www.sakshieducation.com

MATHEMATICS PAPER IA.- MAY 2011. ALGEBRA, VECTOR ALGEBRA AND TRIGONOMETRY.

TIME: 3hrs

Max. Marks. 75
Note: This question paper consists of three sections A, B and C.

SECTION A

VERY SHORT ANSWER TYPE QUESTIONS.

1. If $A=\left\{0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}\right\}$ and $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is surjection defined by $\mathrm{f}(\mathrm{x})=\cos \mathrm{x}$

then find B

2. Find the domain of of the function $f(x)=\log \left(x^{2}-4 x+3\right)$

3 If $a=2 i+5 j+k$ and $b=4 i+m j+n k$ are collinear vectors then find the value of m and n
4 .If $a=i+2 j-3 k$ and $b=3 i-j+2 k$ then S.T. $(a+b)$, $(a-b)$ are mutually perpendicular
5 .Find vector equation of the plane passing through points $(1,-2,5)(0,-5,-1)$ and $(-3,5,0)$
6. If $\cos \theta+\sin \theta=\sqrt{2} \cos \theta$ prove that $\cos \theta-\sin \theta=\sqrt{2} \sin \theta$

7 . Find the value of $\cos 42+\cos 78+\cos 162$
8 .If $\cosh x=5 / 2$ then find i) $\cosh (2 x)$ ii) $\sinh 2 x$
9.In ABC express $\sum \mathrm{r}_{1} \cot (\mathrm{~A} / 2)$ in terms of " s "
10. If $Z_{1}=-1 \quad Z_{2}=i$ then find the value of $\operatorname{Arg}\left(Z_{1 /} Z_{2}\right)$

SECTION B

SHORT ANSWER TYPE QUESTIONS.

5X4 =20

Note : Answer any FIVE questions. Each question carries 4 marks.

11. If ABCDEF is a regular hexagon with centre G, then prove that
$\mathrm{AB}+\mathrm{AC}+\mathrm{AD}+\mathrm{AE}+\mathrm{AF}=3 \mathrm{AD}=6 \mathrm{AG}$
12 .If $a=i-2 j-3 k \quad b=2 i+j-k$ and $c=i+3 j-2 k$ verify $a x(b x c) \neq(a x b) x c$
13 .If $\mathrm{A}+\mathrm{B}=45$ then $\mathrm{S} . \mathrm{T}(1+\mathrm{Tan} \mathrm{A})(1+\mathrm{TanB})=2$ hence deduce that $\tan 22 \frac{1}{2}=\sqrt{2}-1$
14 .Solve $3 \tan ^{4} \alpha-10 \tan ^{2} \alpha+3=0$
15 Prove that $\tan ^{-1} \frac{1}{8}+\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{5}=\frac{\pi}{4}$
12. If $a=(b+c) \cos \theta$ prove that $\sin \theta=\frac{2 \sqrt{\mathrm{bc}}}{\mathrm{b}+\mathrm{c}} \cos \frac{\mathrm{A}}{2}$.
13. prove that $\frac{\sin 6 \theta}{\sin \theta}=32 \cos ^{5} \theta-35 \cos ^{3} \theta+6 \cos \theta$

> SECTION C

LONG ANSWER TYPE QUESTIONS.

Note: Answer any Five of the following. Each question carries $\mathbf{7}$ marks.
18. Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be bijection. Then (gof) ${ }^{-1}=\mathrm{f}^{-1} \mathrm{og}^{-1}$
19. Show that $\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots \ldots$. up to n terms $=\frac{n}{3 n+1}$ for all $\mathrm{n} \in \mathrm{N}$

20 .Prove that by vector method the angle between two diagonals of a cube is $\operatorname{Cos}^{-1}(1 / 3)$
21. In triangle ABC , prove that $\sin ^{2} \frac{A}{2}+\sin ^{2} \frac{B}{2}-\sin ^{2} \frac{C}{2}=1-2 \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2}$
22. If $\mathrm{a}=13, \mathrm{~b}=14, c=15$, prove that $R=\frac{65}{8}, r=4, r_{1}=\frac{21}{2}, r_{2}=12, r_{3}=14$.
23. From the top of a tree on the bank of a lake, an Aeroplane in the sky makes an angle of elevation α and its image in the river makes an angle of depression β. if the height of the tree from the water surface is ' a ' and that of the height of the aero plane is h , show that $\mathrm{h}=\frac{a \sin (\alpha+\beta)}{\sin (\beta-\alpha)}$.
24. Show that $(1+\cos \theta+i \sin \theta)^{n}+(1+\cos \theta-i \sin \theta)^{n}=2^{n+1} \cos ^{n}\left(\frac{\theta}{2}\right) \cos \left(\frac{n \theta}{2}\right)$.

