$	
	(1) 3	(3)	2	(1)	2	
40	Median of the numbers $\frac{1}{5}$, $\frac{1}{2}$, $\frac{1}{6}$, $\frac{1}{4}$, $\frac{1}{3}$ is					
	3 2 0 7 3					
	$\frac{1}{5}, \frac{1}{2}, \frac{1}{6}, \frac{1}{4}, \frac{1}{3}$ సంఖ్యల మధ్యగతము					
			1			_
	(1) $\frac{1}{6}$ (2) $\frac{1}{4}$	(3)	$\frac{1}{3}$	(4)	None (2)	దే కాదు)
41	The reciprocal of the arithmetic mean of the	-		s 3 an	d 5 is	
	3, 5 అను సంఖ్యలకు విలోమాల అంక మధ్యమము యె	ుక్క విలో?	మము			
	(1) 4 (2) $\frac{1}{4}$	(3)	<u>15</u>	(4)	4	
40	4		4	(+)	15	
42	The sum of 30 observations is 540. Then, th	eir mea	n is			
	30 అంశముల మొత్తము 540 అయిన, వాటి సగటు (1) 54 (2) 81	(2)	10	(4)	None (ఏ	5 E2(1)
43	(1) 54 (2) 81 In a data, an observation with the highest free	(3)		(+)	TYOIC (a)	<i>3</i> 3 w)
73	(1) Mean (2) Median		Mode	(4)	None	
	ఒక దత్తాంశములో, ఒక గరిష్ట పౌనఃపున్యము గల అంశము					
	(1) అంక గణితపు సగటు (2) మధ్యగతము		బహుళకము	(4)	(ఏదీ కాదు)	
CEE	D 2012 A1	-				[Contd
CEE	P-2012_A]	5				[Contd

www.sakshieducation.com

ł...

 \triangle ABC ~ \triangle PQR. If AB = 3.6, PQ = 2.4, PR = 5.4, AC = ? 52 (4) 6.8 (2) 8.1 (3) 5.4 In the adjacent figure $\angle A = 60^{\circ}$ and AB, AC are tangents. Then OB = ?53 (1) $6\sqrt{3}$ cm (2) 6 cm (3) $\frac{6}{\sqrt{2}}$ cm (4) $6\sqrt{2}$ cm O కేంద్రంగా గల వృత్తానికి AB, AC స్పర్శ రేఖలు. $\angle A=60^\circ$ అయిన OB= ? $^{A <\!\!\!\!<}$ (3) $\frac{6}{\sqrt{3}}$ 30. (2) 6 సెం.మీ. (1) $6\sqrt{3}$ 30.2. In the figure $\angle B$ is obtuse, then $AC^2 =$ $\angle B$ అధిక కోణంగా గల చిత్రంలో $AC^2=$ (1) $AB^2 + BC^2 - BD^2$ $(4) AB^2 + BC^2 - 2BC \cdot DB$ (3) $AB^2 + BC^2 + 2BC \cdot DB$ ABCD is a trapezium with $AB \parallel DC$. If AC and BD intersect at E and $\triangle AED$ and $\triangle BEC$ are 55 similar, then ABCD సమ లంబ చతుర్పుజంలో $AB \parallel DC$, AC మరియు BD లు E వద్ద ఖండించుకున్న ΔAED , ΔBEC లు సరూప త్రిభుజములైన, (1) AD = AB(2) AD = BC(4) AD = AC $(3) \quad AD = DB$ If AB:YZ = BC:XY = AC:XZ then $\triangle ABC$ is similar to 56 AB:YZ=BC:XY=AC:XZ అయిన ABC [తిభుజమునకు క్రింది [తిభుజము ఒకటి సరూప [తిభుజము అది (1) ΔXYZ (2) ΔZYX (3) ΔZXY (4) $\triangle ACB$ A triangle and a parallelogram each have the same base of 8 cm and area of 40 sq.cm, then their 57 heights are ఒక త్రిభుజ<mark>ము, సమాంతర చతుర్భుజము</mark>లు సమాన భూమి 8 సెం.మీ, సమాన వైశాల్యము 40 సెం.మీ. 2 కలిగి ఉన్న చో ವಾಟಿ ఎತುಲು ಎಂತ ? (4) 6, 4 (1) 8, 4 (2) 10, 5 (3) 40, 20 ABC is an isosceles right angled triangle, $\angle C = 90^{\circ}$ then $AB^2 =$ 58 $\angle C = 90^{\circ}$ గా గల ABC సమద్విబాహు త్రిభుజములో $AB^2 =$ (4) $3AC^2$ $(3) BC^2$ (1) AC^2 (2) $2 AC^2$ 59 Computer science is also called as

(1) Informatics

(2) భౌతిక శాస్త్రము

(3) Chemistry

(4) General studies

కంప్యూటర్ శాస్త్ర విజ్ఞానాన్ని ఇలా కూడా పిలుస్తారు.

