MATHEMATICS PAPER IA.- MARCH 2011.

ALGEBRA,VECTOR ALGEBRA AND TRIGONOMETRY.

TIME: 3hrs

Max. Marks. 75
Note: This question paper consists of three sections A,B and C.

SECTION A

VERY SHORT ANSWER TYPE QUESTIONS.

$10 \times 2=20$
Note : Attempt all questions. Each question carries 2 marks.

1. If $A=\left\{0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{4}, \frac{\pi}{2}\right\}$ and $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is surjection defined by $\mathrm{f}(\mathrm{x})=\cos \mathrm{x}$
then find B
2. If $f(x)=5^{x}$ then find $f^{-1}(x)$
3. If the position vectors of points A, B are $-2 i+j-k,-4 i+2 j+2 k$, and $6 i-3 j-$ 13 k respectively and $\mathrm{AB}=\lambda \mathrm{AC}$ find λ
4. Find the vector equation line joining points $2 i+j+3 k$ and $-4 i+3 j-k$
5. If $4 i+2 \frac{p}{3} j+p k$ is parallel to the vector $i+2 j+3 k$ find p
6. Prove that $\cos 340 \cos 40+\sin 200 \sin 140=1 / 2$
7. Show that $\frac{\cos 9+\sin 9}{\cos 9-\sin 9}=\cot 36$
8. If $\cosh x=5 / 2$ find the value of i) $\cosh (2 x) \quad$ ii) $\sinh 2 x$
9. If $\mathrm{a}=26 \mathrm{~cm} \quad \mathrm{~b}=30 \mathrm{~cm} \quad \operatorname{cosC}=63 / 65$ then find c
10. Write $Z=-\sqrt{ } 7+i \sqrt{ } 21$ in polar form

SECTION B

SHORT ANSWER TYPE QUESTIONS.

$5 \times 4=20$
Note : Answer any FIVE questions. Each question carries 4 marks.
11 .If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are non coplanar vectors then prove that the vectors $5 a+6 b+7 c, 7 a-8 b+9 c$ and $3 a+20 b+5 c$ are coplanar
12. Find the volume of the parallelepiped with coterminous edges $2 \mathrm{i}-3 \mathrm{j}, \mathrm{i}+\mathrm{j}-\mathrm{k}, 3 \mathrm{i}-\mathrm{k}$
13. Prove that $\left(1+\cos \frac{\pi}{8}\right)\left(1+\cos \frac{3 \pi}{8}\right)\left(1+\cos \frac{5 \pi}{8}\right)\left(1+\cos \frac{7 \pi}{8}\right)=\frac{1}{8}$
14. solve $1+\sin ^{2} \theta=3 \sin \theta \cos \theta$
15. Prove that $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{8}=\frac{\pi}{4}$
16. If a,b,c are in A.P. then show that $\tan \frac{A}{2} \cos \frac{C}{2}=1$
17. Show that $16 \sin ^{5} \theta=\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta$

SECTION C

LONG ANSWER TYPE QUESTIONS.
 5X7 = 35
 Note: Answer any Five of the following. Each question carries $\mathbf{7}$ marks.

18 .Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be bijection. Then (gof) ${ }^{-1}=\mathrm{f}^{-1} \mathrm{og}^{-1}$
19 .Prove By Mathematical Induction Show that

$$
\mathrm{a}+\operatorname{ar}^{+\mathrm{ar}^{2} \ldots \ldots \ldots \ldots . .=\frac{a\left(r^{n}-1\right)}{r-1}}
$$

20 .Find the equation Plane passing from points $A(2,3,-1), B(4,5,2)$ and C $(3,6,5)$
21. Prove that $\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2}=1+4 \sin \left(\frac{\pi-A}{4}\right) \sin \left(\frac{\pi-B}{4}\right) \sin \left(\frac{\pi-C}{4}\right)$
22. If $a=(b-c) \sec \theta$ prove that $\tan \theta=\frac{2 \sqrt{\mathrm{bc}}}{\mathrm{b}-\mathrm{c}} \sin \frac{\mathrm{A}}{2}$.
23. From the top of a tree on the bank of a lake, an Aeroplane in the sky makes an angle of elevation α and its image in the river makes an angle of depression β. if the height of the tree from the water surface is ' a ' and that of the height of the aero plane is h, show that $\mathrm{h}=\frac{a \sin (\alpha+\beta)}{\sin (\beta-\alpha)}$.
If α, β are roots of the equation $\mathrm{x}^{2}-2 x+4=0$ then for any value n show that
$24 \cdot \alpha^{\mathrm{n}}+\beta^{n}=2^{n+1} \cos \left(\frac{n \pi}{3}\right)$

