MATHEMATICS PAPER IB.- JUNE 2008 COORDINATE GEOMETRY \& CALCULUS.

TIME: 3hrs

Max. Marks. 75

Note: This question paper consists of three sections A,B and C.

SECTION A

VERY SHORT ANSWER TYPE QUESTIONS.
$10 \times 2=20$
Noe : Attempt all questions. Each question carries 2 marks.

1. Find the equation of the straight line passing through $(-4,5)$ and cutting off equal nonzero intercepts on the coordinate axes.
2. Find the foot of the perpendicular drawn from $(4,1)$ upon the straight line $3 x-4 y+12=0$
3. Find the centroid of the tetrahedron with the vertices $(3,2,-4)(5,4,-6)(9,8,-10)(3,4,10)$
4. Find the distance of the point from the plane $6 x-3 y+2 z-14=0$
5. show that $\lim _{x \rightarrow 2}\left(\frac{2|x|}{x}+x+1\right)=3$
6. compute $\lim _{x \rightarrow 0} \frac{\sqrt[3]{1+x}-1}{x}$
7. check the continuity of the following function at 2.

$$
\mathrm{F}(\mathrm{x})=\left\{\begin{array}{c}
\frac{1}{2}\left(x^{2}-1\right), 0<x<2 \\
0, x=2 \\
2-8 x^{-5}, x>2
\end{array}\right.
$$

8. Find the derivative of the function $\mathrm{f}(\mathrm{x})=a^{2} . e^{x^{2}}$
9. Find Δy and dy if $y=\frac{1}{x}$ when $x=2, \Delta x=0.002$
10. Find the interval in which $f(x)=-3+12 x-9 x^{2}+2 x^{3}$ is increasing and decreasing.

SECTION B

SHORT ANSWER TYPE QUESTIONS.

$5 \times 4=20$
Note : Answer any FIVE questions. Each question carries 4 marks.
11. Find the equation of locus of P, if the ratio of the distance from P to $(5,-4)$ and $(7,6)$ is $2: 3$.
12. When the axes are rotated through an angle $\mathrm{p} / 4$, find the transformed equation of $3 \mathrm{x}^{2}+10 \mathrm{xy}$ $+3 y^{2}=9$.
13. Transform the equation $\frac{x}{a}+\frac{y}{b}=1$ into the normal form when $\mathrm{a}>0$ and $\mathrm{b}>0$. If the perpendicular distance of straight line from the origin is p , deduce that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
14. Find the derivatives of the $\cos ^{2} x$ function $f(x)$ from the first principles.
15. Find $\frac{d y}{d x}$ for the function $x=a(\cos t+t \sin t), y=a(\sin t-t \cos t)$
16. A point P is moving on the curve $y=2 x^{2}$. The x co-ordinate of P is increasing at the rate of 4 units per second. Find the rate at which the y co-ordinate is increasing when the point is at (2, 8).
17. If $u=\operatorname{Tan}^{-1}\left(\frac{x^{3}-y^{3}}{x^{3}+y^{3}}\right)$ then show that $x u_{x}+y u_{y}=0$ using Euler's theore.

SECTION C

LONG ANSWER TYPE QUESTIONS.

5X7 $=35$
Note: Answer any Five of the following. Each question carries 7 marks.
18. Find the circumcentre of the triangle whose sides are $x-2 y+5=0, x+y+2=0$ and $5 x-y-2=$ 0.
19. Show that the product of the perpendicular distances from a point (α, β) to the pair of straight lines $\mathrm{ax}^{2}+2 \mathrm{hxy}+\mathrm{by}^{2}=0$ is $\frac{\left|a \alpha^{2}+2 h \alpha \beta+b \beta^{2}\right|}{\sqrt{(a-b)^{2}+4 h^{2}}}$.
20. If the straight lines joining the origin to the points of intersection of the curve and the line $2 \mathrm{x}+3 \mathrm{y}=\mathrm{k}$ are perpendicular, prove that $6 \mathrm{k}^{2}-5 \mathrm{k}+52=0$
21. If a ray makes angle $\alpha, \beta, \gamma, \delta$ with the four diagonals of a cube, show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$
22. If $y=x \sqrt{a^{2}+x^{2}}+a^{2} \log \left(x+\sqrt{a^{2}+x^{2}}\right)$ then show that $\frac{d y}{d x}=2 \sqrt{a^{2}+x^{2}}$
23. If the tangent at any point P on the curve $x^{m} y^{n}=a^{m+n}(m n 0)$ meets the coordinate axes in A and B then show that AP : BP is a constant.
24. Show that the area of a rectanlge inscribed in a circle is maximum when it is a square.

