MENSURATION-IV

Theory:

A solid is a figure bounded by one or more surface. Hence a solid has length, breadth and height. The plane surfaces that bind a solid are called its faces. The fundamental difference between a plane figure and a solid figure is that the plane figure lies in a plane and a solid figure lies in space.

There are two types of three-dimensional figures
(1) The solid figure in which any of the cross section is the same throughout.
E.g. Cube, Cuboid, Cylinder etc.
(2) The solid figure in which none of the cross-sections is same throughout.
E.g. Cone, Sphere, Pyramid etc.

CUBOID:

A cuboid is bounded by 6 rectangular faces. The opposite faces of a rectangular solid are equal rectangles lying in parallel planes.

The areas of three different faces be A_{1}, A_{2} and A_{3} then $A_{1}=\mathrm{lb} \quad A_{2}=\mathrm{bh}$ $A_{3}=\mathrm{lh}$
\therefore Surface area $=2\left(A_{1}+A_{2}+A_{3}\right)=2(\mathrm{lb}+\mathrm{bh}+\mathrm{lh})$
Volume $=$ Area of any face \times corresponding height

$$
\mathrm{V}=\mathrm{lb} \times \mathrm{h}=\mathrm{lbh}
$$

Diagonal (d) $=\sqrt{l^{2}+b^{2}+h^{2}}$
Diagonal is the biggest possible dimension of a cuboid.
Also $A_{1} \times A_{2} \times A_{3}=(l b)(b h)(l h)=(l b h)^{2}=V^{2}$

$$
\Rightarrow \mathrm{V}=\sqrt{A_{1} A_{2} A_{3}}
$$

CUBE:

A Cube is bounded by six square faces i.e. if the length ,breadth and height of a cuboid are all equal then it is called a cube.
If each side of the cube is of ' a ' units,
then its surface area(S.A) $=6 \mathrm{a}^{2}$ and Its Volume $(V)=a^{3}$
Diagonal of cube will be $d=a \sqrt{3}$

PROBLEMS

1. Each edge of a cube is decreased by 20%. The percentage of decrease in the surface area of the cube is
1) 44%
2) 36%
3) 20%
4) 60%
5) None of these

ANSWER: 2
Edge of the cube be 5 then its surface area $=6 \times 5^{2}=150$
After reduction new edge of the cube $=\left(\frac{100-20}{100}\right) \times 5=\frac{4}{\mathscr{D}} \times \mathbb{B}=4$
. New surface area of the cube $=6 \times 4^{2}=96$
: Surface area reduces by $\frac{150-96}{150} \times 100=\frac{54}{150} \times 100=36 \%$

Shortcut method:

(i) If each edge of a cube increased by $x \%$ then the surface area increases by $\mathrm{S}=\left(2 x+\frac{x^{2}}{100}\right) \%$
(ii) If each edge of a cube decreased by $x \%$ then the surface area decreases by $\mathrm{S}=\left(2 x-\frac{x^{2}}{100}\right) \%$
In the above problem $x=20 \%$, then $S=\left(2 \times 20-\frac{20^{2}}{100}\right) \%=(40-4) \%=36 \%$
2. A cuboid $(3 \mathrm{~cm} \times 4 \mathrm{~cm} \times 5 \mathrm{~cm})$ is cut into unit cubes. The ratio of the total surface area of all the unit cubes to that of the cuboid is

1) $180: 3$
2) $180: 9$
3) $180: 36$
4) $180: 47$
5) None of these

ANSWER: 4
The dimensions of a cuboid are $3 \times 4 \times 5$
: Its surface area $(\mathrm{S} . \mathrm{A})=2(3 \times 4+4 \times 5+3 \times 5)=94 \mathrm{~cm}^{2}$
If the cuboid is cut into unit cubes, then the number of unit cubes so formed $=3$ $\times 4 \times 5$

But surface area of each unit cube $=6 \times 1^{2}=6$
: Total surface area of unit cubes $=6 \times 60=360$
Required ratio $=360: 94=180: 47$
3. If the diagonal of a cube is $10 \sqrt{3} \mathrm{~cm}$, then its surface area will be

1) $500 \mathrm{~cm}^{2}$
2) $550 \mathrm{~cm}^{2}$
3) $600 \mathrm{~cm}^{2}$
4) $650 \mathrm{~cm}^{2}$
5) None of these

