PROBABILITY

PROBABILITY: If there are 'a' elementary events associated with a random experiment and 'b' of them are favorable to event 'E'. Then the probability of

occurrence of event E is denoted by P (E) and is defined as $\frac{b}{-}$.

$$\therefore \quad P(E) = \frac{b}{a} \qquad \Rightarrow \ 0 \le P(E) \le 1$$

The probability of non-occurrence of event E denoted by $P(\overline{E})$ and is defined as a-b

$$\Rightarrow P(\overline{E}) = \frac{a-b}{a} = 1 - \frac{b}{a} = 1 - P(E)$$
$$\Rightarrow P(E) + P(\overline{E}) = 1$$

If the random experiment is based on arrangement of objects then

 $P(E) = \frac{arrangements in favour}{Total number of arrangements}$

Similarly if the random experiment is based on selection of objects then

 $P(E) = \frac{Selections in favour}{Total number of selections}$

PROBLEMS

Directions (1-3): Study the given information carefully and answer the questions that follow:

A basket contains 4 red, 5 blue and 3 green marbles.

1. If three marbles are picked at random, what is the probability that either all are green or all are red?

b) $\frac{7}{12}$ c) $\frac{5}{12}$ d) $\frac{1}{44}$ a) $\frac{7}{44}$ e) None of these

ANSWER: d

Three marbles can be picked from 12 balls in ${}^{12}C_3$ ways

Number of picks where all three are green = ${}^{3}C_{3}$

Number of picks where all three are red = ${}^{4}C_{3}$

• Number of picks where all are green or red = ${}^{3}C_{3} + {}^{4}C_{3}$

⇒ P(E) =
$$\frac{{}^{3}C_{3} + {}^{4}C_{3}}{{}^{12}C_{3}} = \frac{1+4}{\frac{12 \times 11 \times 10}{1 \times 2 \times 3}} = \frac{5}{2 \times 11 \times 10} = \frac{1}{44}$$

2. If two marbles are picked at random, what is the probability that both are red?

a)
$$\frac{3}{7}$$
 b) $\frac{1}{2}$ c) $\frac{2}{11}$ d) $\frac{1}{6}$ e) None of these

ANSWER: e

Two marbles can be picked in ${}^{12}C_2 = \frac{12 \times 11}{1 \times 2} = 6 \times 11$ ways Number of picks where both are red = ${}^{4}C_2 = \frac{4 \times 3}{1 \times 2} = 6$ \implies Probability P(E) = $\frac{6}{6 \times 11} = \frac{1}{11}$

3. If three marbles are picked at random, what is the probability that at least one is blue?

a) $\frac{7}{12}$ b) $\frac{37}{44}$ c) $\frac{5}{12}$ d) $\frac{7}{44}$ e) None of these

ANSWER: b

Three marbles can be picked in ${}^{12}C_3 = \frac{12 \times 11 \times 10}{1 \times 2 \times 3} = 2 \times 11 \times 10$ ways

Number of picks where no marble is blue = ${}^{(4+3)}C_3 = {}^7C_3 = \frac{7 \times 6 \times 5}{1 \times 2 \times 3} = 7 \times 5$

$$\Rightarrow P(E) = \frac{7 \times 5}{2 \times 11 \times 10} = \frac{7}{44}$$
$$\Rightarrow P(\overline{E}) = 1 - P(E) = 1 - \frac{7}{44} = \frac{37}{44}$$

Directions (4-8): Study the following information carefully to answer the questions that follow:

A box contains 2 blue caps, 4 red caps, 5 green caps and 1 yellow cap. 4. If two caps are picked at random, what is the probability that both are blue? a) $\frac{1}{6}$ b) $\frac{1}{10}$ c) $\frac{1}{12}$ d) $\frac{1}{45}$ e) None of these ANSWER: e Two caps can be picked in ${}^{12}C_2 = \frac{12 \times 11}{1 \times 2} = 66$ ways Number of picks where both are blue = ${}^{2}C_2 = 1$ \therefore Required Probability P(E) = $\frac{1}{66}$ 5. If four caps are picked at random, what is the probability that none is green? a) $\frac{7}{99}$ b) $\frac{5}{99}$ c) $\frac{7}{12}$ d) $\frac{5}{12}$ e) None of

these

ANSWER: a

Four caps can be picked in ${}^{12}C_4 = \frac{12 \times 11 \times 10 \times 9}{1 \times 2 \times 3 \times 4} = 11 \times 5 \times 9$ ways Number of picks where no cap is green = ${}^{(2+4+1)}C_4 = {}^7C_4 = {}^7C_3 = \frac{7 \times 6 \times 5}{1 \times 2 \times 3} = 7 \times 5$ \therefore Required Probability P(E) = $\frac{7 \times 5}{11 \times 5 \times 9} = \frac{7}{99}$

6. If three caps are picked at random, what is the probability that two are red and one is green?

a) $\frac{9}{22}$ b) $\frac{6}{19}$ c) $\frac{1}{6}$ d) $\frac{3}{22}$ e) None of these

ANSWER: d

Three caps can be picked in ${}^{12}C_3 = \frac{12 \times 11 \times 10}{1 \times 2 \times 3} = 2 \times 11 \times 10$ ways

Number of picks with two red caps and one green cap = ${}^{4}C_{2} \times {}^{5}C_{1} = 6 \times 5$

