ANGLE BETWEEN TWO CURVES

If two curves intersect at P then the angle between the tangents to the curves at P is called the angle between the curves at P .

Angle between the curves:

Let $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{y}=\boldsymbol{g}(\boldsymbol{x})$ be two differentiable curves intersecting at a point P . Let $\boldsymbol{m}_{1}=\left[f^{\prime}(\boldsymbol{x})\right]_{P}, \boldsymbol{m}_{2}=\left[g^{\prime}(\boldsymbol{x})\right]_{P}$ be the slopes of the tangents to the curves at P. If $\boldsymbol{\theta}$ is the acute angle between the curves at P then $\tan \theta=\left|\frac{\boldsymbol{m}_{\boldsymbol{1}}-\boldsymbol{m}_{2}}{1+\boldsymbol{m}_{1} \boldsymbol{m}_{2}}\right|$

Note 1: If $\mathrm{m}_{1}=\mathrm{m}_{2}$ then $\theta=0$. In this case the two curves touch each other at P . Hence the curves have a common tangent and a common normal at P.

Note 2: If $m_{1} m_{2}=-1$ then $\theta=\frac{\pi}{2}$. In this case the curves cut each other orthogonally at P.

Note 3: If $\mathrm{m}_{1}=0$ and $\frac{1}{m_{2}}=0$ then the tangents to the curves are parallel to the coordinate axes.
Therefore the angle between the curves is $\theta=\frac{\pi}{2}$.

Exercise

I. Find the angle between the curves given below.

1. $\mathrm{x}+\mathrm{y}+2=0 ; \mathrm{x}^{2}+\mathrm{y}^{2}-10 \mathrm{y}=0$

Sol: $x+y+2=0 \Rightarrow x=-(y+2)---(1)$
Equation of the curve $x^{2}+y^{2}-10 y=0--(2)$
Solving above equations, $(y+2)^{2}+y^{2}-10 y=0$

$$
\begin{aligned}
& \Rightarrow y^{2}+4 y+4+y^{2}-10 y=0 \\
& \Rightarrow 2 y^{2}-6 y+4=0 \\
& \Rightarrow y^{2}-3 y+2=0 \Rightarrow \quad(y+1)(y-2)=0 \\
& \Rightarrow y=1 \text { or } y=2 \\
& x=-(y+2) \\
& y=1 \Rightarrow x=-(1+2)=-3 \\
& y=2 \Rightarrow x=-(2+2)=-4
\end{aligned}
$$

The points of intersection are $\mathrm{P}(-3,1)$ and $\mathrm{Q}(-4,2)$,
Equation of the curve is $x^{2}+y^{2}-10 y=0$
Differentiate $\mathrm{x}^{2}+\mathrm{y}^{2}-10 \mathrm{y}=0$ w.r.to x .

$$
\Rightarrow 2 x+2 y \frac{d y}{d x}-10 \frac{d y}{d x}=0 \Rightarrow 2 \frac{d y}{d x}(y-5)=-2 x \Rightarrow \frac{d y}{d x}=-\frac{x}{y-5}
$$

Equation of the line is $x+y+2=0$
Slope is $\mathrm{m}_{2}=-1$.

Case (i):

\Rightarrow slope $m_{1}=\frac{d y}{d x}$ at $P=-\frac{-3}{1-5}=-\frac{3}{4}$ and Slope is $\mathrm{m}_{2}=-1$.

Let θ be the angle between the curves, then $\quad \boldsymbol{\operatorname { t a n }} \theta=\left|\frac{\boldsymbol{m}_{\mathbf{1}}-\boldsymbol{m}_{\mathbf{2}}}{\mathbf{1 + \boldsymbol { m } _ { \mathbf { 1 } } \boldsymbol { m } _ { \mathbf { 2 } }} \mid}\right|$
$=\left|\frac{-\frac{3}{4}+1}{1+\frac{3}{4}}\right|=\frac{1}{7} \Rightarrow \theta=\tan ^{-1}\left(\frac{1}{7}\right)$
Case (ii):
\Rightarrow slope $m_{1}=\frac{d y}{d x}$ at $Q=-\frac{4}{2-5}=-\frac{4}{3}$ and Slope is $m_{2}=-1$.
$\Rightarrow \boldsymbol{\operatorname { t a n }} \theta=\left|\frac{\boldsymbol{m}_{\mathbf{1}}-\boldsymbol{m}_{\mathbf{2}}}{\mathbf{1}+\boldsymbol{m}_{\mathbf{1}} \boldsymbol{m}_{\mathbf{2}}}\right|=\left|\frac{-\frac{4}{3}+1}{1+\frac{4}{3}}\right|=\frac{1}{7}$

