www.sakshieducation.com

PROBABILITY

PROBABILITY: If there are 'a' elementary events associated with a random experiment and ' b ' of them are favorable to event ' E '. Then the probability of occurrence of event E is denoted by $\mathrm{P}(\mathrm{E})$ and is defined as $\frac{b}{a}$.

$$
\therefore \quad \mathrm{P}(\mathrm{E})=\frac{b}{a} \quad \Rightarrow \mathrm{o} \leq \mathrm{P}(\mathrm{E}) \leq 1
$$

The probability of non-occurrence of event E denoted by $\mathrm{P}(\bar{E})$ and is defined as $\frac{a-b}{a}$.

$$
\begin{aligned}
& \Rightarrow \mathrm{P}(\bar{E})=\frac{a-b}{a}=1-\frac{b}{a}=1-\mathrm{P}(\mathrm{E}) \\
& \Rightarrow \mathrm{P}(\mathrm{E})+\mathrm{P}(\bar{E})=1
\end{aligned}
$$

If the random experiment is based on arrangement of objects then

$$
\mathrm{P}(\mathrm{E})=\frac{\text { arrangements in favour }}{\text { Total number of arrangements }}
$$

Similarly if the random experiment is based on selection of objects then

$$
\mathrm{P}(\mathrm{E})=\frac{\text { Selections in favour }}{\text { Total number of selections }}
$$

PROBLEMS

Directions (1-3): Study the given information carefully and answer the questions that follow:

A basket contains 4 red, 5 blue and 3 green marbles.

1. If three marbles are picked at random, what is the probability that either all are green or all are red?
a) $\frac{7}{44}$
b) $\frac{7}{12}$
c) $\frac{5}{12}$
d) $\frac{1}{44}$
e) None of these

ANSWER: d
Three marbles can be picked from 12 balls in ${ }^{12} C_{3}$ ways
Number of picks where all three are green $={ }^{3} C_{3}$
Number of picks where all three are red $={ }^{4} C_{3}$
. Number of picks where all are green or red $={ }^{3} C_{3}+{ }^{4} C_{3}$
$\Rightarrow \mathrm{P}(\mathrm{E})=\frac{{ }^{3} C_{3}+{ }^{4} C_{3}}{{ }^{12} C_{3}}=\frac{1+4}{\frac{12 \times 11 \times 10}{1 \times 2 \times 3}}=\frac{5}{2 \times 11 \times 10}=\frac{1}{44}$
2. If two marbles are picked at random, what is the probability that both are red?
a) $\frac{3}{7}$
b) $\frac{1}{2}$
c) $\frac{2}{11}$
d) $\frac{1}{6}$
e) None of these

ANSWER: e

Two marbles can be picked in ${ }^{12} C_{2}=\frac{12 \times 11}{1 \times 2}=6 \times 11$ ways
Number of picks where both are red $={ }^{4} C_{2}=\frac{4 \times 3}{1 \times 2}=6$
\Rightarrow Probability $\mathrm{P}(\mathrm{E})=\frac{6}{6 \times 11}=\frac{1}{11}$
3. If three marbles are picked at random, what is the probability that at least one is blue?
a) $\frac{7}{12}$
b) $\frac{37}{44}$
c) $\frac{5}{12}$
d) $\frac{7}{44}$
e) None of these

ANSWER: b
Three marbles can be picked in ${ }^{12} C_{3}=\frac{12 \times 11 \times 10}{1 \times 2 \times 3}=2 \times 11 \times 10$ ways
Number of picks where no marble is blue $={ }^{(4+3)} C_{3}={ }^{7} C_{3}=\frac{7 \times 6 \times 5}{1 \times 2 \times 3}=7 \times 5$

$$
\begin{aligned}
& \Rightarrow P(E)=\frac{7 \times 5}{2 \times 11 \times 10}=\frac{7}{44} \\
& \Rightarrow P(\bar{E})=1-P(E)=1-\frac{7}{44}=\frac{37}{44}
\end{aligned}
$$