(2) Physics

(3) ರಸ್ತಾಯನ ಕಾಸ್ತ್ರಮು

(4) సాధారణ విద్య

Meaning of an algorithm 60

(1) Method of solving the problem (3) Figure

(2) Table (4) Lines

అల్గారిధం అనగా (1) సమస్యను సాధించే పద్ధతి (2) పట్టిక

(3) చిత్రం

(4) గీతలు

CEEP-2012 A]

7

SECTION - II (PHYSICS)

61	In a screw gauge, if the zeroth division of the h (1) Negative		e is above the index line, then the correction is Positive
	(3) May be positive or negative		No need of correction
	స్క్రూగేజిలో తలస్కేలు శూన్య విభాగము సూచీ రేఖ ఎగు	వన ఉన్న,	సవరణ
	(1) ഡാങ്ങളുട്ടാ	(2)	ధనాత్మకం
	(3) ಧನಾತ್ಮುಕಂ ಲೆಕ ಬುುಣಾತ್ಮುಕಂ	(4)	సవరణ అవసరం లేదు
62	Heliocentric theory was first proposed by		
	(1) Galileo (2) Kepler		Tolemey (4) Copernicus
	సూర్య కేంద్రక సిద్ధాంతమును మొదటిసారిగా ప్రతిపాదించిన		
(2	(1) ಗೌಲಿರಿಮ್ (2) ತ್ಲುಕ		టాల్మీ (4) కోపర్నికన్
63	A body moves from one corner of an equilate the distance moved and displacement are resp	eral tria	ngle of side 10 cm to the same corner. Then
	ఒక వస్తువు 10 సెం.మీ. భుజము గల సమబాహు త్రిభుజ		The state of the s
	ప్రయాణం చేసిన దూరం, స్థాన్మభంశములు వరుసగా	as ago	യാരു ജന്നുവാറ്റ് ഒറ്റെ ഒറ്റ് ഈഗ്ര ഒറ്റെ ഒരു ഒ
	Ψ	(2)	20 am 0 am (20 3 a 5 0 0 3 a 5)
	(1) 30 cm, 20 cm (30 300.50., 20 300.50.)		
	(3) 0 cm, 30 cm (0 30.\$\delta\$, 30 30.\$\delta\$.)		
64	Two balls are falling freely from the height ratio of their velocities on reaching surface		
	రెండు బంతులు 9:64 నిష్పక్తి గల ఎక్తుల నుండి స్వేచ్చ గా భూమి		
	సరికి వాటి వేగాల నిష్పక్తి		
65	(1) 3:4. (2) 4:3	(3)	8:3 (4) 3:8
65	On a planet a stone projected vertically upwards after 2 seconds. If it is thrown with a velocity of		
	ఒక గ్రహంపై 10 మీ./సె. వేగంతో <mark>నిట్లనిలువుగా</mark> విసిరిన రాం		
	వేగంతో విసిరిన <mark>చో అది గరి</mark> ష్ట ఎత్తుకు చేరుటకు పట్టుకాలం		
	(1) 1 sec (1 సేకను) (2) 2 sec (2 సేకన్లు)		$A \cdot \sec (A \ni \delta S)$ (4) $A \cdot \sec (A \ni \delta S)$
66	A car moves from A to B with a constant spec		
00	speed of 30 kmph, then the average speed o		
	<mark>ఒక కారు</mark> A నుండ <mark>ి B కు 20</mark> కి.మీ. / గం. సమవడితో పోం		
	<mark>පතරා </mark>		
	(1) 24 kmph (24 కి.మీ. / గం.)	(2)	25 kmph (25 కి.మీ. / గం.)
	(3) 10 kmph (10 కి.మీ. / గం.)	(4)	Zero (శూన్యం)
67	The ratio of angular speeds of minutes hand		0
	ఒక గడియారం లోని నిముషముల ముల్లు మరియు గంట	ల ముల్లు	కోణీయ వేగముల నిష్పత్తి
	(1) 1:12 (2) 6:1	. ,	12:1 (4) 1:6
68	If a body of mass 5 kg revolves in a hori	-	
	7 revolutions/second, the centripetal force act	_	
	5 కిలోల ద్రవ్యరాశి గల ఒక వస్తువు 1 మీటరు వ్యాసార్థం గ	೧೮ ನಿಮತ್	ာ ၅)ခြဲနေ့ဝ စားဝီဝဝ ၂ မှုတေး ၂ ၆)စာအကာက မှာမှာ
	తిరుగుచున్నచో, ఆ వస్తువుపై పనిచేసే అభికేంద్ర బలం	(2)	494 NT 4494 4 1 4 1
	(1) 440 N (440 మ్యాటన్లు)		484 N (484 న్యూటన్లు)
	(3) 968 N (968 న్యూటన్లు)	(4)	9680 N (9680 న్యూటన్లు)
CEE	P_2012 A1 S	2	

