
AIEEE - 2002

Physics and Chemistry

1.	Which statement is	incorrect?			
	(a) all reversible cyc	cles have same efficie	ency		
	(b) reversible cycle has more efficiency than an irreversible one				
	(c) Carnot cycle is a	a reversible one			
	(d) Carnot cycle has	s the maximum efficie	ncy in all cycles		
2.	Length of a string tie	ed to two rigid support	s is 40 cm. Maximum lengt	h (wave length in cm) of a	
	stationary wave pro	duced on it is			
	(a) 20	(b) 80	(c) 40	(d)120	
3.	The power factor of	an AC circuit having re	esistance (R) and inductan	ce (L) connected in series	
	and an angular velo	city ωis			
	(a) R/ωL	(b) $R/(R^2 + \omega^2 L^2)^{1/2}$	(c) ωL/R	(d) $R/(R^2 - \omega^2 L^2)^{1/2}$	
4.	An astronomical tele	escope has a large ap	erture to		
	(a) reduce spherical	l aberration	(b) have high resolution		
	(c) increase span of	f observation	(d) have low dispersion		
5.	The kinetic energy	needed to project a b	ody of mass m from the e	arth surface (radius R) to	
	infinity is				
	(a) mgR/2	(b) 2mgR	(c) mgR	(d) mgR/4	
6.	If an ammeter is to b	oe used in place of a v	oltmeter, then we must cor	nnect with the ammeter a	
	(a) low resistance in	parallel	(b) high resistance in para	allel	
	(c) high resistance i	n series	(d) low resistance in serie	es	
7.	If in a circular coil A	of radius R, current Li	s flowing and in another co	il B of radius 2R a current	
	2I is flowing, then th	e ratio of the magnetic	c fields B _A and B _B , produce	d by them will be	
	(a) 1	(b) 2	(c) 1/2	(d) 4	
8.	If two mirrors are ke	pt at 60° to each other	, then the number of image	es formed by them is	
	(a) 5	(b) 6	(c) 7	(d) 8	
9.	A wire when connec	ted to 220 V mains sup	oply has power dissipation	P ₁ . Now the wire is cut into	
	two equal pieces wh	nich are connected in	parallel to the same supply	v. Power dissipation in this	
	case is P ₂ . Then P ₂	: P ₁ is			
	(a) 1	(b) 4	(c) 2	(d) 3	
10.	If 13.6 eV energy is	required to ionize the h	ydrogen atom, then the end	ergy required to remove an	
	electron from n = 2	is			
	(a) 10.2 eV	(b) 0 eV	(c) 3.4 eV	(d) 6.8 eV	
11.	Tube A has both end	ds open while tube B h	nas one end closed, otherw	rise they are identical. The	
	ratio of fundamental	I frequency of tube A a	and B is		
	(a) 1 : 2	(b) 1:4	(c) 2:1	(d) 4:1	
12.	A tuning fork arrang	gement (pair) produce	s 4 beats / sec with one fo	rk of frquency 288 cps. A	
	little wax is placed o	n the unknown fork an	d it then produces 2 beats	/sec. The frequency of the	
	unknown fork is				
	(a) 286 cps	(b) 292 cps	(c) 294 cps	(d) 288 cps	
				/ . \	

13.	A wave $y = a \sin(\omega t - kx)$ on a string meets with another wave producing a node at $x = 0$. Then				
	the equation of the unknown wave is				
	(a) $y = a \sin(\omega t + kx)$	x)	(b) $y = -a \sin(\omega t + kx)$		
	(c) $y = a \sin(\omega t - kx)$	()	(d) $y = -a \sin(\omega t - kx)$		
14.	On moving a charge between the points i		cm, 2 J of work is done, the	en the potential difference	
	(a) 0.1 V	(b) 8 V	(c) 2 V	(d) 0.5 V	
15.	(a) curved path of el(b) they will move un	ectron and proton will ndeflected ectron is more curved	omenta enter perpendiculate be same (ignoring the sen than that of the proton		
16.	In a simple harmonic (a) kinetic energy is (b) both kinetic and (c) kinetic energy is	c oscillator, at the mea minimum, potential er potential energies are maximum, potential e potential energies are	nergy is maximum maximum nergy is minimum		
17.	Initial angular veloci	ty of a circular disc of r	mass M is $\omega_{_{\! 1}}$. Then two sm	all spheres of mass m are	
	velocity of the disc?		oints on the edge of the disc (c) $\left(\frac{M}{M+4m}\right)\omega_1$		
18.		city (in ms ⁻¹) with which	ch a car driver must trave	rse a flat curve of radius	
			(c) 15	(d) 25	
19.			ed with water. The velocity	of efflux of water (in ms ⁻¹)	
	through a small hole	on the side wall of the	e cylinder near its bottom is	3	
	(a) 10	(b) 20	(c) 25.5	(d) 5	
20.	A spring of force co from 5 cm to 15 cm		n extension of 5 cm. The	work done is extending it	
	(a) 16 J	(b) 8 J	(c) 32 J	(d) 24 J	
21.	•	es move towards each	other with velocity 2v and v	respectively. The velocity	
	of centre of mass is	(b) v/3	(c) y/2	(d) zoro	
22.	(a) v	(b) v/3 d through a spring the	(c) v/2 n the spring will	(d) zero	
ZZ.	(a) expand	(b) compress	(c) remains same	(d) none of these	
23.		y which raises its tem	• •	(4) 110110 01 111000	
24.	•	(b) thermal capacity	•	(d) temperature gradient	
۷٦.	(a) non metal	(b) metal	(c) insulator	(d) none of these	

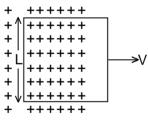
- 25. Electromagnetic waves are transverse in nature is evident by
 - (a) polarization
- (b) interference
- (c) reflection
- (d) diffraction
- 26. Wires 1 and 2 carrying currents i_1 and i_2 respectively are inclined at an angle θ to each other. What is the force on a small element dl of wire 2 at a distance of r from wire 1 (as shown in the figure) due to the magnetic field i_1 of wire 1?

