CODED INEQUALITIES

Directions(1-5): In the following questions, the symbols @, \#, \%, \$ and * are used with the following meaning as illustrated below.
'A @ B' means 'A Is not smaller than B'
'A \# B' means 'A is neither smaller than nor equal to B '
'A \% B' means 'A is neither smaller than nor greater than B'
'A \$ B' means 'A is not greater than B'
' A * B ' means ' A is neither greater than nor equal to B '

1) Statements : T @ V, V \# M, M \% F

Conclusions : a) T \# M
b) T @ F
2) Statements: L \$ N, N * F, R \% L

Conclusions : a) F \# R
b) R \$ N
3) Statements : H \# I, I @ J, J \$ P

Conclusions : a) H \# J
b) H \# P
4) Statements : L * D, D \# K, K \$ J

Conclusions : a) L * K
b) $\mathrm{D} \$ \mathrm{~J}$

5) Statements : Q \$ W, W \% E, E @ K

Conclusions : a) Q \$ K
b) W @ K

Now in each of the following the questions assuming the given statements to be true, find which of the two conclusions a and b given below is/are definitely true?

Give answer a) : If only conclusion a is true
Give answer b) : If only conclusion b is true
Give answer c) : If either conclusion a or b is true
Give answer d) : If neither conclusion a nor b is true
Give answer e) : If both conclusions a and b are true (Options are same for all questions (1-15))

Explanation :

'A @ B' means 'A Is not smaller than \mathbf{B} ' \rightarrow A $\geq \mathbf{B}$
'A \# B' means 'A is neither smaller than nor equal to B ' $\rightarrow \mathbf{A}>B$
' A \% B' means ' A is neither smaller than nor greater than B ' $\rightarrow \mathbf{A}=\mathbf{B}$
' $A \boldsymbol{\$} \mathbf{B}$ ' means ' A is not greater than B ' $\rightarrow A \leq B$
' A * B ' means 'A is neither greater than nor equal to B ' $\rightarrow \mathbf{A}<B$

1) Answer : a) : If only conclusion a is true

Explanation: T @ V, V \# M, M \% F $\rightarrow \mathrm{T} \geq \mathrm{V}, \mathrm{V}>\mathrm{M}, \mathrm{M}=\mathrm{F} \rightarrow \mathbf{T} \geq \mathbf{V}>\mathbf{M}=\mathbf{F}$ Conclusion $a \rightarrow T \# M \rightarrow T>M$
The relation between \mathbf{T} and M in the statement $\mathbf{T} \geq \mathbf{V}>\mathbf{M}=\mathbf{F}: \mathrm{T}>\mathrm{M}$. So, it is true. Conclusion $\mathrm{b} \rightarrow \mathrm{T} @ \mathrm{~F} \rightarrow \mathrm{~T} \geq \mathrm{F}$
The relation between T and F in the statement $\mathbf{T} \geq \mathbf{V}>\mathbf{M}=\mathbf{F}: \mathrm{T}>\mathrm{F}$. So, it is not true.

$$
(\mathrm{T}>\mathrm{M}=\mathrm{F} \rightarrow \mathrm{~T}>\mathrm{F})
$$

2) Answer : e) : If both conclusions a and b are true

Explanation : L $\$ \mathrm{~N}, \mathrm{~N} * \mathrm{~F}, \mathrm{R} \% \mathrm{~L} \rightarrow \mathrm{~L} \leq \mathrm{N}, \mathrm{N}<\mathrm{F}, \mathrm{R}=\mathrm{L} \rightarrow \quad \mathbf{R}=\mathbf{L} \leq \mathbf{N}<\mathbf{F}$
Conclusion $\mathrm{a} \rightarrow \mathrm{F}$ \# $\mathrm{R} \rightarrow \mathrm{F}>\mathrm{R}$
The relation between F and R in the statement $\mathbf{R}=\mathbf{L} \leq \mathbf{N}<\mathbf{F}: \mathrm{R}<\mathrm{F}$. So, it is true.

