RATIO AND PROPORTION

If the ratio of two numbers is $\mathrm{a}: \mathrm{b}$ then the two numbers can be assumed as ax and $b x$ where x is the H.C.F (Highest Common Factor) of the two numbers.

In the above ratio a and b are known as the terms of the ratio.

Some Formulae:

(i) Two numbers are in the ratio of a: b. If both are increased/decreased by k then the ratio of the two numbers becomes $\mathrm{c}: \mathrm{d}$ then the value x (H.C.F) is given by $x=\frac{|c-d| \times k}{|a d-b c|}$

The two numbers will be ax and bx.
(ii) If the ratio of two numbers A and B is $N_{1}: D_{1}$ and that of B and C is $N_{2}: D_{2}$ then the ratio of three numbers i.e. A : B:C $=\left(N_{1} \times N_{2}\right):\left(D_{1} \times N_{2}\right):\left(D_{1} \times D_{2}\right)$.
(iii) Three numbers are such that k_{1} times the first number, k_{2} times the second number and k_{3} times the third number are all equal. then the three numbers are in the ratio of

$$
\frac{1}{k_{1}}: \frac{1}{k_{2}}: \frac{1}{k_{3}}
$$

(iv) If two ratios $\mathrm{a}: \mathrm{b}$ and $\mathrm{c}: \mathrm{d}$ have equal values then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are said to be in proportion i.e. $\mathrm{a}: \mathrm{b}=\mathrm{c}: \mathrm{d}$. Here a and d are called the ends and b and c are called means of the proportion. In a proportion the product of extremes is equal to the product of the means.

$$
\Rightarrow \quad a \times d=b \times c
$$

(v) The number to be subtracted from each of a, b, c and d so that they become proportional

$$
\text { is } \frac{a d-b c}{(a+d)-(b+c)} .
$$

Similarly the least number to be added to each of a, b, c and d so that they became proportional is $\frac{a d-b c}{(b+c)-(a+d)}$

PROBLEMS

1. The average age of three boys is 25 years and their ages are in the proportion $3: 5$:7. The age of the youngest boy is:
1) 21 years
2) 18 years
3) 15 years
4) 9 years
5) None of these

ANSWER: 3

Total age of three boys $=25 \times 3=75$

* Their ages are in the ratio of $3: 5: 7$ the age of youngest boy
$=\left(\frac{75}{3+5+7}\right) \times 3=\frac{75}{15} \times 3$

$$
=15 \text { years }
$$

2. A box contains 1 -rupee, 50 -paise and 25 -paise coins in the ration $8: 5: 3$. If the total amount of money in the box is ` 112.50 , the number of 50 -paise coins is
1) 80
2) 50
3) 30
4) 42
5) None of these

ANSWER: 2

The coins are in the ratio of $8: 5: 3$
So their numbers can be assumed as $8 x, 5 x$ and $3 x$
: Total value of coins $=8 x \times 1+5 x \times \frac{1}{2}+3 x \times \frac{1}{4}$

$$
=8 x+\frac{5 x}{2}+\frac{3 x}{4}=\frac{32 x+10 x+3 x}{4}=\frac{45 x}{4}
$$

$\Rightarrow \frac{45 x}{4}=112.5$
$\therefore \quad x=\frac{112.5 \times 4}{45}=\frac{450}{45}=10$

* Number of 50-paise coins $=5 \times 10=50$

3. Two natural numbers are in the ratio $3: 5$ and their product is 2160 . The smaller of the numbers is
1) 36
2) 24
3) 18
4) 12
5) None of these

ANSWER: 1
Since the ratio of two numbers is $3: 5$, the two numbers can be assumed as $3 x$ and $5 x$
\therefore Their product $=3 x \times 5 x=15 x^{2}$
But $15 x^{2}=2160$
$\Rightarrow x^{2}=\frac{2160}{15}=144$
$\therefore x=\sqrt{144}=12$
Smaller number is $3 \times 12=36$
4. What must be added to each term of the ratio $7: 11$ so as to make it equal to $3: 4$

1) 8
2) 7.5
3) 6.5
4) 5
5) None of these

ANSWER: 4
The terms of the ratio 7: 11 are 7 and 11 (not $7 x$ and $11 x$)
If ' k ' be the number added to each term so that ratio becomes $3: 4$
then $7+k: 11+k=3: 4$
$\Rightarrow 4(7+\mathrm{k})=3(11+\mathrm{k})$
$28+4 \mathrm{k}=33+3 \mathrm{k}$
$\therefore \quad \mathrm{k}=33-28=5$
5. If $W_{1}: W_{2}=2: 3$ and $W_{1}: W_{3}=1: 2$ then $W_{2}: W_{3}$ is

1) $3: 4$
2) $4: 3$
3) $2: 3$
4) $4: 5$
5) None of
these
ANSWER: 1

$$
\begin{aligned}
& \mathrm{W}_{1}: \mathrm{W}_{2}=2: 3 \Rightarrow \mathrm{~W}_{2}: \mathrm{W}_{1}=3: 2 \\
& \therefore \frac{W_{2}}{W_{1}}=\frac{3}{2} \quad \text { also } \frac{W_{1}}{W_{3}}=\frac{1}{2} \\
& \Rightarrow \frac{W_{2}}{W_{1}} \times \frac{W_{1}}{W_{3}}=\frac{3}{2} \times \frac{1}{2} \Rightarrow \frac{W_{2}}{W_{3}}=\frac{3}{4} \\
& \therefore \mathrm{~W}_{2}: \mathrm{W}_{3}=3: 4
\end{aligned}
$$