ANSWER: 3
Diagonal (d) of a cube $=10 \sqrt{3}$

* Its side $\mathrm{a}=\frac{d}{\sqrt{3}}=\frac{10 \sqrt{3}}{\sqrt{3}}=10$

Surface area (S.A) of cube $=6 \mathrm{a}^{2}=6 \times 10^{2}=600 \mathrm{~cm}^{2}$
4. If the volume of a cube is $216 \mathrm{~cm}^{2}$, then the surface area of the cube will be

1) $214 \mathrm{~cm}^{2}$
2) $216 \mathrm{~cm}^{2}$
3) $218 \mathrm{~cm}^{2}$
4) $220 \mathrm{~cm}^{2}$
5) None of these

ANSWER:
Volume (V) of a cube $=\mathrm{a}^{3}=216$
$\therefore \mathrm{a}=\sqrt[3]{216}=6$
Its surface area $=6 a^{2}=6 \times 6^{2}=216 \mathrm{~cm}^{2}$
5. If six cubes, each of 10 cm edge, are joined end to end, then the surface area of the resulting solid will be

1) $3600 \mathrm{~cm}^{2}$
2) $3000 \mathrm{~cm}^{2}$
3) $2600 \mathrm{~cm}^{2}$
4) $2400 \mathrm{~cm}^{2}$
5) None of these

ANSWER: 3
When six cubes are joined end to end, a cuboid will be formed whose length is $6 \times 10=60$
cm , breadth 10 cm and height 10 cm respectively i.e. $l=60, \mathrm{~b}=10 \& \mathrm{~h}=10$
. Surface area of cuboid $=2(60 \times 10+10 \times 10+60 \times 10)$

$$
=2(600+100+600)=2600 \mathrm{sq} \mathrm{~cm}
$$

6. If three cubes of copper, each with an edge of $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm respectively are melted to form a single cube, then the diagonal of the new cube will be
1) 18 cm
2) 19 cm
3) 19.5 cm
4) 20.8 cm
5) None of these

ANSWER: 4
If three cubes are melted to form a single larger cube then the volume of larger cube so formed will be equal to the sum of the volumes of the three cubes.
\therefore Volume of the larger cube $=63+8^{3}+10^{3}=216+512+1000=1728$

* Side of larger cube $=\sqrt[3]{1728}=12$
\therefore Diagonal of larger cube $=12 \sqrt{3}=12 \times 1.732=20.8 \mathrm{~cm}$

7. A swimming pool 9 m wide and 12 m long is 1 m deep on the shallow side and 4 m deep on the deeper side. Its volume is
1) $408 \mathrm{~m}^{3}$
2) $360 \mathrm{~m}^{3}$
3) $270 \mathrm{~m}^{3}$
4) $208 \mathrm{~m}^{3}$
5) None of these

ANSWER: 3
The cross-section of the swimming pool is a trapezium whose parallel sides are 1 m and 4 m and having a perpendicular distance of 9 m .
\therefore Area of cross-section $=\left(\frac{1+4}{2}\right) \times 9=22.5 \mathrm{sq} \mathrm{m}$
. Volume of swimming pool $=22.5 \times 12=270 \mathrm{cu} . \mathrm{m}$
8. The length, breadth and height of a cuboid are in the ratio $1: 2: 3$. The length, breadth and height of the cuboid are increased by $100 \%, 200 \%$ and 200% respectively. Then the increase in the volume of the cuboid is

1) 5 times
2) 6 times
3) 12 times
4) 17 times
5) None of these

ANSWER: 4
Length, breadth and height of cuboid be $x, 2 x$ and $3 x$ respectively, then its volume $=x \times 2 x \times 3 x=6 x^{3}$

When length, breadth and height are increased by $100 \%, 200 \%$ and 300% respectively,

New length $=\left(\frac{100+100}{100}\right) \times x=2 x$
New breadth $=\left(\frac{100+200}{100}\right) \times 2 x=6 x$
New height $=\left(\frac{100+300}{100}\right) \times 3 x=9 x$
New volume $=2 x \times 6 x \times 9 x=108 x^{3}$

* Increase in volume $=\left(\frac{108 x^{3}-6 x^{3}}{6 x^{3}}\right)=\frac{102 x^{3}}{6 x^{3}}=17$ times