$$
(\mathrm{R} \leq \mathrm{N}<\mathrm{F} \rightarrow \mathrm{R}<\mathrm{F})
$$

Conclusion $\mathrm{b} \rightarrow \mathrm{R} \$ \mathrm{~N} \rightarrow \mathrm{R} \leq \mathrm{N}$
The relation between R and N in the statement $\mathbf{R}=\mathbf{L} \leq \mathbf{N}<\mathbf{F}: \quad \mathrm{R} \leq \mathrm{N}$. So, it is true.
3) Answer : a) : If only conclusion a is true.

Explanation: H \# I, I @ J, J \$ P $\rightarrow \mathrm{H}>\mathrm{I}, \mathrm{I} \geq \mathrm{J}, \mathrm{J} \leq \mathrm{P} \rightarrow \mathbf{H}>\mathrm{I} \geq \mathbf{J} \leq \mathbf{P}$
Conclusion a \rightarrow H \# J \rightarrow H > J
The relation between H and J in the statement $\mathbf{H}>\mathbf{I} \geq \mathbf{J} \leq \mathbf{P}: \mathrm{H}>\mathrm{J}$. So, it is true.
Conclusion $b \rightarrow H$ \# \rightarrow H $>$ P
The relation between H and P in the statement $\mathbf{H}>\mathbf{I} \geq \mathbf{J} \leq \mathbf{P}: \mathrm{H}>\mathrm{P}$ or $\mathrm{H}<\mathrm{P}$ or $\mathrm{H}=\mathrm{P}$.
So, it is not true
4) Answer : d) : If neither conclusion a nor b is true .

Explanation : L * D, D \# K, K \$ J $\rightarrow \mathrm{L}<\mathrm{D}, \mathrm{D}>\mathrm{K}, \mathrm{K} \leq \mathrm{J} \rightarrow \mathbf{L}<\mathbf{D}>\mathbf{K} \leq \mathbf{J}$
Conclusion $a \rightarrow$ L* $K \rightarrow L<K$
The relation between L and K in the statement $\mathbf{L}<\mathbf{D}>\mathbf{K} \leq \mathbf{J}: \mathrm{L}=\mathrm{K}$ or $\mathrm{L}>\mathrm{K}$ or $\mathrm{L}<$ K. So, it is not
true.
Conclusion $\mathrm{b} \rightarrow \mathrm{D} \$ \mathrm{~J} \rightarrow \mathrm{D} \leq \mathrm{J}$

The relation between D and J in the statement $\mathbf{L}<\mathbf{D}>\mathbf{K} \leq \mathbf{J}: \mathrm{D}=\mathrm{J}$ or $\mathrm{D}>\mathrm{J}$ or $\mathrm{D}<$ J. So, it is not true.

5) Answer : b) : If only conclusion b is true .

Explanation : $\mathrm{Q} \$ \mathrm{~W}, \mathrm{~W} \% \mathrm{E}, \mathrm{E} @ \mathrm{~K} \rightarrow \mathrm{Q} \leq \mathrm{W}, \mathrm{W}=\mathrm{E}, \mathrm{E} \geq \mathrm{K} \rightarrow \mathbf{Q} \leq \mathbf{W}=\mathbf{E} \geq \mathbf{K}$ Conclusion $\mathrm{a} \rightarrow \mathrm{Q} \$ \mathrm{~K} \rightarrow \mathrm{Q} \leq \mathrm{K}$
The relation between Q and K in the statement $\mathbf{Q} \leq \mathbf{W}=\mathbf{E} \geq \mathbf{K}: \mathrm{Q}=\mathrm{K}$ or $\mathrm{Q}>\mathrm{K}$ or Q $<\mathrm{K}$. So, it is not true.
Conclusion $\mathrm{b} \rightarrow \mathrm{W} @ \mathrm{~K} \rightarrow \mathrm{~W} \geq \mathrm{K}$
The relation between W and K in the statement $\mathbf{Q} \leq \mathbf{W}=\mathbf{E} \geq \mathbf{K}: \mathrm{W} \geq \mathrm{K}$. So, it is true.
Directions(6-10): In the following questions, the symbols @, \#, \$, © and \% are used with the following meaning as illustrated below.
'P @ Q' means 'P is not smaller than Q'
' P \# Q ' means ' P is not greater than Q '
'P \$ Q' means ' P is neither greater than nor equal to Q '
' P © Q ' means ' P is neither smaller than nor equal to Q ' ' $\mathrm{P} \% \mathrm{Q}$ ' means ' P is neither greater than nor smaller than Q '
6) Statements : V \$ W, W @ T, T \# H Conclusions : a) V (c) T
b) $\mathrm{H} \% \mathrm{~W}$
7) Statements : H@C, M @ E, E \$ C