69		vhen						
	(1) Its length is doubled							
	(2) The mass of the bob is doubled	*						
	(3) Its length is made four times(4) The mass of the bob and the length of the pendulum are	doubled						
	ఒక లఘు లోలకం యొక్క డోలనావర్తన కాలమును రెట్టింపు చేయవలెనన్న							
	(1) దాని పొడవును రెట్టింపు చేయవలెను.							
	(2) గోళపు ద్రవ్యరాశిని రెట్టింపు చేయవలెను.							
	(3) దాని పొడవును నాలుగు రెట్లు చేయవలెను.							
70	(4) గోళపు ద్రవ్యరాశిని మరియు లోలకపు పొడవును రెట్టింపు చేయవలెను. 70 A curved road of 50 m radius is banked at certain angle for a give	speed If the speed is to be d	oubled					
	keeping the same banking angle, the radius of the curvature of the		040104					
	50 మీటర్ల వ్యాసార్థం గల ఒక వృత్తాకార మార్గం ఒక వేగానికి <mark>వాలు కట్ట</mark> బడి <mark>నది</mark>		ై రెట్టింపు					
	చేయవలెనన్న ఆ వృత్తాకార మార్గ వ్యాసార్థాన్ని గా మార్చవలెను.							
	(1) 25 m (25 \(\dag{\dag{b}}. \) (2) -100 m (100 \(\dag{d}_0. \) (3) 150 m (100 \(\dag{d}_0. \) (3)	50 మీ.) (4) 200 m (200	మీ.)					
71								
	(1) X -rays (2) γ -rays (3) Radio wa	ves (4) Sound wave	S					
	ಈ ತ್ರಿಂದಿ ವಾನಿಲ್ ವಿದ್ಯುತ್ ಅಯರ್ನ್ಯಾಂತ ತರಂಗ <mark>ಮುಲಕು ಹಿದ್</mark> ಹಾರಣ <mark>ಕಾನಿದಿ</mark>							
70	(1) X - နိဝဏဿဗာ (2) γ - နိဝဏဿဗာ (3) ဝီဖီတာ မ	w	9 9					
72		t a given temperature. The i	atio of					
	two velocities V_h/V_o will be							
	ఇవ్వబడిన ఉష్ణోగ్రత వద్ద <mark>ఉదజనిలోని ధ్వని పేగమునకు, ఆ</mark> క్సిజన్లో ధ్వని పేగవ							
72	(1) 1:4 (2) 4:1 (3) 1:1	(4) 32:1						
73								
	ఒక స్థిర తర <mark>ంగములో ఒక ₍పస్పందన స్థానం,</mark> దాని తరువాతది కాక మరియొక ₍	స్పందన స్థానముల మధ్య దూరం						
	(1) λ (2) $\frac{\lambda}{2}$ (3) $\frac{\lambda}{4}$	$(4)^{1} \frac{3\lambda}{4}$						
74	The value it is a factor of a supplied in a in its 200 mg/s and 1 in the time and in its 200 mg/s and 1 in the time and in its 200 mg/s and 1 in the time and its interest and its and	4	ath of					
74	The velocity of sound in air is 360 m/sec while that in water is sound in air is 2 cm that in water is	1440 m/sec. If the waveler	igui oi					
	గాలిలో ధ్వని వేగం 3 <mark>60</mark> మీ. / సె. నీటిలో ధ్వని వేగం 1440 మీ./సె. గాలిలో తర	ంగ దెర్తం 2 పెం.మీ. అయిన నీటిల	ో తరంగ					
	దైర్ఘం	~ 42D						
	(1) 0.5 cm (0.5 30.\$\dots.)(2) 2 cm (2 30.\$\dots.) (3) 8 cm (8 3)	సం.మీ.) (4) 16 cm (16 సె	ం.మీ.)					
75		, ,						
	మైక్రో తరంగాల పౌనఃపున్యాల అవధి							
	(1) $10^9 \text{ Hz to } 10^{11} \text{ Hz}$ (2) 10^6 Hz to	10 ⁸ Hz						
70	(3) 10^3 Hz to 10^5 Hz (4) 10^{12} Hz t							
76		of glass is						
	గాజులో కాంతి వేగం $2 imes 10^8$ మీ./ సె. గాజు వ్రక్షీభవన గుణకం							
	(1) $\frac{2}{3}$ (2) $\frac{3}{2}$ (3) $\frac{4}{9}$	(4) $\frac{9}{4}$						
	2	7						
CFF	TFFP_2012 A1 9	III IIII IIII IIII IIII IIII IIII III	ntd					