(A) $\frac{\mu_0}{2\pi r}i_1i_2 dItan\theta$

(b) $\frac{\mu_0}{2\pi r}i_1i_2 dI\sin\theta$

(c) $\frac{\mu_0}{2\pi r}i_1i_2$ dlcos θ

- (d) $\frac{\mu_0}{4\pi r}i_1i_2$ dIsin θ
- 27. At a specific instant emission of radioactive compound is deflected in a magnetic field. The compound can emit
 - (i) electrons
- (ii) protons
- (iii) He2+


(iv) neutrons

The emission at instant can be

- (a) i, ii, iii
- (b) i, ii, iii, iv
- (c) iv

- (d) ii, iii
- 28. Sodium and copper have work functions 2.3 eV and 4.5 eV respectively. Then the ratio of the wave lengths is nearest to
 - (a) 1:2
- (b) 4:1
- (c) 2:1

- (d) 1:4
- 29. Formation of covalent bonds in compounds exhibits
 - (a) wave nature of electron
- (b) particle nature of electron
- (c) both wave and particle nature of electron (d) none of these
- 30. A conducting square loop of side L and resistance R moves in its plane + with a uniform velocity v perpendicular to one of its sides. A magnetic induction B constant in time and space, pointing perpendicular and into + the plane at the loop exists everywhere with half the loop outside the field, as shown in figure. The induced emf is

- (a) zero
- (b) RvB
- (c) VBL/R
- (d) VBL

- 31. Infra red radiation is detected by
 - (a) spectrometer
- (b) pyrometer
- (c) nanometer
- (d) photometer
- 32. If N_0 is the original mass of the substance of half- life period $t_{1/2} = 5$ years, then the amount of substance left after 15 years is
 - (a) N_a/8
- (b) $N_0/16$
- (c) $N_0/2$

- $(d)N_0/4$
- 33. By increasing the temperature, the specific resistance of a conductor and a semiconductor
 - (a) increases for both

- (b) decreases for both
- (c) increases, decreases
- (d) decreases, increases
- 34. If there are n capacitors in parallel connected to V volt source, then the energy stored is equal to
 - (a) CV
- (b) $\frac{1}{2}$ nCV²
- (c) CV²

- (d) $\frac{1}{2n}CV^2$
- 35. Which of the following is more closed to a black body?
 - (a) black board paint (b) green leaves
- (c) black holes
- (d) red roses

36.	The inductance between A and D is	
	(a) 3.66 H (b) 9 H (c) 0.66 H	(d) 1 H $\frac{1}{A}$ $\frac{1}{A$
37.	A ball whose kinetic energy is E, is proje	' 3H I 3H 3H I
	angle of 45° to the horizontal. The kinetic e	energy of the ball at the highest point of its flight will be
	(a) E (b) E/ $\sqrt{2}$	(c) E/2 (d) zero
38.	From a building two balls A and B are throw	wn such that A is thrown upwards A and B downwards
	(both vertically). If v_A and v_B are their resp	ective velocities on reaching the ground, then
	(a) $V_B > V_A$	(b) $V_A = V_B$
	(c) $V_A > V_B$	(d) their velocities depend on their masses
39.	If a body looses half of its velocity on pene	etrating 3 cm in a wooden block, then how much will it
	penetrate more before coming to rest?	
	(a) 1 cm (b) 2 cm	(c) 3 cm (d) 4 cm
40.	If suddenly the gravitational force of attract	tion between Earth and a satellite revolving around it
	becomes zero, then the satellite will	
	(a) continue to move in its orbit with same	velocity
	(b) move tangentially to the originally orbit	in the same velocity
	(c) become stationary in its orbit	(d) move towards the earth.
41.	Cooking gas containers are kept in a lorry	y moving with uniform speed. The temperature of the
	gas molecules inside will	
	(a) increase	(b) decrease
	(c) remain same	(d) decrease for some, while increase for others
42.	When temperature increases, the frequen	
	(a) increases	(b) decreases
	(c) remains same	(d) increases or decreases depending on the material
43.		account, when water is cooled to form ice, the mass of
	water should	
	(a) increase	(b) remain unchanged
44	(c) decrease	(d) first increase then decrease
44.	The energy band gap is maximum in	(a) in a data and (a)
45	(a) metals (b) superconductors	
45.		ly doped to produce large number of majority carriers is
	(a) emmiter	(b) base
46	(c) collector	(d) can be any of the above three
46.	Energy required to move a body of mass (a) GMm/12R ² (b) GMm/3R ²	
47.		(c) GMm/8R (d) GMm/6R
47.		n equal parts, then the time period of each part will be
	(a) $T\sqrt{n}$ (b) T/\sqrt{n} (d) T	(c) nT E F
48.	A charged particle q is placed at the centre	e O of cube of length I
10.	(A B C D E F G H). Another same charge q	is placed at a distance
	L from O. Then the electric flux through Al	· /G
		$E \in_{0} L$ (d) $q/3 \pi \in_{0} L$

49.	If in the circuit, power	er dissipation is 150 W	, then R is	R
	(a) 2Ω	(b) 6Ω	^	$\sim \sim $
	(c) 5Ω	(d) 4Ω		15 V
50.			strument are $\lambda_1 = 4000 \text{\AA}$ (corresponding to λ_1 and	
	(a) 16:25	(b) 9:1	(c) 4:5	(d) 5 : 4
51.	(a) increase	(b) decrease	ion, stands up, then the tin (c) remains same	ne period of the swing will
52.	A lift is moving down w	rith acceleration a. A mar	ses if the child is short n in the lift drops a ball inside th an standing stationary on the	
	(a) g, g	(b) g - a, g - a		(d) a, g
53.	-		an electrochemical cell de	
	(a) (lt) ^{1/2}	(b) IT	(c) I/t	(d) I ² t
54.	•	period, for which the c e is the r.m.s. velocity	urrent is passed) of a hydrogen molecule e	equal to that of an oxygen
	(a) 80 K	(b) - 73 K	(c) 3 K	(d) 20 K
55.	independent of its		rgoing a circular motion in	
	(a) speed	(b) mass	(c) charge	(d) magnetic induction
56.	so that they slide do	wn the plane. Then ma	re released from top of an i ximum acceleration down	the plane is for (no rolling)
57.			(c) ring rimary coil are 140 and tha nat in the secondary coil is	(d) all same t in the secondary coil are
50	(a) 4 A	(b) 2 A	(c) 6 A	(d) 10 A
58.	(a) prevent radiation(c) reach absolute z		iciency because we cannot (b) find ideal sources (d) eliminate friction	J
59.	• •	·	s M and radius R about its	s diameter is
	(a) MR ² /2	(b) MR ²	(c) 2MR ²	(d) MR ² /4
60.	When forces F_1 , F_2 ,	F ₃ are acting on a pa	article of mass m such th	at F ₂ and F ₃ are mutually
	_	the particle remains	stationary. If the force F ₁	- *
	(a) F ₁ /m	(b) $F_{2}F_{3}/mF_{1}$	(c) $(F_2 - F_3)/m$	(d) F_2/m
61.	Two forces are such	that the sum of their r	magnitudes is 18 N and the	eir resultant is 12 N which
	is perpendicular to the	he smaller force. Then	the magnitudes of the fore	ces are
	(a) 12 N, 6 N	(b) 13 N, 5 N	(c) 10 N, 8 N	(d) 16 N, 2 N
62.	-		at the specific instant. T	he ratio of the respective
		he two cars are stoppe		
	(a) 1 : 1	(b) 1:4	(c) 1 : 8	(d) 1:16

1 mole of a gas with $\gamma = 7/5$ is mixed with 1 mole of a gas with $\gamma = 5/3$, then the value of γ for

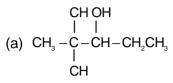
63.