Directions (4-8): Study the following information carefully to answer the questions that follow:

A box contains 2 blue caps, 4 red caps, 5 green caps and 1 yellow cap.
4. If two caps are picked at random, what is the probability that both are blue?
a) $\frac{1}{6}$
b) $\frac{1}{10}$
c) $\frac{1}{12}$
d) $\frac{1}{45}$
e) None of these

ANSWER: e

Two caps can be picked in ${ }^{12} C_{2}=\frac{12 \times 11}{1 \times 2}=66$ ways
Number of picks where both are blue $={ }^{2} C_{2}=1$
\therefore Required Probability $P(E)=\frac{1}{66}$
5. If four caps are picked at random, what is the probability that none is green?
a) $\frac{7}{99}$
b) $\frac{5}{99}$
c) $\frac{7}{12}$
d) $\frac{5}{12}$
e) None of
these

ANSWER: a

Four caps can be picked in ${ }^{12} C_{4}=\frac{12 \times 11 \times 10 \times 9}{1 \times 2 \times 3 \times 4}=11 \times 5 \times 9$ ways
Number of picks where no cap is green $={ }^{(2+4+1)} C_{4}={ }^{7} C_{4}={ }^{7} C_{3}=\frac{7 \times 6 \times 5}{1 \times 2 \times 3}=7 \times 5$
\therefore Required Probability $P(E)=\frac{7 \times 5}{11 \times 5 \times 9}=\frac{7}{99}$
6. If three caps are picked at random, what is the probability that two are red and one is green?
a) $\frac{9}{22}$
b) $\frac{6}{19}$
c) $\frac{1}{6}$
d) $\frac{3}{22}$
e) None of these

ANSWER: d
Three caps can be picked in ${ }^{12} C_{3}=\frac{12 \times 11 \times 10}{1 \times 2 \times 3}=2 \times 11 \times 10$ ways
Number of picks with two red caps and one green cap $={ }^{4} C_{2} \times{ }^{5} C_{1}=6 \times 5$

* Required Probability $\mathrm{P}(\mathrm{E})=\frac{6 \times 5}{2 \times 11 \times 10}=\frac{3}{22}$

7. If one cap is picked at random, what is the probability that it is either blue or yellow?
a) $\frac{2}{9}$
b) $\frac{1}{4}$
c) $\frac{3}{8}$
d) $\frac{6}{11}$
e) None of these

ANSWER: b
One cap can be picked in ${ }^{12} C_{1}=12$ ways
Number of picks with either blue or yellow cap $={ }^{(2+1)} C_{1}={ }^{3} C_{1}=3$
\therefore Required Probability $\mathrm{P}(\mathrm{E})=\frac{3}{12}=\frac{1}{4}$
8. If two caps are picked at random, what is the probability that at least one is red?
a) $\frac{1}{3}$
b) $\frac{16}{21}$
c) $\frac{19}{33}$
d) $\frac{7}{19}$
e) None of these

ANSWER: c
Two caps can be picked in ${ }^{12} C_{2}=\frac{12 \times 11}{1 \times 2}=66$ ways
Number of picks where none is red $={ }^{(2+5+1)} C_{2}={ }^{8} C_{2}=\frac{8 \times 7}{1 \times 2}=28$
$\Rightarrow P(E)=\frac{28}{66}=\frac{14}{33}$
: $P(\bar{E})=1-P(E)=1-\frac{14}{33}=\frac{19}{33}$
Directions (9-13): Study the given information carefully to answer the questions that follow:

A basket contains 6 blue, 2 red, 4 green and 3 yellow marbles.