CEE	P-2012_A] 10		[Contd
	(3) $l = 2 m$, $A = 1 mm^2 (l = 2 \text{ a.} A = 1 \text{ a.} \text{a.}^2)$	(4)	$l = 2 m$, $A = 2 mm^2 (l = 2 \omega)$. $A = 2 \omega \omega^2$
	(1) $l = 1 m$, $A = 1 mm^2 (l = 1 \Delta)$. $A = 1 \Delta \Delta^2$	(2)	$l = 1 m, A = 2 mm^2 (l = 1 \omega. A = 2 \omega \omega^2)$
83	Among the following wires made of the same m ఒకే పదార్ధముతో చేయబడిన క్రింది తీగలలో అత్యధిక నిరోధం	් ජවර්	හ
02	అయస్కాంత అభివాహ సాంద్రతకు ప్రమాణము (1) వెబర్ / మీటరు (2) వెబర్ / మీటరు ²	(3)	వెబరు - మీటరు (4) వెబరు - మీటరు ²
82	The units of magnetic flux density (1) Weber/metre (2) Weber/metre ²	(3)	Weber-metre (4) Weber-metre ²
92	(3) ఇనుము <mark>, క</mark> ోబాల్ట్, నికెల్ The units of magnetic flux density	(4)	గెడలోనియం, అల్యూమినియం, క్రోమియం
	(1) <mark>నీరు, ఇత్తడి,</mark> బ <mark>ంగా</mark> రము		ఆల్కహాల్, ఆక్సిజన్, ప్లాటినం
	కి <mark>ంది సమూహములలో ఫ</mark> ెర్లో అయస్కాంత సమూహము	,	
81	Which one of the following groups belong to fer (1) Water, Brass, Gold (3) Iron, Cobalt, Nickel	(2)	agnetics Alcohol, Oxygen, Platinum Gadolinium, Aluminium, Chromium
0.1	(3) රුසරස් <mark>ඨස්</mark>	(4)	్రప్రవేశ్య శీల్యత
	(1) సెసెప్టిబి <mark>లిటీ</mark>		అయస్కాంత [්බරణ
	ఒక అయస్కాంత పదార్థం త <mark>ననుండి అయ</mark> స్కాంతీకరణం అయస్కాంత తీ <mark>వతను</mark> మిగుల్చుకొన <mark>ే స్వభావా</mark> న్ని ఏమందురు		പ്പെട്ട എന്നപ്പുറല്ലെ ഉത്രാപ്പു ഉപവേഗം, ഉപറ 3 08
	(3) Retentivity	` '	Permeability
	intensity of magnetisation. This property is called (1) Susceptibility	d (2)	Magnetic Induction
80	Even after the removal of the applied magnetic f		a magnetic material retains certain amount of
	(3) 160 dynes (160 @xx)		40 dynes (40 憂熱)
			320 dynes (320 డైన్లు)
	రెండు అయస్కాంత ధృవాల మధ్య దూరం 20 సెం.మీ. ఈ దూరాన్ని 20 సెం.మీ. నుండి 5 సెం.మీ. లక <mark>ు తగ్గిం</mark> చినక		
x.	them is		
19	If the distance between them is decreased from		
79	The repulsive force between two magnetic pole		
			దృగ్విషయం జనకాల మధ్య దూరం మీద ఆధారపడదు
	వ్యతికరణ ప్రక్రియ రావలెనన్న, కాంతి జనకాల మధ్య దూరం (1) వీలయినంత తక్కువగా ఉండవలెను.	(2)	ఎక్కువ ఉండవలెను
	(3) Less or more	(4)	Phenomenon does not depend on the distance
70	(1) Less to the extent possible	(2)	More
78	మరికొన్ని సార్లు కణములుగాను To get interference phenomenon, the distance b	etwe	een the two sources must be
	(3) కొన్నిసార్లు తరంగాలుగాను,	(4)	విద్యుదయస్కాంత తరంగాలుగా
	(1) తరంగములు	(2)	_ కణములు
	హైగెన్స్ సిద్ధాంతమును అనుసరించి కాంతి గా		
	(1) Waves(3) Some times waves and some times corpuscler		Corpuscler Electromagnetic waves
77	According to Hygens theory, light travels in the		