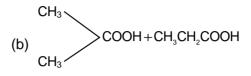
	the resulting mixture	eis		
	(a) 7/5	(b) 2/5	(c) 24/16	(d) 12/7
64.	If a charge q is place	ed at the centre of the I	ine joining two equal charg	es Q such that the system
	is in equilibrium ther	n the value of q is		
	(a) Q/2	(b) -Q/2	(c) Q/4	(d) -Q/4
65.	Capacitance (in F) of	of a spherical conductor	or with radius 1 m is	
	(a) 1.1×10^{-10}	(b) 10 ⁻⁶	(c) 9×10^{-9}	(d) 10 ⁻³
66.	A light string passing	ng over a smooth ligh	t pulley connects two bloc	ks of masses m_1 and m_2
	(vertically). If the acc	celeration of the syste	m is g/8, then the ratio of the	ne masses is
	(a) 8 : 1	(b) 9:7	(c) 4:3	(d) 5 : 3
67.	Two spheres of the s	same material have rac	dii 1 m and 4m and tempera	atures 4000 K and 2000 K
	•	o of the energy radiate	ed per second by the first sp	here to that by the second
	is			
	(a) 1 : 1	(b) 16 : 1	(c) 4:1	(d) 1:9
68.		_	are drawn by a force	
			on a frictions surface,	$\begin{array}{c c} C & B & A & F \\ \hline \end{array}$
		sion (in N) in the string	between the blocks B """	
	and C?	(1) = 0		
00	(a) 9.2	(b) 7.8	(c) 4	(d) 9.8
69.			es over a massless and fri	Ciloffiess
	•		r end is free. Maximum ten	
	-		e of maximum safe accele	ration (in
		60 kg climb on the rope		(4) 0
70.	(a) 16	(b) 6	(c) 4 C with velocity v as showr	(d) 8
70.		momentum of the part		··
	(a) mvL	momentum of the part	(b) mvl	→C
	(c) mvr		(d) zero	
71.	. ,	ng is used in optical fib	• •	P
, ,,		ection (b) scattering)
	(d) refraction	otion (b) coattoning	(b) difficultin	-
72.		of a body depends up	oon mass as	
	(a) m ⁰	(b) m ¹	(c) m ²	(d) m ³
73.	• •	ng are not electromagr		(4)
	(a) cosmic rays	(b) gamma rays	(c) β-rays	(d) X- rays
71	•	, , ,	() 1	(d) A Tays
74.	•	se dimensions are equ		(d) force and work
		(b) stress and energy	• •	(d) force and work
75.		n temperature , $\theta_{_{ m n}}$ is th	ne neutral temperature, θ_c	is the temperature of the
	cold junction, then		θ . $+\theta$.	
	(a) $\theta_i + \theta_c = \theta_n$	(b) $\theta_{i} - \theta_{c} = 2\theta_{n}$	(c) $\frac{\sigma_1 + \sigma_0}{2} = \theta_n$	(d) $\theta_c - \theta_i = 2\theta_n$

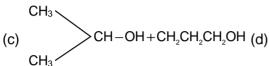
76.	When H ₂ S is passe (a) HgS	ed through Hg_2S we getting (b) $HgS + Hg_2S$		(d) Ha S
77.	Alum helps in purify (a) forming Si comp			(d) Hg ₂ S ₂
	(c) coagulating the		dirt and removes it	
	(d) making mud wa	ter soluble		
78.	A square planar co	mplex is formed by hyl	oridisation of which atomic	orbitals?
	(a) s, p_x , p_y , d_{yz}	(b) s, $p_x, p_y, d_{x^2-y^2}$	(c) s, p_x, p_y, d_{z^2}	(d) s, p_y, p_z, d_{xy}
79.	Polymer formation t	from monomers starts	by	
	(a) condensation re	action between monor	mers	
	(b) coordinate react	tion between monome	rs	
	(c) conversion of m	onomer to monomer is	ons by protons	
	(d) hydrolysis of mo			
80.	• •		tamine chromium (III) chlo	
0.4	(a) optical	(b) linkage	(c) ionization	(d) polymerisation
81.		* *	CH ₃ - CH ₂ - when attached t	o benzyl or an unsaturated
	• .	order of inductive effe	H_2 (b) $CH_3 - CH_2 - < (CH_3)$)
		· ·	CH_{2}^{-1} (d) CH_{3}^{-1} - CH_{2}^{-1} - CH_{3}^{-1}	
82.		organo metallic compo		0112 (0113/2 011
02.	(a) Mg - Br bond		(c) C - Br bond	(d) C - H bond
83.	` , •	1 /	aqueous solution. The solut	• •
			(b) not a buffer solution v	
	(c) a buffer solution	with pH < 7	(d) a buffer solution with	pH > 7
84.	Species acting as b	ooth Bronsted acid and	l base is	
	(a) (HSO ₄) ⁻¹	(b) Na ₂ CO ₃	(c) NH ₃	(d) OH ⁻¹
85.	Let the solubility of	an aqueous solution of	of $Mg(OH)_2$ be x then its k_{sp}	is
	(a) 4x ³	(b) 108x ⁵	(c) 27x ⁴	(d) 9x
86.				arity M unit are respectively
	(a) sec ⁻¹ , Msec ⁻¹		(c) Msec ⁻¹ , sec ⁻¹	(d) M, sec ⁻¹
87.		-	airs of Xe are respectively	/ N = = .
	(a) 2, 3, 1	(b) 1, 2, 3	(c) 4, 1, 2	(d) 3, 2, 1
88.	In which of the follo	iwng species the intera	atomic bond angle is 109°2	28′?
	(a) NH_3 , $(BF_4)^{-1}$	(b) $(NH_4)^+$, BF_3	(c) NH ₃ , BF ₄	(d) $(NH_2)^{-1}$, BF_3
89.	For the reaction A	+ 2B \longrightarrow C, rate is g	given by $R = [A] [B]^2$ then the	ne order of the reaction is
	(a) 3	(b) 6	(c) 5	(d) 7
90.	RNA is different fro	m DNA because RNA	contains	
	(a) ribose sugar and	d thymine	(b) ribose sugar and urac	oil
	(c) deoxyribose sug	gar and thymine	(d) deoxyribose sugar ar	nd uracil