$$
\Rightarrow \theta=\tan ^{-1}\left(\frac{1}{7}\right)
$$

2. $y^{2}=4 x$ and $x^{2}+y^{2}=5$.

Ans: Points of intersection of $P(1,2)$ and $Q(1,-2)$ and $\theta=\tan ^{-1}(3)$
3. $x^{2}+3 y=3$ and $x^{2}-y^{2}+25=0$.

Ans: $\theta=\tan ^{-1}\left(\frac{22 \sqrt{6}}{69}\right)$
4. $x^{2}=2(y+1), y=\frac{8}{x^{2}+4}$

Sol: $x^{2}=2\left(\frac{8}{x^{2}+4}+1\right)=\frac{16+2 x^{2}+8}{x^{2}+4}$

$$
\begin{aligned}
& \Rightarrow \mathrm{x}^{2}\left(\mathrm{x}^{2}+4\right)=2 \mathrm{x}^{2}+24 \\
& \Rightarrow \mathrm{x}^{4}+4 \mathrm{x}^{2}-2 \mathrm{x}^{2}-24=0 \\
& \Rightarrow \mathrm{x}^{2}+2 \mathrm{x}^{2}-24=0
\end{aligned}
$$

$\Rightarrow\left(\mathrm{x}^{2}+6\right)\left(\mathrm{x}^{2}-4\right)=0 \Rightarrow \mathrm{x}^{2}=-6$ or $\mathrm{x}^{2}=4$
$x^{2}=-6 \Rightarrow x$ is not real
$y=\frac{8}{x^{2}+4}=\frac{8}{4+4}=\frac{8}{8}=1$
\therefore Points of intersection are $\mathrm{P}(2,1)$ and $\mathrm{Q}(-2,1)$
Equation of the first curve is $\mathrm{x}^{2}=2(\mathrm{y}+1)$
$2 x=2 \cdot \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=x$
\Rightarrow slope $m_{1}=\frac{d y}{d x}$ at $P(2,1)=2$
Equation of the second curve is $y=\frac{8}{x^{2}+4}$

$$
\begin{aligned}
& \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{8(-1)}{\left(\mathrm{x}^{2}+4\right)^{2}}-2 \mathrm{x}=-\frac{16 \mathrm{x}}{\left(\mathrm{x}^{2}+4\right)^{2}} \\
& \Rightarrow \text { slope } m_{2}=\frac{d y}{d x} \text { at } P(2,1)=\frac{16.2}{(4+4)^{2}}=\frac{32}{64}=\frac{1}{2} \\
& \quad \mathrm{~m}_{1} \mathrm{~m}_{2}=2 .-1 / 2=-1
\end{aligned}
$$

\therefore The given curves cut orthogonally.
Therefore angle between them is $\theta=\frac{\pi}{2}$
Similarly, at $\mathrm{Q}(-2,1)$ the angle between the curves is $\theta=\frac{\pi}{2}$
5. $2 y^{2}-9 x=0,3 x^{2}+4 y=0$ (In the $4^{\text {th }}$ quadrant)

Sol: Given curves are $2 y^{2}-9 x=0 \Rightarrow 9 x=2 y^{2} \Rightarrow x=\frac{2}{9} y^{2}-$
Second curve is $3 x^{2}+4 y=0$