0.4	T-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	_		
84	Ten identical resistances, each having a resistance the resultant resistance of	e of 1	Ω are joined in parallel.	The combination has
			19.44. J. A. S.	
	ఒక్కొక్కటి 1Ω విలువ గల 10 నిరోధాలను సమాంతరం			0.10
85	(1) 10Ω (2) 1Ω Gram/Coulomb is a unit for	(3)	$0.01\Omega\tag{4}$	0.1 Ω
03	(1) Potential difference	(2)	Specific resistance	
	(3) Electromagnetic force (emf)	, ,	Electrochemical Equiva	lent (e.c.e)
	గ్రామ్ / కూలుమ్ అనునది దేనికి ప్రమాణం	` '		4
	(1) పొటెన్షియల్ బేదం	(2)	విశిష్ట నిరోధం	
	(3) විద్యుచ్చాలక బలం		విద్యుత్ రసాయన తుల్యాంకం	
86	The work done in passing a current of 4 A for 2 difference of 8 V is		J	
	ఒక వాహకంలో 8 ఓల్టుల పొటెన్షియల్ భేదమున్నట్లు 4 ఆంఫిం	သ်ဴဝ္ဂ မ	విద్యు <mark>త్ ప్రవాహము 2 సెకన్ల పా</mark>	<mark>టు ప్</mark> రపహిస్తే జరిగే పని
	(1) 4 Joules (4		16 Joules (16 జౌల్స్)	
,	(3) 64 Joules (64	(4)	1 Joule (1	
87	A step-up transformer is used on a 120-volt line	to p	rovide a potential differe	ence of 2400 Volts at
	2 Ampere current. If the primary has 100 turns			
	ఒక స్టెప్ - అప్ ట్రాన్స్ ఫార్మర్ ను 120 పోల్టుల <mark>మెయి</mark> న్ తో సం			
	పొటెన్షియల్ భేదం ఏర్పడినది. ప్రధాన వేష్టనం <mark>లోని చు</mark> ట్ల సంఖ		•	
00	(1) 2000 (2) 200	` /		1000
88	An instrument used to measure Isotopic masses (1) Calori meter	(2)	Spectrometer	
	(3) Mass spectro graph		Sphero meter	
	ఐసోటోపుల ద్రవ్యరాశు <mark>లను కొలుచుటకు ఉపయోగిం</mark> చు పరిక	కరము		
	(1)	(2)	స్పెక్ట్రో మీటరు	
	(3) ద్రవ్యరాశి వర్ణఫ <mark>ట లేఖ</mark> ిని		స్పెరో మీటర్	
89	The isotope of carbon used in carbon dating of			
	కార్ <mark>బన్ డేటింగ్</mark> వల్ల శిలా <mark>జాల వయ</mark> స్సును తెలుసుకునేందుకు	ය ්ර	యోగించు కార్బన్ ఐసోటోపు	
	(1) C-14 (2) C-12	` '	C-13 (4)	C-15
90	Among the following, choose the incorrect states			
	 A p-n junction diode conducts in forward t A p-n junction diode offers less resistance 		r reverse bias	
	(3) A p-n junction diode does not conduct und			
	(4) A p-n junction diode is used as an electric	7.2		
	క్రింది వానీలో సరికానీ వివరణను ఎన్నుకొనుము			
	(1) వాలు బయాస్ల్ р-п జంక్షను డయోడు విద్యుత్తును	ప్రవహి	ంప చేయును.	
	(2) ఎదురు బయాస్లో ఒక p-n జంక్షన్ డయోడు అల్ప ని)ර් දා	్ని కలుగజేయును.	
	(3) ఎదురు బయాస్లో ఒక p-n జంక్షన్ డయోడు విద్యుత్త			
	(4) p-n జంక్షన్ డయోడును విద్యుత్ స్విచ్ <i>గా వాడవచ్చును</i>			

CEEP-2012_A]

SECTION - III (CHEMISTRY)