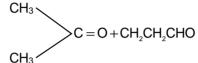
91.	Which of the following are arranged in an increasing order of their bond strengths?			
	(a) $O_2^- < O_2^- < O_2^+ <$	O_2^{2-}	(b) $O_2^{2-} < O_2^- < O_2^- < O_2^+$	
	(c) $O_2^- < O_2^{2-} < O_2$	$< O_2^+$	(d) $O_2^+ < O_2^- < O_2^- < O_2^{2-}$	
92.	If an endothermic re at its boiling point, the		eous at freezing point of wa	ater and becomes feasible
	(a) ΔH is – ve, ΔS	is + ve	(b) ΔH and ΔS both ar	re + ve
	(c) ΔH and ΔS bo	th are – ve	(d) ΔH is + ve, ΔS is -	ve
93.	the engine is $J(Q_1 +$	Q ₂). This data	ature T ₁ and heat Q ₂ at tem	_
	(c) violates 1st law o	of thermodynamics of thermodynamics if C 1st law of thermodyna	2	rmodynamics if Q ₁ is -ve
94.	,	ation states of Ce (cer		
	(a) +2, +3	(b) +2, +4	(c) +3, +4	(d) +3, +5
95.	Arrange Ce+3, La+3,	Pm ⁺³ and Yb ⁺³ in incre	asing order of their ionic ra	
	` '	e ⁺³ < La ⁺³		
	` '		(d) $Pm^{+3} < La^{+3} < Ce^{+3} <$	
96.	-		kygen cylinders in space a	nd submarines because it
	-	d increases O_2 conter	nt (b) eliminates moisture	
97.	(c) absorbs CO ₂	optical and geometric	(d) produces ozone.	*
51.	-	al number of isomers f		
		one is present then s		
			(d) they have no similarit	у
98.		ng does not show geo	• • •	•
	(a) 1, 2-dichloro - 1-	pentene	(b) 1, 3 - dichloro - 2- per	ntene
	(c) 1, 1- dichloro - 1-	- pentene	(d) 1, 4 - dichloro - 2- per	ntene
99.	In case of nitrogen,	NCl_3 is possible but no	ot NCI ₅ while in case of pho	osphorous, PCI ₃ as well as
	PCl ₅ are possible. It			
		cant d orbitals in P but	not in N	
	(b) lower electroneg	•	D.I. N	
	•	of H - bond formation i		roturo
100	,	•	eous state at room temper litre in terms of its pressu	
100.	temperature T is	umber of moles per	ille iii teims of its presst	are i, gas contain it and
	(a) PT/R	(b) PRT	(c) P/RT	(d) RT/P
101.	,	• •	gsten due to adsorption is	` '
	(a) 0	(b) 1	(c) 2	(d) insufficient data
102.	The solubility of Mg	(OH) ₂ is S moles/litre.	The solubility product unde	er the same condition is
	(a) 4S ³	(b) 3S ⁴	(c) 4S ²	(d) S ³

8


103.	How do we different	iate between ⊦e³⁺ and	Cr³⁺ in group III?	
	(a) by taking excess	s of NH ₄ OH solution	(b) by increasing NH ₄ ⁺ ion	n concentration
	(c) by decreasing O	H ion concentration	(d) both (b) and (c)	
104.	In a compound C, I	H and N atoms are pr	esent in 9:1:35 by wei	ght. Molecular weight of
	compound is 108. N	Molecular formula of co	mpound is	
	(a) $C_2H_6N_2$	(b) C_3H_4N	(c) $C_6H_8N_2$	(d) $C_9H_{12}N_3$
105.	The functional group	o, which is found in am	ino acid is	0 12 0
	(a) -COOH group	(b) - NH ₂ group	(c) - CH ₃ group	(d) both (a) and (b)
106.			pportional to area of the ves	
	- ·		ional to the length of the v	
	constant of proportion	• • •	· ·	
	(a) Sm mol ⁻¹		(c) S ⁻² m ² mol	(d) S ² m ² mol ⁻²
107.	` '		on in ground state is 13.6	
	excited state is	,	ŭ	
	(a) 1.51 eV	(b) 3.4 eV	(c) 6.04 eV	(d) 13.6 eV
108.		ng statements is true?		
	(a) HF is less polar	-		
		water does not contain	any ions	
	. ,		forces of attraction overcome	the forces of repulsion
		nsference of electron t		
109.	•	ng compounds has wro		
	(a) $CH_3 - CH_2 - CH$	₂ - COO - CH ₂ CH ₃ -	—→ethyl butanoate	
		H_2 – CHO \longrightarrow 3-met	nyi-butanai	
	CH			
		$-CH_3 \longrightarrow 2$ - methy	yi o batanoi	
	OH CH	3		
	0			
	(d) CH ₂ -CH-C-	-CH ₂ -CH ₂ >2 -	methyl-3-pentanone	
		2 3	, ,	
	CH₃			
110.	CH ₃ CH ₂ COOH—ci	$A \xrightarrow{\text{alc. KOH}} B. W$	nat is B?	
	() 011 011 0001		() () () () () ()	/ IN COLOR OLD CO.
	v <u>-</u>	ŭ <u>-</u>	(c) $CH_2 = CHCOOH$	(d) CICH ₂ CH ₂ COOH
111.		ted by the electrolysis		
	(a) bauxite	(b) alumina	(c) alumina mixed with me	olten cryolite
	(d) molten cryolite			
112.		by leaching with a cya		
	(a) Mg	(b) Ag	(c) Cu	(d) Na
113.	Value of gas consta			
	(a) 0.082 litre atm	(b) 0.987 cal mol ⁻¹ K ⁻¹	(c) 8.3 J mol ⁻¹ K ⁻¹	(d) 83 erg mol ⁻¹ K ⁻¹
				_