Conclusions : a) C © M
b) H © E
8) Statements : N @ J, J \% R, R © H

Conclusions : a) R \# N
b) N © H
9) Statements : L @ K, K © A, A \$ W

Conclusions : a) W \$ L
b) L \# W
10) Statements : J \# R, R © D, D @ F

Conclusions : a) F \$ R
b) $\mathrm{F} \% \mathrm{R}$

Explanation :

' \mathbf{P} @ \mathbf{Q} ' means ' \mathbf{P} is not smaller than \mathbf{Q} ' $\quad \rightarrow \mathbf{P} \geq \mathbf{Q}$
' \mathbf{P} \# \mathbf{Q} ' means ' \mathbf{P} is not greater than \mathbf{Q} ' $\quad \rightarrow \mathbf{P} \leq \mathbf{Q}$
' $\mathbf{P} \boldsymbol{\$} \mathbf{Q}$ ' means ' \mathbf{P} is neither greater than nor equal to \mathbf{Q} ' $\quad \rightarrow \mathbf{P}<\mathbf{Q}$
' \mathbf{P} © \mathbf{Q} ' means ' \mathbf{P} is neither smaller than nor equal to \mathbf{Q} ' $\quad \rightarrow \mathbf{P}>\mathbf{Q}$
' $\mathbf{P} \% \mathbf{Q}$ ' means ' \mathbf{P} is neither greater than nor smaller than \mathbf{Q} ' $\rightarrow \mathbf{P}=\mathbf{Q}$

6) Answer : d) : If neither conclusion a nor b is true .

Explanation : V \$ W, W @ T, T \# H $\rightarrow \mathrm{V}<\mathrm{W}, \mathrm{W} \geq \mathrm{T}, \mathrm{T} \leq \mathrm{H} \rightarrow \mathrm{V}<\mathbf{W} \geq \mathbf{T} \leq \mathbf{H}$ Conclusion $a \rightarrow V$ © $T \rightarrow V>T$
The relation between V and T in the statement $\mathrm{V}<\mathbf{W} \geq \mathbf{T} \leq \mathbf{H}: \mathrm{V}=\mathrm{T}$ or $\mathrm{V}>\mathrm{T}$ or V < T. So, it is not true.
Conclusion $\mathrm{b} \rightarrow \mathrm{H} \% \mathrm{~W} \rightarrow \mathrm{H}=\mathrm{W}$
The relation between H and W in the statement $\mathbf{V}<\mathbf{W} \geq \mathbf{T} \leq \mathbf{H} \rightarrow \mathrm{H}=\mathrm{W}$ or $\mathrm{H}>\mathrm{W}$ or $\mathrm{H}<\mathrm{W}$. So, it is not true.

7) Answer : b) : If only conclusion b is true .