91	The atom of the ele	ement which shows h	alf filled d-or	rbitals		
	(1) Vanadium	(2) Zinc	(3)	Chromium	(4)	Copper
	ఖచ్చితంగా సగం నిండి	న d-ఆర్బిటాళ్లను చూపు మ	ుాలక పరమాణు	න		
	(1) వనేడియం	(2) జింక్	(3)	క్రోమియం	(4)	ሪ
92	The symbol of the	element with the out	er electronic	configuration o	f 4s ¹ , pla	aced in S-block is
	$4\mathrm{s}^1$ ఎలక్ట్రాన్ విన్యాసం	తో అంతమగు S-బ్లాక్ మూ	ಲಕಮು ಯುಕ್ಕು	సంకేతము		
	(1) Na	(2) Sc	(3)	K	(4)	Rb
93	The element, whic	h shows three unpaire	ed electrons	in its atom, in g	round sta	ate is
	భూస్థాయిలో తన కర్పర	ర, ఉపకర్పరములలో మూడ	ಟ ಒಂటರಿ ಎಲ್ಡ	క్ట్రాన్లను చూపు మూ	లకము	
	(1) B	(2) Be	(3)	F	(4)	N
94	Mention the total n	umber of electrons pre	sent in the p-	orbitals of the at	om, havi	ng atomic number 15
	పరమాణు సంఖ్య 15 గం	ల మూలకపు పరమాణువు <mark>ల</mark> ో	్ గల మొత్తం p	<mark>-ఆర్బిటా</mark> ళ్లలో గల ఎ)లక్ట్రాన్ల సం	ుఖ్య ఎంత ?
	(1) 3	(2) 9	(3)	2	(4)	5
95	The bonds present	in NH ₄ ion are				
	(1) One ionic bor	nd, three covalent bor	nds			
	(2) One covalent	bond, three coordina	te bonds			
	81.81	nd, three coordinate b				
		nt bonds, one coordin	ate bond			
	NH ₄ అయా <mark>న్లో</mark> గ	ల బంధములు				
	(1) ఒక అయానిక బం	<mark>ంధం</mark> , మూడు సమయోజనీం	ಯ ಬಂಧಾಲು			
	(2) ఒక సమయోజనీం	య బంధం, మూడు సమన్మ	్రయ సమయోజ	నీయ బంధాలు		
	(3) ఒక అ <mark>యా</mark> విక బం	ంధం, మూడు సమన్వయ స	సమయోజనీయ	ಬಂಧಾಲು		
	(4) <mark>మూడు</mark> సమయోగ	జనీయ బంధాలు, ఒక సమ	న్వయ సమయో	జనీయ బంధం		
96	One of the followi	ng phenomenon takes	s place in the	formation of N	aCl mole	ecule
	(1) Na atom acts	as oxidising agent	(2)	Cl atom acts as		
	(3) Cl atom acts	as reducing agent	(4)	They undergo r	neither ox	kidation nor reduction
	సోడియం క్లోరైడ్ అణువ	్ర ఏర్పడుటలో జరుగు చర				
	(1) సోడియం ఆక్సీక	రణిగా పనిచేయును	(2)	క్లోరిన్ ఆక్సీకరణిగా	• పనిచేయ	ును
	(3) క్లోరిన్ క్షయకారిణ	గిగా పనిచేయును	(4)	ఆక్సీకరణ గాని క్షఁ	యకరణ చ	ర్య గాని జరుగవు

[Contd...

CEE	CP-2012_A]	3	[Contd				
	(1) ఆమ్ల (2) క్లార	(3)	తటస్థ (4) ద్వి స్వభావ				
	మైగ్నీషియం ఆక్సైడ్ ఈ క్రింది స్వభావాన్ని కలిగి ఉంటుంది	ð.	,				
	(1) Acidic (2) Basic	(3)	Neutral (4) Amphoteric				
103	Magnesium oxide is						
	(3) మూలకాల పరమాణు పరిమాణం పెరుగుట	(4)	అలోహ స్వభావం				
	(1) మూలకాల రుణ స్వభావం	(2)	ధన స్వభావం				
	<mark>క్</mark> లార మృత్తి <mark>క లో</mark> హాలు చాలా చురుకైన లోహాలు. దీనికి కార	කට					
	(3) Atomic radius increases	(4)	Non-metallic nature				
	(1) Electro negative in nature	(2)	Electro positive in nature				
102	Alkaline earth metals are highly reactive. Beca						
	(3) ధన స్వభావం చాలా ఎక్కువ	(4)	ఎలక్ట్రాన్ ఎఫినిటీ విలువలు తక్కువ				
	(1) అయనీకరణ శక్తి ఎక్కువగా ఉంటుంధి	(2)	ఎలక్ట్రాన్నను కోల్పోయే స్వభావం చాలా ఎక్కువ				
	పరమాణు పర <mark>ిమాణము త</mark> క్కువగా <mark>ఉన్న పరమా</mark> ణువుల						
	(3) More electropositive	(4)	Less electron affinity values				
101	(1) High ionisation energy	(2)	Great tendency to loose electrons				
101	(1) 11, 13 (2) 10, 12 Atoms with small size have	(3)	(1)				
	မှ နွိဝင်		11, 12 (4) 8, 9				
100							
100	(3) has a set a set to see the second of atomic number	2 (2)	<mark>పూర్తిగా నిండిన</mark> ఆర్బిటాల్ ఉండుట dicate the elements of the 'S' block ?				
	(1) పరమాణు వ్యాసార్థం తగ్గడం		పర <mark>మాణు వ్యాసా</mark> ర్థం పెరుగుట				
	నైటోజన్ యొక్క అయనీకరణ శక్తి విలువ ఆక్సిజన్ కంటే ఎ						
•	(3) Stable electron configuration						
	(1) Decrease in the atomic radius		Increase in the atomic radius Completely filled orbital				
99	Ionisation energy of nitrogen is higher than ion	nisatio	n energy of oxygen. This is due to				
	(1) 2వ పీరియడ్ (2) 3వ పీరియడ్		4ක්				
	s,p,d జ్లాక్ మూలకాలున్న పీరియడ్						
	(1) 2 nd period (2) 3 rd period	(3)	4 th period (4) 1 st period				
98	The period which contains s, p, d block eleme						
	(1) KF (2) NaCl	(3)	NaF (4) KCl				
	అయిన, ఆ పదార్థపు అణు ఫార్ములా ఏది ?	- - P	, .				
	ఒక అయానిక పదార్థంలో ధనాత్మక అయన్ విన్యాసం $1\mathrm{s}^22\mathrm{s}^22\mathrm{p}^6$ మరియు రుణాత్మక అయాన్ విన్యాసం $1\mathrm{s}^22\mathrm{s}^22\mathrm{p}^6$						
	in an ionic compound, then what is the molecular formula of the compound						
97	If the positive ion configuration is $1 s^2 2 s^2 2p^6$	and t	the negative ion configuration is $1 \mathrm{s}^2 2 \mathrm{s}^2 2 \mathrm{p}^6$				
			17.				