Solving above equations,

$$
\begin{aligned}
& \Rightarrow 3 \cdot \frac{4}{81} y^{4}+4 y=0 \\
& \Rightarrow \frac{4 y^{4}+108 y}{27}=0 \\
& \Rightarrow 4 y\left(y^{3}+27\right)=0 \\
& y=0 \text { or } y^{3}=-27 \Rightarrow y=-3 \\
& 9 x=2 y^{2}=2 \times 9 \Rightarrow x=2
\end{aligned}
$$

Point of intersection in $4^{\text {th }}$ quadrant is $\mathrm{P}(2,-3)$
Equation of the first curve is $2 y^{2}=9 x$

Differentiate w.r.t. x,

$4 y \frac{d y}{d x}=9 \Rightarrow \frac{d y}{d x}=\frac{9}{4 y}$
\Rightarrow slope $m_{1}=\frac{d y}{d x}$ at $P(2,-3)=\frac{9}{4 .-3}=-\frac{3}{4}$
Equation of the second curve is $3 x^{2}+4 y=0$
$\Rightarrow 4 y=-3 x^{2}$ differentiate w.r.t x,
$\Rightarrow 4 \cdot \frac{\mathrm{dy}}{\mathrm{dx}}=-6 \mathrm{x}$
$\Rightarrow \frac{d y}{d x}=\frac{-6 x}{4}=\frac{-3 x}{2}$
\Rightarrow slope $m_{2}=\frac{d y}{d x}$ at $P(2,-3)=\frac{-3.2}{2}=-3$
If θ is the angle between the curves then $\boldsymbol{\operatorname { t a n }} \theta=\left|\frac{\boldsymbol{m}_{\mathbf{1}}-\boldsymbol{m}_{\mathbf{2}}}{\mathbf{1}+\boldsymbol{m}_{\mathbf{1}} \boldsymbol{m}_{\mathbf{2}}}\right|$

$$
\theta=\tan ^{-1}\left(\frac{9}{13}\right)
$$

6. $y^{2}=8 x, 4 x^{2}+y^{2}=32$

Ans: $\theta=\tan ^{-1}(3)$?
7. $x^{2} y=4, y\left(x^{2}+4\right)=8$.

Points $\mathrm{P}(2,1), \mathrm{Q}(-2,1)$ angle $\theta=\tan ^{-1}\left(\frac{1}{3}\right)$
8. Show that the curves $6 x^{2}-5 x+2 y=0$ and $4 x^{2}+8 y^{2}=3$ touch each other at $\left(\frac{1}{2}, \frac{1}{2}\right)$.

Sol: Equation of the first curve is $6 x^{2}-5 x+2 y=0$

$$
\begin{aligned}
& \Rightarrow 2 y=5 x-6 x^{2} \Rightarrow 2 \cdot \frac{d y}{d x}=5-12 x \Rightarrow \frac{d y}{d x}=\frac{5-12 x}{2} \\
& m_{1}=\left(\frac{d y}{d x}\right)_{\operatorname{atP}\left(\frac{1}{2}, \frac{1}{2}\right)}=\frac{5-12 \cdot \frac{1}{2}}{2}=\frac{5-6}{2}=-\frac{1}{2}
\end{aligned}
$$

Equation of the second curve is $4 x^{2}+8 y^{2}=3$
$\Rightarrow 8 x+16 y \cdot \frac{d y}{d x}=0 \quad \Rightarrow 16 y \cdot \frac{d y}{d x}=-8 x \quad \Rightarrow \frac{d y}{d x}=\frac{-8 x}{16 y}=-\frac{x}{2 y}$
$\mathrm{m}_{2}=\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\mathrm{atP}\left(\frac{1}{2}, \frac{1}{2}\right)}=\frac{-\frac{1}{2}}{2\left(\frac{1}{2}\right)}=-\frac{1}{2}$
$\therefore \mathrm{m}_{1}=\mathrm{m}_{2}$
The given curves touch each other at $\mathrm{P}\left(\frac{1}{2}, \frac{1}{2}\right)$.