Explanation: H@M, M @ E, E $\$ \mathrm{C} \rightarrow \mathrm{H}>\mathrm{M}, \mathrm{M} \geq \mathrm{E}, \mathrm{E}<\mathrm{C} \rightarrow \mathbf{H}>\mathbf{M} \geq \mathbf{E}<\mathbf{C}$ Conclusion $a \rightarrow C © M \rightarrow C>M$
The relation between C and M in the statement $\mathbf{H}>\mathbf{M} \geq \mathbf{E}<\mathbf{C} \rightarrow \mathrm{M}>\mathrm{C}$. So, it is not true.
Conclusion $b \rightarrow H \subset E \rightarrow H>E$
The relation between H and E in the statement $\mathbf{H}>\mathbf{M} \geq \mathbf{E}<\mathbf{C} \rightarrow \mathrm{H}>\mathrm{E}$. So, it is true.
8) Answer : e) : If both conclusions a and b are true .

Explanation: $N @ J, J \% R, R © H \rightarrow N \geq J, J=R, R>H \rightarrow N \geq \mathbf{J}=\mathbf{R}>\mathbf{H}$
Conclusion $a \rightarrow R \# N \rightarrow R \leq N$
The relation between R and N in the statement $\mathbf{N} \geq \mathbf{J}=\mathbf{R}>\mathbf{H}: N \geq R$. So, it is true.
Conclusion $\mathrm{b} \rightarrow \mathrm{N} \subset \mathrm{H} \rightarrow \mathrm{N}>\mathrm{H}$
The relation between N and H in the statement $\mathbf{N} \geq \mathbf{J}=\mathbf{R}>\mathbf{H}: \mathrm{N}>\mathrm{H}$. So, it is true.
9) Answer : d) : If neither conclusion a nor b is true.

Explanation: L @ K, K © A, A \$ W $\rightarrow \mathrm{L} \geq \mathrm{K}, \mathrm{K}>\mathrm{A}, \mathrm{A}<\mathrm{W} \rightarrow \mathbf{L} \geq \mathrm{K}>\mathrm{A}<\mathbf{W}$
Conclusion a $\rightarrow \mathrm{W} \$ \mathrm{~L} \rightarrow \mathrm{~W}<\mathrm{L}$
The relation between W and L in the statement $\mathbf{L} \geq \mathbf{K}>\mathbf{A}<\mathbf{W}: \mathrm{W}=\mathrm{L}$ or $\mathrm{W}>\mathrm{L}$ or $\mathrm{W}<\mathrm{L}$. So, it is not true.
Conclusion $\mathrm{b} \rightarrow \mathrm{L} \# \mathrm{~W} \rightarrow \mathrm{~L} \leq \mathrm{W}$
The relation between L and W in the statement $\mathbf{L} \geq \mathbf{K}>\mathbf{A}<\mathbf{W}: \mathrm{L}=\mathrm{W}$ or $\mathrm{L}<\mathrm{W}$ or $\mathrm{L}>\mathrm{W}$. So, it is not true.
10) Answer : a) : If only conclusion a is true .

Explanation: J \# R, R © D, D @ F $\rightarrow \mathrm{J} \leq \mathrm{R}, \mathrm{R}>\mathrm{D}, \mathrm{D} \geq \mathrm{F} \rightarrow \mathrm{J} \leq \mathbf{R}>\mathrm{D} \geq \mathbf{F}$ Conclusion $a \rightarrow F \$ R \rightarrow F<R$
The relation between F and R in the statement $\mathbf{J} \leq \mathbf{R}>\mathbf{D} \geq \mathbf{F}: \mathrm{R}>\mathrm{F}$. So, it is true.
Conclusion $\mathrm{b} \rightarrow \mathrm{F} \% \mathrm{R} \rightarrow \mathrm{F}=\mathrm{R}$
The relation between F and R in the statement $\mathbf{J} \leq \mathbf{R}>\mathbf{D} \geq \mathbf{F}: \mathrm{R}>\mathrm{F}$. So, it is not true.
Directions(11-15): In the following questions, the symbols @, ©, \%, \$ and \# are used with the following meaning as illustrated below.
' $\mathrm{P} \% \mathrm{Q}$ ' means ' P is either smaller than or equal to Q '
' P © C Q ' means ' P is grater than Q '
' P \# Q' means ' P is neither greater than nor smaller than Q '
' $\mathrm{P} \$ \mathrm{Q}$ ' means ' P is smaller than Q '
' P @ Q ' means ${ }^{\mathrm{P}} \mathrm{P}$ is either greater than or equal to Q '
11) Statements : B \# F, F \$ H, H © K Conclusions :a) H @ B
b) $\mathrm{K} \$ \mathrm{~B}$
12) Statements : H @ T, T © N, N \$ W Conclusions : a) N \$ H
b) $\mathrm{W} \$ \mathrm{H}$
13) Statements : H \$ F, F \% M, M © J