6. 2040 are divided among A, B and C such that A gets $\frac{2}{3}$ of what B gets and B gets $\frac{1}{4}$ of what C gets. Then B's share is:
1) ${ }^{`} 180$
2) ` 240
3) ${ }^{`} 360$
4) ` 480
5) None of these

ANSWER: 3
A + B $+C=2040$
$\mathrm{A}=\frac{2}{3} \mathrm{~B}$ and $\mathrm{B}=\frac{1}{4} \mathrm{C}$
$\Rightarrow \frac{A}{B}=\frac{2}{3}$ and $\frac{B}{C}=\frac{1}{4}$
$\therefore \mathrm{A}: \mathrm{B}: \mathrm{C}=(2 \times 1):(3 \times 1):(3 \times 4)=2: 3: 12$
\Rightarrow B's share $=\left(\frac{2040}{2+3+12}\right) \times 3=\frac{2040}{17} \times 3=360$
7. `1870 are divided into three parts in such a way that half of the first part, onethird of the second part and one-sixth of the third part are equal. The third part is:

1) ` 510
2) ` 680
3) ` 850
4) ` 1020
5) None of these

ANSWER: 4
x, y and z be the three parts then $x+\mathrm{y}+\mathrm{z}=1870$
Also $\frac{1}{2} x=\frac{1}{3} y=\frac{1}{6} z$
$\therefore x: y: z=2: 3: 6$
$\Rightarrow \mathrm{z}=\left(\frac{1870}{2+3+6}\right) \times 6=\frac{1870}{11} \times 6=1020$
8. A sum of ` 1300 is divided among P, Q, R and S such that:

$$
\frac{P^{\prime} \text { s share }}{Q^{\prime} \text { s share }}=\frac{Q^{\prime} \text { s share }}{R^{\prime} \text { s share }}=\frac{R^{\prime} \text { s share }}{S^{\prime} \text { s share }}=\frac{2}{3}
$$

What is P's share?

1) ` 320
2) ` 240
3) ${ }^{`} 160$
4) ` 140
5) None of these

ANSWER: 3

$$
\mathrm{P}+\mathrm{Q}+\mathrm{R}+\mathrm{S}=1300
$$

$$
\frac{P}{Q}=\frac{2}{3} \quad \frac{Q}{R}=\frac{2}{3} \quad \frac{R}{S}=\frac{2}{3}
$$

$\Rightarrow P: Q: R: S=(2 \times 2 \times 2):(3 \times 2 \times 2):(3 \times 3 \times 2):(3 \times 3 \times 3)=8: 12: 18:$ 27
\therefore P's share $=\left(\frac{1300}{8+12+18+27}\right) \times 8=\frac{1300}{65} \times 8=160$
9. The ages of X and Y are in the ratio of $3: 1$. Fifteen years hence, the ratio will be 2 $: 1$. Their present ages (in years) are:

1) 30,10
2) 45,15
3) 21,7
4) 60,20
5) None of
these
ANSWER: 2
The ages of X and Y be $3 x$ and x
Fifteen years hence their ages will be $(3 x+15)$ and $(x+15)$
But $(3 x+15):(x+15)=2: 1$
$\Rightarrow(3 x+15) \times 1=(x+15) \times 2$
$3 x+15=2 x+30$
$x=15$

* The present ages are $3 \times 15=45$ and 15 respectively.

10. A and B are two alloys of gold and copper prepared by mixing metals in the ratio 7:2 and 7:11 respectively. If equal quantities of the alloys are melted to form a third alloy C , the ratio of gold and copper in C will be:
1) $5: 9$
2) $5: 7$
3) $7: 5$
4) $9: 5$
5) None of
these
ANSWER: 3
Take the quantity of each of A and B as L.C.M of sum of the terms of the ratio.
\therefore Quantity of each of A and B = L.C.M of $[(7+2),(7+11)]$

$$
=\text { L.C.M of }(9,18)=18
$$

: Gold in alloy $\mathrm{A}=\left(\frac{18}{7+2}\right) \times 7=14$
Gold in alloy $\mathrm{B}=\left(\frac{18}{7+11}\right) \times 7=7$
\therefore In alloy C quantity of gold $=14+7=21$
\Rightarrow In alloy C quantity of copper $=(2 \times 18-21)=15$

* Gold to copper ratio $=21: 15=7: 5$

11. A mixture contains milk and water in the ratio of $5: 1$. On adding 5 litres of water, the ratio of milk to water becomes $5: 2$. The quantity of milk in the original mixture is:
1) 16 liters
2) 25 liters
3) 22.75 liters
4) 32.5 liters
5) None of these

ANSWER: 2
Milk and water in the mixture be $5 x$ and x
When 5 litres water is added then milk and water will be $5 x$ and $x+5$
But $5 x: x+5=5: 2$
$\Rightarrow 5 x \times 2:(x+5) \times 5$
$10 x=5 x+25$

www.sakshieducation.com

$$
\therefore x=5
$$

Milk in the original mixture $=5 \times 5=25$ litres
12. Two equal glasses are respectively $\frac{1}{3}$ and $\frac{1}{4}$ full of milk. They are then filled with water and the contents mixed in a tumbler. The ratio of milk and water in a tumbler is:

1) $7: 5$
2) $7: 17$
3) $9: 21$
4) $11: 23$
5) None of these

ANSWER: 2
The glasses be of L.C.M of $(3,4)=12$ lit capacity
Then milk in first glass $=\frac{1}{3}(12)=4$ lit
Milk in second glass $=\frac{1}{4}(12)=3$ lit
: Water in first glass $=12-4=8$ lit
Water in second glass $=12-3=9$ lit
\Rightarrow Milk in tumbler $=4+3=7$ lit
Water in tumbler $=8+9=17$ lit Milk : Water $=7: 17$