PROBLEMS FOR PRACTICE

1. Find the slope of the tangent to the following curves at the points as indicated.
i. $y=5 x^{2}$ at $(-1,5)$
ii. $\quad y=1-x^{2}$ at $(2,-3)$
iii. $y=\frac{1}{x-1}$ at $\left(3, \frac{1}{2}\right)$
iv. $y=\frac{x-1}{x+1}$ at $(0,-1)$
v. $x=\operatorname{asec} \theta, y=a \tan \theta$ at $\theta=\frac{\pi}{6}$
vi. $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2 a t(a, b)$.
2. Find the equations of the tangent the normal to the curve $y=5 x^{4}$ at the point $(1,5)$.
3. Find the equation of the tangent and the normal to the curve $y^{4}=a x^{3} a t(a, a)$
4. Find the equations of the tangent to the curve $y=3 x^{2}-x^{3}$, where it meets the

X-axis?

5. Find the points at which the curve $y=\sin x$ horizontal tangents. ?

Sol: $\quad y=\sin x$

$$
\frac{d y}{d x}=\cos x
$$

A tangent is horizontal if and arial its slope is $\cos x=0 \Rightarrow x=(2 n+1) \frac{\pi}{2}, n \in 2$
Hence the given curve has horizontal tangents at points $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$
$\Leftrightarrow x_{0}=(2 n+1) \frac{\pi}{2}$ and $y_{0}=(-1)^{n}$ for same $n \in z$.
6. Verify whether the curve $y=f(x)=x^{1 / 3}$ has a vertical tangent at the point with $x=0$.

Sol:

$\underset{h \rightarrow 0}{\operatorname{Lt}} \frac{f(0+h)-f(0)}{h}=\underset{h \rightarrow 0}{\operatorname{Lt}} \frac{h^{1 / 3}}{h}-\underset{h \rightarrow 0}{\operatorname{Lt}} \frac{1}{h^{2 / 3}}$
$\operatorname{Lt}_{\mathrm{h} \rightarrow 0} \frac{1}{\left(\mathrm{~h}^{1 / 3}\right)^{2}}=\alpha$
The function has a verified tangent at the point whose x co-ordinate is 0 .

7 Find whether the curve $y=f(x)=x^{2 / 3}$ has a vertical tangent at the point with $\mathbf{x}=\mathbf{0}$.

Sol:

For $h \neq 0$, we have $\frac{f(0+h)-f(0)}{h}=\frac{h^{2 / 3}}{h}$

Thus left handed be normal $\frac{1}{h^{1 / 3}}$ as $h \rightarrow 0$ is $-\alpha$
While the right handed limit is α,
Hence $\underset{\mathrm{h} \rightarrow 0}{\mathrm{Lt}} \frac{1}{\mathrm{~h}^{1 / 3}}$ does not exist. The vertical tangent does not exit.
At the point $\mathrm{x}=0$.
8. Show that the tangent of any point θ on the curve $x=c \sec \theta, y=c \tan \theta$ is $y \sin \theta=x-c \cos \theta$.
9. Show that the area of the triangle formed by the tangent at any point on the curve $\mathbf{x y}=\mathbf{c}(\mathbf{c} \neq 0)$ with the coordinate axis is constant. ?
Sol: Observe that $\mathrm{c} \neq 0$
If $c=0$ the equation $x y=0$ represents the co-ordinate circle which is against the definite.
Let $P\left(x_{1}, y_{1}\right)$ be a point on the curve $x y=c$

$$
\mathrm{y}=\frac{\mathrm{c}}{\mathrm{x}}=1, \frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{\mathrm{c}}{\mathrm{x}^{2}}
$$