Conclusions : a) J\$F
b) M © H
14) Statements : M \$ T, T \% R, M © N

Conclusions : a) $M \$ R$
b) $\mathrm{N} \$ \mathrm{~T}$
15) Statements : D \$ T, T \% B, B @ F

Conclusions : a) D \# T
b) $\mathrm{D} @ \mathrm{~F}$

Explanation :

' \mathbf{P} \% Q' means ' \mathbf{P} is either smaller than or equal to \mathbf{Q} ' $\quad \underset{\rightarrow \mathbf{P}}{ } \quad \mathbf{P} \leq \mathbf{Q}$
\mathbf{P} © \mathbf{Q} ' means \mathbf{P} is greater than \mathbf{Q} '

' \mathbf{P} © C \mathbf{Q} ' means ' \mathbf{P} is greater than \mathbf{Q} ' $\rightarrow \mathbf{P}>\mathbf{Q}$
' \mathbf{P} \# \mathbf{Q} ' means ' \mathbf{P} is neither greater than nor smaller than \mathbf{Q} ' $\rightarrow \mathbf{P}=\mathbf{Q}$
' $\mathbf{P} \boldsymbol{\$} \mathbf{Q}$ ' means ' \mathbf{P} is smaller than \mathbf{Q} '
' \mathbf{P} @ \mathbf{Q} ' means ' \mathbf{P} is either greater than or equal to \mathbf{Q} ' $\quad \rightarrow \mathbf{P} \geq \mathbf{Q}$
11) Answer : d) : If neither conclusion a nor b is true .

Explanation: B \# F, F \$ H, H © $\mathrm{K} \rightarrow \mathrm{B}=\mathrm{F}, \mathrm{F}<\mathrm{H}, \mathrm{H}>\mathrm{K} \rightarrow \mathbf{B}=\mathbf{F}<\mathbf{H}>\mathbf{K}$ Conclusion $a \rightarrow H @ B \rightarrow H \geq B$
The relation between H and B in the statement $\mathbf{B}=\mathbf{F}<\mathbf{H}>\mathbf{K}: \mathrm{B}<\mathrm{H}$. So, it is not true.
Conclusion $\mathrm{b} \rightarrow \mathrm{K} \$ \mathrm{~B} \rightarrow \mathrm{~K}<\mathrm{B}$
The relation between K and B in the statement $\mathbf{B}=\mathbf{F}<\mathbf{H}>\mathbf{K}: \mathrm{K}=\mathrm{B}$ or $\mathrm{K}>\mathrm{B}$ or K < B. So, it is not true.
12) Answer : a) : If only conclusion a is true.