114.	. Freezing point of an aqueous solution is (-0.186)°C. Elevation of boiling point of the same solution			
	is $K_b = 0.512 {}^{\circ}\text{C}$, $K_f =$	= 1.86 °C, find the incre	ease in boiling point.	
	(a) 0.186 °C	(b) 0.0512 °C	(c) 0.092 °C	(d) 0.2372 °C
115.	EMF of a cell in term	ns of reduction potenta	al of its left and right electro	odes is
	(a) $E = E_{left} - E_{right}$	(b) $E = E_{left} + E_{right}$	(c) $E = E_{right} - E_{left}$	(d) $E = -(E_{right} + E_{left})$
116.	Uncertainity in position	on of a minute particle o	of mass 25 g in space is 10 ⁻⁵	m. What is the uncertainity
	in its velocity (in ms	1) ? (h = $6.6 \times 10^{-34} \text{ J}$	s)	
	(a) 2.1×10^{-34}	(b) 0.5×10^{-34}	(c) 2.1×10^{-28}	(d) 0.5×10^{-23}
117.	Which of these will r	not react with acetylen	e ?	
	(a) NaOH	(b) ammonical AgNC) ₃ (c) Na	(d) HCI
118	Change in volume of	of the system does not	t alter the number of moles	s in which of the following
	equilibria?			
	(a) $N_2(g) + O_2(g)$	2 NO(g)	(b) PCl_5 (g) \longrightarrow PCl_5	$_{3}(g) + Cl_{2}(g)$
	(c) $N_2(g) + 3H_2(g)$	2NH ₃ (g)	(d) SO_2CI_2 (g) \longrightarrow S	$O_2(g) + Cl_2(g)$
119.	For the reactions,			
	$C+O_2 \longrightarrow CO_2$; $\Delta H = -393J$		
	$2Zn+O_2 \longrightarrow 2ZI$	$nO ; \Delta H = -412J$		
	(a) carbon can oxidi	se Zn	(b) oxidation of carbon is	not feasible
	(c) oxidation of Zn is	not feasible	(d) Zn can oxidise carbon	
120.	Which of the following	ng ions has the maxim	um magnetic moment?	
	(a) Mn ⁺²	(b) Fe ⁺²	(c) Ti ⁺²	(d) Cr ⁺²
121.	In which of the follow	ving species is the und	derlined carbon having sp ³	hybridisation?
	(a) CH ₃ COOH	(b) CH ₃ CH ₂ OH	(c)CH ₃ COCH ₃	(d) $CH_2 = \underline{C}H - CH_3$
122.	Racemic mixture is f	formed by mixing two		
	(a) isomeric compou	ınds	(b) chiral compounds	
	(c) meso compound	S	(d) optical isomers	
123.	The differential rate	law for the reaction H ₂	$_{2}$ + $I_{2} \rightarrow 2HI$ is	
	(a) $-\frac{d[H_2]}{dt} = -\frac{d[I_2]}{dt}$	_ d[HI]	(b) $\frac{d[H_2]}{dt} = \frac{d[I_2]}{dt} = \frac{1}{2} \frac{d[H]}{dt}$]
	$\frac{d}{dt} = \frac{1}{dt}$	dt	$\frac{(b)}{dt} - \frac{1}{dt} - \frac{1}{2} \frac{1}{dt}$	_
	(c) $\frac{1}{2} \frac{d[H_2]}{dt} = \frac{1}{2} \frac{d[l_2]}{dt}$	d[HI]	$d[H_2] = d[I_2]$	d[HI]
	$\frac{(c)}{2} \frac{1}{dt} = \frac{1}{2} \frac{1}{dt}$	dt	(d) $-2\frac{d[H_2]}{dt} = -2\frac{d[I_2]}{dt} =$	dt
124.	Number of sigma bo	onds in P ₄ O ₁₀ is		
	(a) 6	(b) 7	(c) 17	(d) 16
125.	Kinetic theory of gas	ses proves		
	(a) only Boyle's law	(b) only Charles' law	(c) only Avogadro's law	(d) all of these
126.	A metal M readily for	rms its sulphate MSO ₄	which is water - soluble. It	forms its oxide MO which
	becomes inert on he	eating. It forms an ins	soluble hydroxide M(OH) ₂	which is soluble in NaOH
	solution. Then M is			
	(a) Mg	(b) Ba	(c) Ca	(d) Be
127.	If φ denotes reduction	on potential, then whic	h is true ?	
	(a) $\mathbf{F}^0 = \mathbf{A} + \mathbf{A}$	(b) $E^0 - A + A$	(c) $\mathbf{F}^0 = \mathbf{A} = \mathbf{A}$	(d) $E^0 = (A + A)$
	(a) $\mathbf{L}_{\text{cell}} - \mathbf{\psi}_{\text{right}} - \mathbf{\psi}_{\text{left}}$	(b) $\mathbf{L}_{\text{cell}} - \mathbf{\Psi}_{\text{left}} + \mathbf{\Psi}_{\text{right}}$	(c) $E_{cell}^{o} = \phi_{left} - \phi_{right}$	(u) $\mathbf{L}_{cell}(\psi_{left} + \psi_{right})$


- 128. What is the product when acetylene reacts with hypochlorous acid?
 - (a) CH₂COCI
- (b) CICH CHO
- (c) Cl₂CHCHO
- (d) CICHCOOH


129. On vigorous oxidation by permanganate solution

 $(CH_3)_2C = CH - CH_2 - CHO$ gives

- OCOCH₃ COOH 130. The compound is used as
 - (a) antiseptic
- (b) antibiotic
- (c) analgesic
- (d) pesticide
- 131. What will be the emf for the given cell $Pt \mid H_2(P_1) \mid H^+(aq) \mid H_2(P_2) \mid Pt$
 - (a) $\frac{RT}{f}log\frac{P_1}{P_2}$ (b) $\frac{RT}{2f}log\frac{P_1}{P_2}$ (c) $\frac{RT}{f}log\frac{P_2}{P_2}$
- (d) none of these
- 132. When primary amine reacts with chloroform in ethanoic KOH then the product is
 - (a) an isocyanide
- (b) an aldehyde
- (c) a cyanide
- (d) an alcohol
- 133. Which of the following reaction is possible at anode?
 - (a) $2Cr^{3+} + 7H_2O \rightarrow Cr_2O_7^{2-} + 14H^+$
- (b) $F_2 \rightarrow 2F^-$
- (c) $(1/2) O_2 + 2H^+ \rightarrow H_2O$
- (d) none of these
- 134. The reaction : $(CH_3)_3C-Br \xrightarrow{H_2O} (CH_3)_3-C-OH$
 - (a) elimination reaction

(b) substitution reaction

(c) free radical reaction

- (d) displacement reaction
- 135. If half-life of a substance is 5 yrs, then the total amount of substance left after 15 years, when initial amount is 64 grams is
 - (a) 16 grams
- (b) 2 grams
- (c) 32 grams
- (d) 8 grams

- 136. Cyanide process is used for the extraction of
 - (a) barium
- (b) aluminium
- (c) boron
- (d) silver

- 137. Which is the correct order of ionic sizes?
 - (a) Ce > Sn > Yb > Lu (b) Sn > Ce > Lu > Yb (c) Lu > Yb > Sn > Ce (d) Sn > Yb > Ce > Lu(Atomic Number : Ce = 58, Sn = 50, Yb = 70 and Lu = 71)
- 138. With increase of temperature, which of these changes?
 - (a) molality

- (b) weight fraction of solute
- (c) fraction of solute present in water
- (d) mole fraction