Equation of the tangent at $\left(x_{1}, y_{1}\right)$ is

$$
\begin{aligned}
& y-y_{1}=-\frac{c}{x^{2}}\left(x-x_{1}\right) \\
& \Rightarrow x^{2} y-x_{1}^{2} y_{1}=-\alpha+\alpha_{1} \\
& \Rightarrow \alpha+x_{1}^{2} \cdot y=x_{1}^{2}+\alpha_{1}=\alpha_{1}+\alpha_{1}\left(x_{1} y_{1}=c\right) \quad=2 \alpha_{1}
\end{aligned}
$$

$$
x y=c
$$

B

$$
P\left(x_{1}, y_{1}\right)
$$

$\frac{\alpha}{2 \alpha_{1}}+\frac{x_{1}^{2} \cdot y}{2 \alpha_{1}}=1 \Rightarrow \quad \frac{x}{2 x_{1}}+\frac{y}{\left(\frac{2 c}{x_{1}}\right)}=1$
Area of the triangle formed with co-ordinate axes $=\frac{1}{2}|\mathrm{OA} . \mathrm{OB}|$
$=\frac{1}{2}\left(2 \mathrm{x}_{1}\right)\left(\frac{2 \mathrm{c}}{\mathrm{x}_{1}}\right)=2 \mathrm{c}=\mathrm{constant}$.
10. Show that the equation of the tangent to the curve $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2(a \neq 0, b \neq 0)$ at the point (a, b) is $\frac{x}{a}+\frac{y}{b}=2$.

Sol: Equation of the curve is $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2$
Differentiating w.r.to x_{1} we get

$$
\begin{aligned}
& n\left(\frac{x}{a}\right)^{n-1} \cdot \frac{1}{a}+n\left(\frac{y}{b}\right)^{n-1} \cdot \frac{1}{b} \cdot \frac{d y}{d x}=0 \\
& \Rightarrow\left(\frac{d y}{d x}\right)_{(a, b)}= \\
&=\frac{\left(-\frac{n}{a}\right)\left(\frac{a}{a}\right)^{x-1}}{\left(\frac{n}{b}\right)\left(\frac{b}{b}\right)^{x-1}}=-\frac{b}{a}
\end{aligned}
$$

Equation of the tangent to the curve at the point (a, b) is
$y-b=-\frac{b}{a}(x-a) \Rightarrow \quad \frac{y}{b}-1=-\frac{x}{a}+1 \Rightarrow \quad \frac{x}{a}+\frac{y}{b}=2$
11. If the line $x \cos \alpha+y \sin x \alpha=p$ touches the curve $\left(\frac{x}{a}\right)^{\frac{n}{n-1}}+\left(\frac{y}{b}\right)^{\frac{n}{n-1}=1}$ then show that $p^{n}=(a \cos \alpha)^{n}+(b \sin \alpha)^{n}$.
12. If the normal at the curve $a y^{2}=x^{3}(a \neq 0)$ at a point makes equal intercepts with the co-ordinate axes, then find the x co-ordinate of the point

Sol: Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be the point on the curve $\mathrm{ay}^{2}=\mathrm{x}^{2}$

Differentiating w.r.to x

$$
2 a y=\frac{d y}{d x}=3 x^{2} \Rightarrow\left(\frac{d y}{d x}\right)=\frac{3 x_{1}^{2}}{2 \mathrm{ay}_{1}}
$$

Equation of the normal to the curve at a $y-y_{1}=-\frac{2 a y_{1}}{3 x_{1}{ }^{2}}\left(x-x_{1}\right)$
$3 x_{1}^{2} y-3 x_{1}{ }^{2} y_{1}=-2 a y_{1} x+2 a x_{1} y_{1}$
$\Rightarrow 2 a y_{1} x+3 x_{1}^{2} y=2 a x_{1} y_{1}+3 x_{1}^{2} y_{1}$
$\frac{x}{\left(\frac{3 x_{1}^{2} y_{1}+2 a x_{1} y_{1}}{2 a y_{1}}\right)}+\frac{y}{\left(\frac{3 x_{1}^{2} y_{1}+2 a x_{1} y_{1}}{3 x_{1}{ }^{2}}\right)}=1$
Given $\frac{3 x_{1}^{2}+2 a y_{1}}{2 a y_{1}}=\frac{3 x_{1}^{2} y_{1}+2 \mathrm{ax}_{1} \mathrm{y}_{1}}{3 \mathrm{x}_{1}{ }^{2}}$

$$
3 \mathrm{x}_{1}^{4}=2 \mathrm{ay}_{1} \Rightarrow 9 \mathrm{x}_{1}^{4}=4 \mathrm{a}^{2} \mathrm{y}_{1}^{2}
$$

