MATHEMATICS PAPER IB.- MAY 2011.

COORDINATE GEOMETRY \& CALCULUS.

TIME: 3hrs

Max. Marks. 75
Note: This question paper consists of three sections A,B and C.

SECTION A

VERY SHORT ANSWER TYPE QUESTIONS.
 $10 \times 2=20$

Noe : Attempt all questions. Each question carries $\mathbf{2}$ marks.

1.Find the equation of line passing through $\mathrm{A}(-1,3)$ and perpendicular to the straight line passing through $\mathrm{B}(2,-5)$ and $\mathrm{C}(4,6)$
2. If area of the triangle formed by lines $x=0: y=0$ and $3 x+4 y=a$ is 6 sq units . Find 'a'
3. If $(3,2,-1)(4,1,1)$ and $(6,2,5)$ are three vertices and $(4,2,2)$ is centroid of tetrahedron find fourth vertex
4. Find equation of plane passing through point $(1,1,1)$ and parallel to the plane $x+2 y+3 z-7=0$
5. Is the function f is defined by $f(x)=\left\{\begin{array}{lll}x^{2} & \text { if } & \mathrm{x} \leq 1 \\ x & \mathrm{x}>1\end{array}\right.$ continuous on R
6. If $\log (\sec x+\tan x)$ find f ' (x)
7. Find the derivative of $\sin ^{-1}\left(3 x-4 x^{3}\right)$
8. If $x=a \cos ^{3} t \quad y=a \sin ^{3} t$ find $d y / d x$
9. If an error of 3% occurs in measuring the side of cube find percentage error in its volume.
10 . Show that the length of the subtangent at any point on the curve $\mathrm{y}=\mathrm{a}^{\mathrm{x}}$ is constant

SECTION B

SHORT ANSWER TYPE QUESTIONS. 5X4 =20
Note : Answer any FIVE questions. Each question carries 4 marks.
11. Find locus of point the difference of whose distance from $(-5,0)$ and $(5,0)$ is 8
12. Find the transformed equation of the curve $3 x^{2}+10 x y+3 y^{2}=9$ when the axes are rotated through an angle $\frac{\pi}{4}$
13. Find the value of k, if the angle between the straight lines $4 x$ $\mathrm{y}+7=0$ and $\mathrm{kx}-5 \mathrm{y}-9=0$ is 45
14. Compute $\lim _{x \rightarrow 0}\left(\frac{\cos a x-\cos b x}{x^{2}}\right)$
15. Find the derivative of the function $\tan 2 x$ from first principle
16. Sand is poured from a pipe at the rate of $12 \mathrm{cc} / \mathrm{sec}$. The falling sand forms a cone on the ground in such a way that the height of the cone is always onesixth of the radius of the base. How fast is the height of the Sand -Cone increasing when the height is 4 cm
17. If $u=\operatorname{Tan}^{-1}\left(\frac{x^{3}+y^{3}}{x+y}\right)$; show that $x u_{x}+y u_{y}=\sin 2 u$

SECTION C

LONG ANSWER TYPE QUESTIONS.

$5 \times 7=35$

Note: Answer any Five of the following. Each question carries 7 marks.

18. Find circum center of triangle whose sides are $3 x-y-5=0 \quad x+2 y-4=0$ and $5 x+3 y+1=0$
19. Show that the product of the perpendicular from a point (α, β) to the pair of straight lines $a x^{2}+2 h x y+b y^{2}=0$ is $\frac{\left|a \alpha^{2}+2 h \alpha \beta+b \beta^{2}\right|}{\sqrt{(a-b)^{2}+4 h^{2}}}$
20. Find angle between the lines joining the origin to the points of intersection of curves $x^{2}+2 x y+y^{2}+2 x+2 y-5=0$, and line $3 x-y+1=0$
21. Find the angle between two lines which are non-parallel and whose direction cosines are related by the equations $l+m+n=0$ and $l^{2}+m^{2}-n^{2}=0$
22. If $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=a(x-y)$ then $\frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}$

23 .a) define the angle between two curves
b) find the angle between the curves $x y=2$ and $x^{2}+4 y=0$

24 . Show that when the curved surface of a right circular cylinder inscribed in a sphere of radius R is maximum, then the height of the cylinder is $\sqrt{2} R$.