139.	plotting	equation is Rt = log	C_0 - log C_t . The straight	line graph is obtained by
	(a) time vs log C _t	(b) $\frac{1}{\text{time}}$ vs C_t	(c) time vs C _t	(d) $\frac{1}{\text{time}} \text{vs } \frac{1}{C_t}$
140.	In which of the follo	wing reactions, increa	se in the volume at consta	ant temperature does not
	affect the number of	moles at equilibrium		
	(a) $2NH_3 \rightarrow N_2 + 3H_3$	H_2	(b) $C(g) + (1/2)O_2(g) \rightarrow 0$	CO(g)
	(c) $H_2(g) + O_2(g) -$	\rightarrow H ₂ O ₂ (g)	(d) none of these	
141.	When the sample of	f copper with zinc impu	urity is to be purified by ele	ectrolysis, the appropriate
	electrodes are			
	cathode	anode	cathode	anode
	(a) pure zinc	pure copper	(b) impure sample	pure copper
	(c) impure zinc		(d) pure copper	impure sample
142.	The most stable ion			
	•	(b) $[Fe(Cl)_6]^{3-}$	(c) [Fe(CN) ₆] ³⁻	(d) $[Fe(H_2O)_6]^{3+}$
143.	β - particle is emitte	d in radioactivity by		
	(a) conversion of pro	oton to neutron	(b) from outermost orbit	
	(c) conversion of ne	utron to proton	(d) β -particle is not emitted	ted
144.	In mixture A and B	component show -ve c	leviation as	
	(a) $\Delta V_{mix} > 0$		(b) $\Delta H_{\text{mix}} < 0$	
	(c) A - B interaction	is weaker than A - A a	and B - B interaction	
	(d) A - B interaction	is stronger than A - A	and B - B interaction	
145.	The heat required to	raise the temperature	e of body by 1 K is called	
	(a) specific heat		(c) water equivalent	(d) none of these
146.			e crystals respectively, the	en the number of atoms of
		in the unit cell of their		() 0
4 47		(b) 9 and 14		(d) 2 and 4
147.		,	of Fe = 55.85 g mol^{-1}) is	
	(a) twice that in 60 g (c) half that in 8g He		(b) 6.023×10^{22} (d) $558.5 \times 6.023 \times 10^{23}$	
1/18	` '		and ultimately forms [Mn	
140.			n each case respectively i	
	(a) 4, 3, 1, 5	(b) 1, 5, 3, 7	•	(d) 3, 5, 7, 1
149.	• • • • • • • • • • • • • • • • • • • •	ng is a redox reaction	• •	(-) -, -, -,
	(a) NaCl+KNO ₃ —		(b) CaC ₂ O ₄ + 2HCl—	\rightarrow CaCl ₂ + H ₂ C ₂ O ₄
	(c) $Mg(OH)_2 + 2NH$	$_{4}CI \rightarrow MgCl_{2} + 2NH_{4}C$	OH (d) Zn+2AgCN→2A	$Ag + Zn(CN)_2$
150.	For the reaction CC	$O(g) + (1/2)O_2(g) = CO$	$Q_2(g), K_p/K_c$ is	
	(a) RT	(b) (RT) ⁻¹	(c) (RT) ^{-1/2}	(d) (RT) ^{1/2}

Mathematics

1.			en the equation having α /	β and β/α as its roots is
	(a) $3x^2 - 19x + 3 = 0$ (c) $3x^2 - 19x - 3 = 0$		(b) $3x^2 + 19x - 3 = 0$ (d) $x^2 - 5x + 3 = 0$	
2.	If $y = (x + \sqrt{1 + x^2})^n$,	then $(1+x^2) \frac{d^2y}{dx^2} + x \frac{d^2y}{dx^2}$	dy dx is	
3.		(b) -n²y og ₃ (4.3 ^x -1) are in A.P.		(d) 2x²y
4.	(a) $\log_3 4$ A problem in mathe	(b) 1+ log ₃ 4 matics is given to thre	(c) 1 - log ₄ 3 e students A, B, C and the	(d) $\log_4 3$ ir respective probability of
	solving the problem	is $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$. Proba	ability that the problem is so	olved is
	(a) $\frac{3}{4}$	(b) $\frac{1}{2}$	(c) $\frac{2}{3}$	(d) $\frac{1}{3}$
5.	The period of $\sin^2\theta$	is		
	(a) π^2	(b) π	(c) 2π	(d) $\pi/2$
6.	I, m, n are the p th , q ^{tl}	^h and r th term of a G.P.	all positive, then logn	o 1 q 1 equals
7.	(a) -1 $\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{\sqrt{2}x}$ is	(b) 2	(c) 1	(d) 0
	(a) 1	(b) -1	(c) zero	(d) does not exist
8.	(a) isosceles and rig	,	(b) isosceles but not right	•
9.		udents there are 70 bo	d) neither right angled no bys whose average marks 2, then what is the average	in a subject are 75. If the
	(a) 73	(b) 65	(c) 68	(d) 74
10.		$n^{-1}(\sqrt{\cos\alpha}) = x$, then s	sinx =	
	(a) $tan^2\left(\frac{\alpha}{2}\right)$	(b) $\cot^2\left(\frac{\alpha}{2}\right)$	(c) tanα	(d) $\cot\left(\frac{\alpha}{2}\right)$

- The order and degree of the differential equation $\left(1+3\frac{dy}{dx}\right)^{2/3}=4\frac{d^3y}{dx^3}$ are
 - (a) $(1,\frac{2}{3})$
- (b) (3, 1)
 - (c) (3, 3)
- (d)(1, 2)
- A plane which passes through the point (3, 2, 0) and the line $\frac{x-4}{1} = \frac{y-7}{5} = \frac{z-4}{4}$ is 12.
- (a) x y + z = 1 (b) x + y + z = 5 (c) x + 2y z = 1 (d) 2x y + z = 5

- The solution of the equation $\frac{d^2y}{dv^2} = e^{-2x}$
- (a) $\frac{e^{-2x}}{4}$ (b) $\frac{e^{-2x}}{4} + cx + d$ (c) $\frac{1}{4}e^{-2x} + cx^2 + d$

- 14. $\lim_{x \to \infty} \left(\frac{x^2 + 5x + 3}{x^2 + x + 3} \right)^{\frac{1}{x}}$
 - (a) e4
- (b) e^2
- (c) e^3

(d) 1

- The domain of $\sin^{-1} [\log_3 (x/3)]$ is 15.
 - (a) [1, 9]
- (b) [-1,9]
- (c) [-9, 1]
- (d) [-9, -1]

- The value of $2^{1/4}$, $4^{1/8}$, $8^{1/6} + \dots \infty$ is 16.