Explanation: H @ T, T © N, N \$ W $\rightarrow \mathrm{H} \geq \mathrm{T}, \mathrm{T}>\mathrm{N}, \mathrm{N}<\mathrm{W} \rightarrow \mathbf{H} \geq \mathbf{T}>\mathbf{N}<\mathbf{W}$
Conclusion a $\rightarrow \mathrm{N} \$ \mathrm{H} \rightarrow \mathrm{N}<\mathrm{H}$
The relation between N and H in the statement $\mathbf{H} \geq \mathbf{T}>\mathbf{N}<\mathbf{W} \quad: \mathbf{H}>\mathbf{N}$. So, it is true.
Conclusion $\mathrm{b} \rightarrow \mathrm{W} \$ \mathrm{H} \rightarrow \mathrm{W}<\mathrm{H}$
The relation between W and H in the statement $\mathbf{H} \geq \mathbf{T}>\mathbf{N}<\mathbf{W}: \mathrm{W}=\mathrm{H}$ or $\mathrm{W}>\mathrm{H}$ or $\mathrm{W}<\mathrm{H}$. So, it is not true.

13) Answer : b) : If only conclusion b is true .

Explanation: H \$ F, F\% M, M © J $\rightarrow \mathrm{H}<\mathrm{F}, \mathrm{F} \leq \mathrm{M}, \mathrm{M}>\mathrm{J} \rightarrow \mathrm{H}<\mathrm{F} \leq \mathrm{M}>\boldsymbol{J}$ Conclusion a $\rightarrow \mathrm{J} \$ \mathrm{~F} \rightarrow \mathrm{~J}<\mathrm{F}$
The relation between J and F in the statement $\mathbf{H}<\mathbf{F} \leq \mathbf{M}\rangle \mathbf{J}: \mathrm{J}=\mathrm{F}$ or $\mathrm{J}<\mathrm{F}$ or J\rangle F. So, it is not true.

Conclusion $b \rightarrow M \subset H \rightarrow M>H$
The relation between M and H in the statement $\mathbf{H}<\mathbf{F} \leq \mathbf{M}>\mathbf{J}: \mathbf{M}>\mathrm{H}$. So, it is true.

14) Answer : e): If both conclusions a and b are true .

Explanation: $\mathrm{M} \$ \mathrm{~T}, \mathrm{~T} \% \mathrm{R}, \mathrm{M} \subset \mathrm{N} \rightarrow \mathrm{M}<\mathrm{T}, \mathrm{T} \leq \mathrm{R}, \mathrm{M}>\mathrm{N} \rightarrow \mathbf{N}<\mathbf{M}<\mathbf{T} \leq \mathbf{R}$
Conclusion $a \rightarrow M \$ R \rightarrow M<R$
The relation between M and R in the statement $\mathbf{N}<\mathbf{M}<\mathbf{T} \leq \mathbf{R}: \mathrm{M}<\mathrm{R}$. So, it is true.
Conclusion $\mathrm{b} \rightarrow \mathrm{N} \$ \mathrm{~T} \rightarrow \mathrm{~N}<\mathrm{T}$
The relation between N and T in the statement $\mathbf{N}<\mathbf{M}<\mathbf{T} \leq \mathbf{R}: \mathbf{N}<\mathbf{T}$. So, it is true.
15) Answer: d) : If neither conclusion a nor b is true.

Explanation: D \$ T, T \% B, B @ F $\rightarrow \mathrm{D}<\mathrm{T}, \mathrm{T} \leq \mathrm{B}, \mathrm{B} \geq \mathrm{F} \rightarrow \mathbf{D}<\mathbf{T} \leq \mathbf{B} \geq \mathbf{F}$
Conclusion $\mathrm{a} \rightarrow \mathrm{D} \# \mathrm{~T} \rightarrow \mathrm{D}=\mathrm{T}$
The relation between D and T in the statement $\mathbf{D}<\mathbf{T} \leq \mathbf{B} \geq \mathbf{F}: \mathrm{D}<\mathrm{T}$. So, it is not true. Conclusion $\mathrm{b} \rightarrow \mathrm{D} @ \mathrm{~F} \rightarrow \mathrm{D} \geq \mathrm{F}$
The relation between D and F in the statement $\mathbf{D}<\mathbf{T} \leq \mathbf{B} \geq \mathbf{F}: \mathrm{D}<\mathrm{F}$. So, it is not true.