But $\mathrm{ay}_{1}^{2}=\mathrm{x}_{1}^{3}$
$\therefore 9 \mathrm{x}_{1}^{4}=4 \mathrm{ax}_{1}^{3} \Rightarrow \quad \mathrm{x}_{1}^{3}\left(9 \mathrm{x}_{1}-4 \mathrm{a}\right)=0 \Rightarrow \quad \mathrm{x}_{1}=0$ (or) $\frac{4 \mathrm{a}}{9}$
13. The tangent to the curve $y^{2}=4 a\left(x+\operatorname{asin} \frac{x}{a}\right)(a \neq 0)$ at a point P on it is parallel to x axis. Prove that all such points P lie on the curve $y^{2}=4 a x$

Sol: \quad Equation the curve $y^{2}=4 a\left(x+a \sin \frac{x}{a}\right)$
Differentiating w.r.to x

$$
2 y \cdot \frac{d y}{d x}=4 a\left(1+\cos \frac{x}{a}\right) \Rightarrow \frac{d y}{d x}=\frac{2 a}{y}\left(1+\cos \frac{x}{a}\right)
$$

$\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be a point o the curve at which the tangent parallel to x -axis.
\therefore Slope of the tangent is zero

$$
\Rightarrow\left(\frac{d x}{d y}\right) P=0 \Rightarrow \quad \frac{2 a}{y}\left(1+\cos \frac{x_{1}}{a}\right)=0
$$

$$
1+\cos \frac{x_{1}}{a}=0 \Rightarrow \cos \frac{x_{1}}{a}=-1
$$

$$
\begin{equation*}
\sin \frac{x_{1}}{a}=0 \tag{1}
\end{equation*}
$$

$P\left(x_{1}, y_{1}\right)$ lies on the given curve $y^{2}=4 a\left(x+a \sin \frac{x}{a}\right)$
$\Rightarrow y_{1}^{2}=4 \mathrm{a}\left(\mathrm{x}_{1}+\mathrm{a} \sin \frac{\mathrm{x}_{1}}{\mathrm{a}}\right)=4 \mathrm{ax}_{1}+0$ by (1)
i.e., $\mathrm{y}_{1}{ }^{2}=4 \mathrm{ax}_{1}$
$\therefore \mathrm{P}$ lies on the curve $\mathrm{y}^{2}=4 \mathrm{ax}$
14. Show that the length of the sub-normal at any point of the curve $y^{2}=4 a x$ is a constant.
15. Show that the length of the sub tangent at any point on the curve $y=a^{x}(a>0)$ is constant a.
16. Show that the square of the length of sub tangent at any point on the curve $b^{2}=(x+a)^{\mathbf{2}}(b \neq 0)$ varies as the square of the length of the sub-normal at that point.

Sol: \quad Length of the curve is by $^{2}=(x+a)^{2}$
Differentiating w.r.to x
$2 b y \frac{d y}{d x}=3(x+a)^{2}$
L. $N=$ length of the subnormal of any point $p(x, y)=\left|y \cdot \frac{d y}{d x}\right|$
$=\left|y \cdot \frac{3(x+a)^{2}}{2 b y}\right|=\frac{3(x+a)^{2}}{2 b}$
L.T=length of the sub tangent

$$
\begin{aligned}
& =\left|\frac{\mathrm{y}}{\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)}\right|=\left|\mathrm{y} \cdot \frac{2 \mathrm{by}}{3(\mathrm{x}+\mathrm{a})^{2}}\right|=\frac{2 \cdot \mathrm{by}^{2}}{3(\mathrm{x}+\mathrm{a})^{2}}=\frac{2(\mathrm{x}+\mathrm{a})^{3}}{3(\mathrm{x}+\mathrm{a})^{2}}=\frac{2}{3}(\mathrm{x}+\mathrm{a}) \\
& \frac{L \cdot N}{L \cdot T^{2}}=\frac{3(x+a)^{2}}{2 b} \cdot \frac{9}{4(x+a)^{2}}=\frac{27}{8 b}
\end{aligned}
$$