104	The element which giv	es dazzling light wh	en burnt in a	air		
	గాలిలో మండినపుడు మెరుఫ	్రలాంటి కాంతిని ఇచ్చు వ	యాలకం			
	(1) Be	(2) Ca	(3)	Sr	(4) Mg	
105	If 500 ml of 0.5 M HC added.	l solution is change	ed to 0.1 M s	strength, find ou	it the volume	of water to be
	500 మి.లీ. ఘన పరిమాణం	గల 0.5 M Hcl ద్రావణవ	మ 0.1 గాథ	తకు మార్చవలెనన్న	<u>කරප</u> ු ටරු) కలపవలెను.
	(1) 2500 ml	(2) 1000 ml		2000 ml	(4) 1500	
106	How many number of	moles are present	in 3.2 gram	s of NaOH? (N	Mol. wt. = 40))
	3.2 గ్రాముల సోడియం హైగ్ర	శాక్సైడ్ (అణు భారం) య	సందు ఉన్న పద	ూర్ <mark>థపు మోల్</mark> ల సంఖ్య	ఎంత ?	
	(1) 0.08	(2) 0.008	(3)	8.0	(4) 12.5	
107	Find out the volume of	f 0.05 M HCl requir	ed, in ml, ir	n order to neutra	lise 0.2 M Na	OH of 40 ml.
	40 మి.లీ. 0.2 M NaOH డ	ూవణమును తటస్థీకరించు	టకు, ఎ <mark>న్ని మి.</mark>	లీ. 0.05 M Hcl అవ	<mark>రసర</mark> ము?	
	` '	(2) 80	(3)		(4) 120	
108	Mention the compound theory	among the following	g whose acid	lic property can r	not be explaine	d by Arhenius
	అర్హేనియస్ సిద్ధాంతము ఈ క్ర	కింది పదార్థముల <mark>లో దేని</mark>	ಯುಕ್ಕು ಆ ಮ್ಲ ರ	<mark>ధర్మ</mark> మును వివరింపలే	ేదు ?	
	(1) CH ₃ COOH	(2) CO ₂	(3)	HC1	(4) HNO	3
109	If the pH of a given so	luti <mark>on is</mark> 9, find the	concentrati	on of $\left[H^{+}\right]$ ions	s in it.	
	ఒక ద్రావణపు pH ವಿలువ 9 අ	೨ಯಿನ ದಾನಿ ಮುಕ್ಕು [H	+] అయాన్ల గ	rఢత ఎంత?		
	(1) 10^{-5}	$(2) 10^{-9}$	(3)	10^{-1}	$(4) 10^{-14}$	
110	If the pH of a solution				(1)	
	(1) Acidic	(2) Basic	(3)	Neutral	(4) Amph	oteric
	ఒక ద్రావణపు pH = 0 මට	<mark>ున ఆ</mark> ద్రావణం ఏ ధర్మా	న్ని చూపును ?			
	(1) ఆమ్ల ధర్మం	(2) క్షార ధర్మం	(3)	తటస్థ ధర్మం	(4) విద్విస్వణ	భావ ధర్మం
111	Functional group in alc	ohols				
	<mark>ఆల్కహాల్ ₍పమే</mark> య సమూహ	ము .				
		0		- O		• 1
	(1) – CHO	O (2) -C-OH	(3)	 - C - OR	(4) – OH	
110					(.)	
112	Alkenes are more reac	tive than alkanes. I		o Triple bond		
	(1) Double bond(3) Single bond			Valence of carbo	on is satisfied	
		x,, x,	` '			
	ఆర్కీన్లు, ఆర్కేన్ల్ కంటే ఎ					
	(1) ద్విబంధాన్ని కలిగి ఉం			తిబంధాన్ని కలిగి ఉం		
	(3) ఏక బంధాన్ని కలిగి ఉం	ා డుట	(4)	కార్బన్ పరమాణువు	ಎಲನ್ಸ್ ತೃಪ್ತ	
CEE	P-2012_A]		14			[Contd