(c) 3/2

- (d) 4
- Fifth term of a GP is 2, then the product of its 9 terms is 17.
 - (a) 256
- (b) 512
- (c) 1024

(d) none of these

- $\int_{0}^{\infty} |\sin x| dx is$
- (b) 8
- (c) 10

(d) 18

- 19. $I_n = \int_0^{\pi/4} \tan^n x \, dx \text{ then } \lim_{n \to \infty} n[I_n + I_{n-2}] \text{ equals}$
 - (a) $\frac{1}{2}$
- (b) 1
- (c) ∞

(d) zero

- 20. $\int_{0}^{\sqrt{2}} [x^2] dx$ is
 - (a) $2 \sqrt{2}$
- (b) $2+\sqrt{2}$ (c) $\sqrt{2}-1$
- (d) $\sqrt{2} 2$

- 21. $\int_{-\pi}^{\pi} \frac{2x(1+\sin x)}{1+\cos^2 x} dx \text{ is}$
 - (a) $\frac{\pi^2}{\Lambda}$
- (b) π^{2}
- (c) zero

(d) $\frac{\pi}{2}$

22.	Let $f(x) = 4$ and $f'(x)$	$(x) = 4$. Then $\lim_{x \to 2} \frac{xf(2)}{x}$	$\frac{-2f(x)}{-2}$ is given by	
	(a) 2	(b) - 2	(c) - 4	(d) 3
23.	z and w are two nor	n zero complex no.s su	ch that $ z = w $ and Arg z	$x + Arg w = \pi$ then z equals
	(a) ₩	(b) _ W	(c) w	(d) - w
24.	If z-4 < z-2 , its	solution is given by		
		•	(c) Re $(z) > 3$	(d) $Re(z) > 2$
25.	The locus of the cer	ntre of a circle which to	buches the circle $ z - z_1 = 3$	a and $ z - z_2 = b$ externally
		mplex numbers) will b		-
	(a) an ellipse	(b) a hyperbola	(c) a circle	(d) none of these
26.	Sum of infinite number GP is	ber of terms of GP is 2	0 and sum of their square is	s 100. The common ratio of
	(a) 5	(b) 3/5	(c) 8/5	(d) 1/5
27.	$1^3 - 2^3 + 3^3 - 4^3 + \dots$	$.+9^3 =$		
	(a) 425	(b) - 425	(c) 475	(d) - 475
28.	Difference between $a \neq b$, then	the corresponding ro	ots of $x^2 + ax + b = 0$ and $x^2 + ax + b = 0$	$x^2 + bx + a = 0$ is same and
	(a) $a + b + 4 = 0$	(b) $a + b - 4 = 0$	(c) $a - b - 4 = 0$	(d) $a - b + 4 = 0$
29.	Product of real root	s of the equation t^2x^2 -	+ x + 9 = 0	
	(a) is always positive	/e	(b) is always negative	
	(c) does not exist		(d) none of these	
30.	If p and q are the ro	oots of the equation x ²	+ px + q = 0, then	
		(b) $p = 0$, $q = 1$		(d) $p = -2$, $q = 1$
31.			$d a^2 + b^2 + c^2 = 1$ then ab +	
			(c) greater than 1	
32.		r digit odd numbers tha	at can be formed using 0, 1	, 2, 3, 5, 7 (using repetition
	allowed) are	(1) 075	() 400	(1) 700
20	(a) 216	(b) 375	(c) 400	(d) 720
33.		in rood but less than a	1000 is formed using the d	igits 0, 1, 2, 3, 4 (repetition
	allowed) is (a) 125	(b) 105	(c) 375	(d) 625
34.	` '	,	d using 0, 1, 2, 3, 4, 6 and	` '
о -т .	number of such nur	·	2 using 0, 1, 2, 3, 4, 0 and	T Williout repetition. Total
	(a) 312	(b) 3125	(c) 120	(d) 216
35.	` '	s from 1 to 100 that are	, ,	(d) 210
00.	(a) 3000	(b) 3050	(c) 3600	(d) 3250
36.	` '	x ^p and x ^q in the expan	` '	(") ====
	(a) equal		(b) equal with opposite s	igns
	(c) reciprocals of ea	ach other	(d) none of these	•
37.	•		sion of (a + b) ⁿ is 4096, the	n the greatest coefficient in
	the expansion is	·	•	-
	(a) 1594	(b) 792	(c) 924	(d) 2924
				(15)

38.	The positive integer (a) 4	just greater than (1+0 (b) 5	0.0001) ¹⁰⁰⁰⁰ is (c) 2	(d) 3		
39.	r and n are positive integers $r > 1$, $n > 2$ and coefficient of $(r + 2)^{th}$ term and $3r^{th}$ term in the expansion of $(1+x)^{2n}$ are equal, then n equals					
	(a) 3r	(b) 3r + 1	(c) 2r	(d) 2r + 1		
			a	b ax+b		
40.	If a > 0 discriminant	of ax² + 2bx + c is -v	e, then $\begin{vmatrix} b \\ ax + b \end{vmatrix}$	$\begin{vmatrix} c & bx+c \\ bx+c & 0 \end{vmatrix}$ is		
	(a) +ve	(b) $(ac - b^2) (ax^2 + 2b^2)$	ox + c) (c) -ve	e (d) 0		
41.	If $a_n = \sqrt{7 + \sqrt{7 + \sqrt{7}}}$	7+ having n radio	cal signs then by r	methods of mathematical induciton		
	which is true					
	(a) $a_n > 7 \ \forall \ n \ge 1$	(b) $a_n > 7 \ \forall \ n \ge 1$	(c) $a_n < 4 \forall n \ge$	≥ 1 (d) $a_n < 3 \forall n \geq 1$		
42.	The sides of a triang	gle are 3x + 4y, 4x+3	7 and 5x + 57 whe	ere x, y > 0 then the triangle is		
	(a) right angled	(b) obtuse angled				
43.		of the portion between	the axes of x cos	$s\alpha + y \sin \alpha = p$ where p is constant		
	is					
	(a) $x^2 + y^2 = \frac{4}{p^2}$	(b) $x^2 + y^2 = 4p^2$	(c) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{2}{p^2}$	(d) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2}$		
44.	If the pair of lines $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ intersect on the y - axis then					
45		(b) $bg^2 \neq ch^2$		(d) none of these		
45.				and perpendicular to each other for		
46.		+ 1 of the circle $x^2 + y$		e of a (d) for no values of a angle of measure 45° at the major		
	(a) $2 \pm \sqrt{2}$	(b) $-2\pm\sqrt{2}$	(a) 4 \(\sqrt{2} \)	(d) nana of those		
47.				(d) none of these circle $x^2 + y^2 = 25$. The locus of any		
	point in the set is					
48.				(d) $3 \le x^2 + y^2 \le 9$ and touching the circle $x^2 + y^2 = 9$ is		
			((4.0)		
	(a) $\left(\frac{1}{2}, \frac{1}{2}\right)$	(b) $\left(\frac{1}{2}, -\sqrt{2}\right)$	(c) $\left(\frac{3}{2}, \frac{1}{2}\right)$	(d) $\left(\frac{1}{2}, \frac{3}{2}\right)$		
49.	The equation of a ci	_	entre and passing	g through equilateral triangle whose		