Square of the length of sub tangent at any point on the curve varies as the square of the length of the sub-normal .at
17. Find the value of k, so that the length of the subnormal at any point on the curve $y=a^{1-k} \cdot x^{k}$ is constant.
18. Show that at any point o the curve $x^{m+n}=a^{m-n} \cdot y^{2 n}(a>0, m+n \neq 0) m^{\text {th }}$ power of the length of the sub tangent varies of the $n^{\text {th }}$ power of length of the sub-normal.
19. Find the angle between the curve $x y=z$ and $x^{2}+4 y=0$.
20. Find the angle between the curve $2 y=e^{\frac{-x}{2}}$ and y-axis.

Sol: \quad Equation of y-axis is $x=0$
The point of intersection of the curve $2 y=e^{\frac{-x}{2}}$ and $x=0$ is $P\left(0, \frac{1}{2}\right)$

The angle ψ made by the tangent to the curve $2 y=e^{\frac{-x}{2}}$ at P with $x-$ axis is given by $\tan \psi=\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{\left(0, \frac{1}{2}\right)}=\left.\frac{-1}{4} \mathrm{e}^{\frac{-\mathrm{x}}{2}}\right|_{\left(0, \frac{1}{2}\right)}=\frac{-1}{4}$

Further, if ϕ is the angle between the y-axis and $2 y=e^{\frac{-x}{2}}$, then we have $\tan \phi=\left|\tan \left(\frac{\pi}{2}-\psi\right)\right|-|\cot \psi|=4$
\therefore The angle between the curve and the y-axis is $\tan ^{-1} 4$.
21. Show that the condition of the orthogonally of the curves $a x^{2}+b y^{2}=1$ and
$a_{1} x^{2}+b_{1} y^{2}=1$ is $\frac{1}{a}-\frac{1}{b}=\frac{1}{a_{1}}-\frac{1}{b_{1}}$.
Sol: Let the curves $a x^{2}+b y^{2}=1$ and $a_{1} x^{2}+b_{1} y^{2}=1$ intersect at $p\left(x_{1}, y_{1}\right)$ so that $a x_{1}^{2}+b y_{1}^{2}=1$ and $a_{1} x_{1}^{2}+b_{1} y_{1}^{2}=1$, from which we get,

$$
\begin{equation*}
\frac{x_{1}^{2}}{b_{1}-b}=\frac{y_{1}^{2}}{a_{1}-a}=\frac{1}{a_{1}-a_{1} b} \tag{1}
\end{equation*}
$$

Differentiating $a x^{2}+b y^{2}=1$ with respect to x, we bet $\frac{d y}{d x}=\frac{-a x}{b y}$
Hence, if m_{1} is the slope of the tangent at $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to the curve

$$
a x^{2}+b y^{2}=1, m_{1}=\frac{-\mathrm{ax}_{1}}{\mathrm{by}_{1}}
$$

Similarly, the slope $\left(m_{2}\right)$ of the tangent at P to $a_{1} x^{2}+b_{1} y^{2}=1$ is given by $m_{2}=\frac{-a_{1} x_{1}}{b_{1} y_{1}}$
Since the curves cut orthogonally we have $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$.

$$
\begin{equation*}
\text { i.e., } \frac{a a_{1} x_{1}^{2}}{b b_{1} y_{1}^{2}}=-1 \text { or } \frac{x_{1}^{2}}{y_{1}^{2}}=-\frac{-b b_{1}}{a a_{2}} \tag{2}
\end{equation*}
$$

www.sakshieducation.com

Now from (1) and (2), the condition for the orthogonally of the given curves is
$\frac{b_{1}-b}{a-a_{1}}=\frac{b b_{1}}{a a_{1}}$
$\operatorname{Or}(b-a) a_{1} b_{1}=\left(b_{1}-a_{1}\right) a b$
Or $\frac{1}{\mathrm{a}}-\frac{1}{\mathrm{~b}}=\frac{1}{\mathrm{a}_{1}}-\frac{1}{\mathrm{~b}_{1}}$