9. A cube of lead with edges measuring 6 cm each is melted and formed into 27 equal cubes. What will be the length of the edges of the new cubes?
1) 3 cm
2) 4 cm
3) 2 cm
4) 1 cm
5) None of these

ANSWER: 3
The edge of each smaller cube be 'a'.
Then total volume of 27 cubes $=27 a^{3}$
But total volume of 27 cubes is equal to volume of cube of edge 6 cm
$\Rightarrow 27 \mathrm{a}^{3}=63=216$
$\mathrm{a}^{3}=\frac{216}{27}=8$
$\therefore \mathrm{a}=2$
10. The edges of a cuboid are in the ratio $1: 2: 3$ and its surface area is $88 \mathrm{~cm}^{2}$. The volume of the cuboid is

1) $120 \mathrm{~cm}^{3}$
2) $64 \mathrm{~cm}^{3}$
3) $48 \mathrm{~cm}^{3}$
4) $24 \mathrm{~cm}^{3}$
5) None of these

ANSWER: 3

The edges of cuboid are in the ratio of $1: 2: 3$. So the edges can be assumed as x, $2 x$ and
$3 x$
Surface area (S.A) $=2(x \times 2 x+2 x \times 3 x+x \times 3 x)=2\left(11 x^{2}\right)=22 x^{2}$
$\therefore 22 x^{2}=88 \Rightarrow x=2$
: The dimensions of cuboid will be 2,4 and 6 . The volume of cuboid $=2 \times 4 \times 6=$ $48 \mathrm{~cm}^{3}$.
11. The areas of three adjacent faces of a cuboid are a, b and c. If the volume of the cuboid is V, then V^{2} is equal to

1) abc
2) $(a b+b c+c a)$
3) $\frac{c}{a b}$
4) $(a+b+c)$
5) None of these

ANSWER: 1
If the three adjacent dimensions are x, y and z , then $x \times \mathrm{y}=\mathrm{a} \quad \mathrm{y} \times \mathrm{z}=\mathrm{b} \quad x \times \mathrm{z}=\mathrm{c}$
$\therefore \quad x \mathrm{y}=\mathrm{a} \quad \mathrm{yz}=\mathrm{b} \quad x \mathrm{z}=\mathrm{c}$
$(x y)(y z)(\mathrm{z} x)=\mathrm{abc}$
$x^{2} y^{2} z^{2}=a b c$
But $x^{2} y^{2} z^{2}=V^{2}$
$\therefore \mathrm{V}^{2}=\mathrm{abc}$
12. The sum of the length, breadth and depth a cuboid is 19 cm and its diagonal is $5 \sqrt{5}$. Its surface area is

1) $361 \mathrm{~cm}^{2}$
2) $125 \mathrm{~cm}^{2}$
3) $236 \mathrm{~cm}^{2}$
4) $144 \mathrm{~cm}^{2}$
5) None of these

ANSWER: 3
If $l, \mathrm{~b}$ and h are the three dimensions of cuboid then $l+\mathrm{b}+\mathrm{h}=19$,
$\sqrt{l^{2}+b^{2}+h^{2}}=5 \sqrt{5}$
$\therefore \quad(l+b+h)^{2}=l^{2}+b^{2}+h^{2}+2(l b+b h+h l)$
: $19^{2}=(5 \sqrt{5})^{2}+2(l \mathrm{~b}+\mathrm{bh}+\mathrm{h} l)$
: $2(l \mathrm{~b}+\mathrm{bh}+l \mathrm{~h})=361-125=236 \mathrm{~cm}^{2}$

* Surface area $=236 \mathrm{~cm}^{2}$

13. What is the time needed to empty a cubodial water reservoir 10 m long, 9 m wide and 3 m deep at the rate of $45 \mathrm{~L} / \mathrm{m}$?
1) 100 h
2) 90 h
3) 80 h
4) 60 h
5) None of these

ANSWER: 1
Volume of water in reservoir $=10 \times 9 \times 3=270 \mathrm{cu} . \mathrm{m}$
$=270 \times 1000$ lit $=270000$ lit [${ }^{*} 1 \mathrm{cu} . \mathrm{m}=1000$
lit]
Time to empty $\operatorname{tank}=\frac{270000}{45}=6000 \mathrm{~min}=\frac{6000}{60}=100 \mathrm{~h}$