• Required Probability P(E) = $\frac{6 \times 5}{2 \times 11 \times 10} = \frac{3}{22}$

7. If one cap is picked at random, what is the probability that it is either blue or yellow?

a) $\frac{2}{9}$ b) $\frac{1}{4}$ c) $\frac{3}{8}$ d) $\frac{6}{11}$ e) None of these

ANSWER: b

One cap can be picked in ${}^{12}C_1 = 12$ ways

Number of picks with either blue or yellow cap = ${}^{(2+1)}C_1 = {}^{3}C_1 = 3$

• Required Probability P (E) = $\frac{3}{12} = \frac{1}{4}$

8. If two caps are picked at random, what is the probability that at least one is red?

a) $\frac{1}{3}$ b) $\frac{16}{21}$ c) $\frac{19}{33}$ d) $\frac{7}{19}$ e) None of these

ANSWER: c

Two caps can be picked in ${}^{12}C_2 = \frac{12 \times 11}{1 \times 2} = 66$ ways

Number of picks where none is red = ${}^{(2+5+1)}C_2 = {}^8C_2 = \frac{8 \times 7}{1 \times 2} = 28$

⇒
$$P(E) = \frac{28}{66} = \frac{14}{33}$$

∴ $P(\overline{E}) = 1 - P(E) = 1 - \frac{14}{33} = \frac{19}{33}$

Directions (9-13): Study the given information carefully to answer the questions that follow:

A basket contains 6 blue, 2 red, 4 green and 3 yellow marbles.

9. If 2 balls are picked at random, what is the probability that either both are green or both are yellow?

a) $\frac{2}{5}$ b) $\frac{3}{35}$ c) $\frac{1}{3}$ d) $\frac{3}{91}$ e) None of these

ANSWER: b

Two balls can be picked in
$${}^{(6+2+4+3)}C_2 = {}^{15}C_2 = \frac{15 \times 14}{1 \times 2} = 105$$
 ways

Number of picks where both are green = ${}^{4}C_{2} = \frac{4 \times 3}{1 \times 2} = 6$ Number of picks where both are yellow = ${}^{3}C_{2} = 3$ • Number of picks where both are green or both are yellow = 6 + 3 = 9• Required Probability P(E) = $\frac{9}{105} = \frac{3}{35}$ 10. If 5 balls are picked at random, what is the probability that at least one is blue? b) $\frac{9}{91}$ c) $\frac{18}{455}$ d) $\frac{2}{5}$ a) $\frac{137}{143}$ e) None of these **ANSWER**: e Five balls can be picked in ${}^{15}C_5 = \frac{15 \times 14 \times 13 \times 12 \times 11}{1 \times 2 \times 3 \times 4 \times 5} = 21 \times 13 \times 11$ ways Number of picks with no blue ball = ${}^{(2+4+3)}C_5 = {}^9C_5 = {}^9C_4 = \frac{9 \times 8 \times 7 \times 6}{1 \times 2 \times 3 \times 4} = 9 \times 7 \times 2$ $\implies P(E) = \frac{9 \times 7 \times 2}{21 \times 13 \times 11} = \frac{42}{1001}$ • $P(\overline{E}) = 1 - \frac{42}{1001} = \frac{959}{1001}$ 11. If 2 balls are picked at random, what is the probability that both are blue? b) $\frac{8}{91}$ c) $\frac{2}{15}$ d) $\frac{7}{27}$ a) $\frac{1}{5}$ e) None of these **ANSWER**: e Two balls can be picked in ${}^{(6+2+4+3)}C_2 = {}^{15}C_2 = \frac{15 \times 14}{1 \times 2} = 15 \times 7$ ways Two blue balls can be picked in ${}^{6}C_{2} = \frac{6 \times 5}{1 \times 2} = 3 \times 5$ • Required Probability P(E) = $\frac{3 \times 5}{15 \times 7} = \frac{1}{7}$

12. If 4 balls are picked at random, what is the probability that 2 balls are red and 2 are green

a)
$$\frac{4}{15}$$
 b) $\frac{5}{27}$ c) $\frac{1}{3}$ d) $\frac{2}{455}$ e) None of

these

ANSWER: d

Four balls can be picked in ${}^{15}C_4 = \frac{15 \times 14 \times 13 \times 12}{1 \times 2 \times 3 \times 4} = 15 \times 13 \times 7$ ways 2 red and 2 green balls can be picked in ${}^{2}C_2 \times {}^{4}C_2 = 1 \times 6$ \therefore Required Probability P(E) = $\frac{1 \times 6}{15 \times 13 \times 7} = \frac{2}{455}$

13. If 3 balls are picked at random, what is the probability that none is yellow?

a)
$$\frac{3}{455}$$
 b) $\frac{1}{5}$ c) $\frac{44}{91}$ d) $\frac{4}{5}$ e) None of these

ANSWER: c

Three balls can be picked in ${}^{15}C_3 = \frac{15 \times 14 \times 13}{1 \times 2 \times 3} = 35 \times 13$ ways Number of picks with no yellow ball = ${}^{(6+2+4)}C_3 = {}^{12}C_3 = \frac{12 \times 11 \times 10}{1 \times 2 \times 3} = 2 \times 11 \times 10$ \therefore Required Probability P(E) = $\frac{2 \times 11 \times 10}{35 \times 13} = \frac{44}{91}$