113	Unsatu	rated hydrocarbor	n am	ong the following				
	(1) Pr	ropane	(2)	Butane	(3)	Ethene	(4)	Ethane
	ఈ క్రింది	ు వానిలో అసంతృప్త పై	ැලී :	కార్బన్				
	(1)	ో ఎన్	(2)	బ్యూటేన్	(3)	ఈథీన్	(4)	ఈథేన్
114	Carbor	n compounds whi	ch re	eact with Tollen's re	agen	t		
	(1) A	lcohol	(2)	Aldehyde	(3)	Alkane	(4)	Alkene
	టోలెన్స్ కారకంతో చర్యనొందు కార్బన్ సమ్మేళనము							
	(1) ಆ	ల్కహాల్	(2)	ఆల్డి హైడ్	(3)	ఆల్కేన్	(4)	ఆల్కీన్ .
115	The ty	pe of coal which	give	s large amounts of				
	(1) Li	ignite	(2)	Bituminous coal	(3)	Anthracite coal	(4)	Coke
	అధిక, ఉ	ష్టాన్ని ఏ రకము బొగ్గు	ఇస్తు	oඛ ?				
	(1) ව	గ్నైట్	(2)-	బిట్యుమినస్ బొగ్గు	(3)	<mark>ఆంత్రసైట్</mark> బొగ్గు	(4)	వంట బొగ్గు
116	Polysa	accharide among th	ne fo	llowing				a 1
	(1) F	ructose	(2)	Glucose	(3)	Sucrose	(4)	Starch
	ఈ క్రింద	ධ						
	(1) త్ర			గ్లాకోజ్		సూక్రోజ్	(4)	పిండి పదార్థము
117	The pr	rocess of obtainin	g alo	cohol from molasse	s is c	alled as		~ · · · · ·
	(1) E	Dehydration	(2)	Defecation	(3)	Carbonation	(4)	Fermentation
	మొలాసి	స్ ను <mark>ండి ఆ</mark> ల్కహాల్ను	කුරු	<mark>వే విధా</mark> నాన్ని ఏమంటారు	?			
	(1)	హైడ్రేషన్	(2)	డె <mark>పకేష</mark> న్	(3)	కార్బొనేషన్	(4)	కిణ్వ ప్రక్రియ
118				ain Zwitter ion struc			(4)	D4l. aug
	(1) A	Amin <mark>o compoun</mark> ds	s (2)	Acids	(3)	Amino acids	(4)	Ethers
	జ్విట్టర్	<mark>ಅಯಾನ್ ನಿರ್</mark> ಜಾಂ ಕ್ಷಣ	ා ලස	ువులు			2.10	_
		<mark>ುಮైನ್ </mark> పదా <mark>ర</mark> ్థములు				ఎమినో ఆమ్లాలు	(4)	ఈథర్లు
119				ed in the hydrogena				
	మానెల	ను హైడ్రోజనీకరణము	నకు గ	గురిచేసినపుడు ఈ క్రింది			(4)	
	(1) N	Mn	(2)	Fe	(3)	Ni	(4)	Co
120	Glass	s is a mixture of		A				
	సామాన	ర్య గాజులో గల ముఖ్మ	ූ పదా	-ర్థములు ఏవి ?	(8)	G-GO A1 (SO	`	
		Na ₂ CO ₃ , CaSiC			(2)		4/3	
	(3)	Na ₂ SiO ₃ , CaSiO)3		(4)	BaSO ₃ , CaCO ₃		

SPACE FOR ROUGH WORK / చిత్తు పనికి కేటాయించబడిన స్థలము

CEEP-2012_A]