(d) $x^2 + y^2 = a^2$

(a) $x^2 + y^2 = 9a^2$ (b) $x^2 + y^2 = 16a^2$ (c) $x^2 + y^2 = 4a^2$

50.	50. Two common tangents to the circle $x^2 + y^2 = 2a^2$ and parabola $y^2 = 8ax$ are					
			(c) $x = \pm (y + a)$			
51.	In a triangle with sid	des a, b, c, r ₁ > r ₂ > r ₃ (which are the ex- radii) the	en		
	(a) $a > b > c$	(b) $a < b < c$	(c) a > b and b < c	(d) a < b and b > c		
52.	The number of solu	tion of $\tan x + \sec x =$	$2\cos x$ in $[0, 2\pi)$ is			
	(a) 2	(b) 3	(c) 0	(d) 1		
53.	Which one is not pe	eriodic				
	(a) $ \sin 3x + \sin^2 x$	(b) $\cos\sqrt{x} + \cos^2 x$	(c) $\cos 4x + \tan^2 x$	(d) $\cos 2x + \sin x$		
54. $\lim_{n\to\infty} \frac{1^p + 2^p + 3^p + \dots + n^p}{n^{p+1}}$ is						
	, 1	(b) $\frac{1}{1-p}$, 1 1	. 1		
	(a) $\overline{p+1}$	(b) $\frac{1-p}{1-p}$	(c) $\frac{-}{p} = \frac{1}{p-1}$	(d) $\frac{1}{p+2}$		
55.	$\lim_{x\to 0}\frac{\log x^n-[x]}{[x]},n\in$	N ([x] denotes greate	st integer less than or equ	al to x)		
	• •	(b) has value 0	(c) has value 1	(d) does not exist		
56.	If $f(1) = 1$, $f'(1) = 2$,	then $\lim_{x\to 1} \frac{\sqrt{f(x)}-1}{\sqrt{x}-1}$ is				
	(a) 2	(b) 4	(c) 1	(d) 1/2		
57.	f is defined in [-5, 5]	$\int as f(x) = x if x is ration$	nal and = -x is irrational.Th	nen		
	(a) f(x) is continuou	s at every x, except x	= 0			
		lous at every x, excep	t x = 0			
	(c) f(x) is continuou	-				
	(d) f(x) is discontinu			#		
58.	f(x) and $g(x)$ are two differentiable functions on [0, 2] such that $f''(x) - g''(x) = 0$					
	f'(1) = 2g'(1) = 4f(2) =	=3g(2)=9 then $f(x)$ -	g(x) at $x = 3/2$ is			
		(b) 2		(d) 5		
59.	If $f(x + y) = f(x) \cdot f(y)$	$\forall x.y \text{ and } f(5) = 2, f'$	(0) = 3 then f'(5) is			
	(a) 0	(b) 1	(c) 6	(d) 2		
60	The maximum dieta	and from origin of a no	oint on the ourse v — a sin t	t hain (at)		
60.			pint on the curve x = a sin t	$\left(\frac{b}{b}\right)$		
		$\left(\frac{at}{b}\right)$, both a, b > 0 is				
	(a) a - b	(b) a + b	(c) $\sqrt{a^2 + b^2}$	(d) $\sqrt{a^2 - b^2}$		
61.	If $2a + 3b + 6c = 0$	(a,b,c∈R) then the qu	uadratic equation ax ² + bx			
	(a) at least one root	in [0, 1]	(b) at least one root in [2,	3]		
	(c) at least one root		(d) none of these			
62. If $y = f(x)$ makes +ve intercept of 2 and 0 unit on x and y axes and encloses an area						
	square unit with the axes then $\int_{0}^{2} xf'(x) dx$ is					
	(a) 3/2	(b) 1	(c) 5/4	(d) -3/4		
				17		

63.	The area bounded by (a) 4 sq. units	by the curves $y = lnx$, y (b) 6 sq. units	y = ln x , y = ln x and y (c) 10 sq. units	= In x is (d) none of these			
64.	If $ \vec{a} =4$, $ \vec{b} =2$ and the angle between \vec{a} and \vec{b} is $\pi/6$ then $(\vec{a}\times\vec{b})^2=2$ is equal to						
	(a) 48	(b) 16	(c) ā	(d) none of these			
65.	If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $[\vec{a} \ \vec{b} \ \vec{c}] = 4$ then $[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}] =$						
	(a) 16	(b) 64	(c) 4	(d) 8			
66.	If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$ and $ \vec{a} = 7$, $ \vec{b} = 5$, $ \vec{c} = 3$ then angle between vector \vec{b} and \vec{c} is						
	(a) 60	(b) 30°	(c) 45°	(d) 90°			
67.	If $ a =5$, $ b =4$, $ c =3$ thus what will be the value of $ a.b+b.c+c.a $, given that $\vec{a}+\vec{b}+\vec{c}=1$						
	(a) 25	(b) 50	(c) - 25	(d) - 50			
68.	$3\lambda\vec{c}+2\mu(\vec{a}\times\vec{b})=0$	then					
	(a) $3\lambda + 2\mu = 0$	(b) $3\lambda = 2\mu$	(c) $\lambda = \mu$	(d) $\lambda + \mu = 0$			
69.	$\vec{a} = 3\hat{i} - 5\hat{j}$ and $\vec{b} =$	$\vec{a}=3\hat{i}-5\hat{j}$ and $\vec{b}=6\hat{i}+3\hat{j}$ are two vectors and \vec{c} is a vector such that $\vec{c}=\vec{a}\times\vec{b}$ the					
	ā : b : c						
	(a) $\sqrt{34} : \sqrt{45} : \sqrt{39}$	$\sqrt{5}$ (b) $\sqrt{34}$: $\sqrt{45}$: 39	(c) 34 : 39 : 45	(d) 39 : 35 : 34			
70.	If $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{c}$	\vec{a} then $\vec{a} + \vec{b} + \vec{c} =$					
	(a) abc	(b) -1	(c) 0	(d) 2			
71.			$B/4$, $P(A \cap B) = 1/4$, $P(\overline{A})$				
72.	(a) 5/12 A die is tossed 5 tim	(b) 3/8 nes. Getting an odd nui	(c) 5/8 mber is considered a succe	(d) 1/4 ess. Then the variance of			
	distribution of succe						
70	(a) 8/3	(b) 3/8	(c) 4/5	(d) 5/4			
73.	3. The d.r. of normal to the plane through $(1, 0, 0)$, $(0, 1, 0)$ which makes an angle $\pi/4$ with plane $x + y = 3$ are						
	(a) 1, $\sqrt{2}$,1	(b) 1, 1, $\sqrt{2}$	(c) 1, 1, 2	(d) $\sqrt{2}$,1,1			
74.	5 5						
	force is 12 N. The m (a) 13, 5	nagnitude of the two fo (b) 12, 6	rces are (c) 14, 4	(d) 11, 7			
75.			rcular wire in a vertical pla				
	by a light thread to the highest point of the wire and in equilibrium, the thread is taut and make						
	an angle θ with the vertical then tension of the thread and reaction of the wire on the bead are						
	(a) $T = w \cos \theta$ (c) $T = w$	$R = w \tan \theta$ $R = w \sin \theta$	(b) $T = 2w \cos \theta$ (d) $T = w \sin \theta$	R = w $R = w \cot \theta$			
	(~) i — vv	– # 5111 ()	(5)1 - 11 5111 ()	18)			