9. If 2 balls are picked at random, what is the probability that either both are green or both are yellow?
a) $\frac{2}{5}$
b) $\frac{3}{35}$
c) $\frac{1}{3}$
d) $\frac{3}{91}$
e) None of these

ANSWER: b

Two balls can be picked in ${ }^{(6+2+4+3)} C_{2}={ }^{15} C_{2}=\frac{15 \times 14}{1 \times 2}=105$ ways

Number of picks where both are green $={ }^{4} C_{2}=\frac{4 \times 3}{1 \times 2}=6$
Number of picks where both are yellow $={ }^{3} C_{2}=3$
\therefore Number of picks where both are green or both are yellow $=6+3=9$
\therefore Required Probability $\mathrm{P}(\mathrm{E})=\frac{9}{105}=\frac{3}{35}$
10. If 5 balls are picked at random, what is the probability that at least one is blue?
a) $\frac{137}{143}$
b) $\frac{9}{91}$
c) $\frac{18}{455}$
d) $\frac{2}{5}$
e) None of
these
ANSWER: e
Five balls can be picked in ${ }^{15} C_{5}=\frac{15 \times 14 \times 13 \times 12 \times 11}{1 \times 2 \times 3 \times 4 \times 5}=21 \times 13 \times 11$ ways
Number of picks with no blue ball $={ }^{(2+4+3)} C_{5}={ }^{9} C_{5}={ }^{9} C_{4}=\frac{9 \times 8 \times 7 \times 6}{1 \times 2 \times 3 \times 4}=9 \times 7 \times 2$
$\Rightarrow P(E)=\frac{9 \times 7 \times 2}{21 \times 13 \times 11}=\frac{42}{1001}$
$\therefore \quad P(\bar{E})=1-\frac{42}{1001}=\frac{959}{1001}$
11. If 2 balls are picked at random, what is the probability that both are blue?
a) $\frac{1}{5}$
b) $\frac{8}{91}$
c) $\frac{2}{15}$
d) $\frac{7}{27}$
e) None of
these
ANSWER: e
Two balls can be picked in ${ }^{(6+2+4+3)} C_{2}={ }^{15} C_{2}=\frac{15 \times 14}{1 \times 2}=15 \times 7$ ways
Two blue balls can be picked in ${ }^{6} C_{2}=\frac{6 \times 5}{1 \times 2}=3 \times 5$
\therefore Required Probability $P(E)=\frac{3 \times 5}{15 \times 7}=\frac{1}{7}$
12. If 4 balls are picked at random, what is the probability that 2 balls are red and 2 are green
a) $\frac{4}{15}$
b) $\frac{5}{27}$
c) $\frac{1}{3}$
d) $\frac{2}{455}$
e) None of
these
ANSWER: d
Four balls can be picked in ${ }^{15} C_{4}=\frac{15 \times 14 \times 13 \times 12}{1 \times 2 \times 3 \times 4}=15 \times 13 \times 7$ ways
2 red and 2 green balls can be picked in ${ }^{2} C_{2} \times{ }^{4} C_{2}=1 \times 6$
: Required Probability $\mathrm{P}(\mathrm{E})=\frac{1 \times 6}{15 \times 13 \times 7}=\frac{2}{455}$

www.sakshieducation.com

13. If 3 balls are picked at random, what is the probability that none is yellow?
a) $\frac{3}{455}$
b) $\frac{1}{5}$
c) $\frac{44}{91}$
d) $\frac{4}{5}$
e) None of these

ANSWER: c

Three balls can be picked in ${ }^{15} C_{3}=\frac{15 \times 14 \times 13}{1 \times 2 \times 3}=35 \times 13$ ways
Number of picks with no yellow ball $={ }^{(6+2+4)} C_{3}={ }^{12} C_{3}=\frac{12 \times 11 \times 10}{1 \times 2 \times 3}=2 \times 11 \times 10$
\therefore Required Probability $\mathrm{P}(\mathrm{E})=\frac{2 \times 11 \times 10}{35 \times 13}=\frac{44}{91}$

