TANGENTS AND NORMALS

TOPICS:

1. Geometrical interpretation of the derivative Equations of tangents and normals
2.length of tangent, normal,sub-tangent and sub- normal.
3.Angle between two curves and orthogonality

TANGENT TO A CURVE

Definition :

Let $y=f(x)$ be a curve and P be a point on the curve. If Q is a point on the curve other than P, then PQ is called a secant line of the curve. If the secant line $\overleftrightarrow{P Q}$ approaches the same limiting position as Q approaches P along the curve from either side then the limiting position is called the tangent line to the curve at the point P . The point P is called the point of contact of the tangent line to the curve.

The tangent at a point to a curve, if it exists, is unique. Therefore, there exists at most one tangent at a point to a curve.

GEOMETRICAL INTERPRETATION OF DERIVATIVE

Let P be a point on the curve $y=f(x)$. Then the slope of the tangent to the curve at P is equal to $\left(\frac{d y}{d x}\right)_{P}$ i.e., $\left(f^{\bullet}(x)\right)_{P}$.

Gradent The slope of the tangent at a point to a curve is called the gradient of the curve at that point.

The gradient of the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ at P is $\cdot\left(\frac{d y}{d x}\right)_{P}$

Note 1: If $\left(\frac{d y}{d x}\right)_{P}=\mathrm{o}$ then the tangent to the curve at P is parallel to the x - axis. The tangent, in this case, is called a horizontal tangent.

Note 2: If $\left(\frac{d y}{d x}\right)_{P}=+\infty o r-\infty$ i.e., if $\left(\frac{d x}{d y}\right)_{P}=0$ then the tangent to the curve at P is perpendicular to x - axis. The tangent, in this case, is called a vertical tangent.

Note 3: If $\left(\frac{d y}{d x}\right)_{P}$ does not exist then there exists no tangent to the curve at P .

EQUATION OF TANGENT

The equation of the tangent at the point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is $y-y_{1}=m\left(x-x_{1}\right)$ where $m=\left(\frac{d y}{d x}\right)_{P}$
Note:

1. x - intercept of the tangent $=x_{1}-\frac{y_{1}}{m}=x_{1}-y_{1} m$
y - intercept of the tangent $=. y_{1}-m x_{1}=y_{1}-x_{1} m$

NORMAL TO A CURVE

Let P be a point in the curve $y=f(x)$. The line passing through P and perpendicular to the tangent at P to the curve is called the normal to the curve at P .

The slope of the normal to the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ at P is $m^{\prime}=-\frac{1}{m}=-\left(\frac{d x}{d y}\right)_{P} \quad$ where $m=\left(\frac{d y}{d x}\right)_{P} \neq 0$

The equation of the normal at $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is

$$
y-y_{1}=\frac{-1}{m}\left(x-x_{1}\right) \text { where } \mathrm{m}=\left(\frac{d y}{d x}\right)_{p} \text { i.e.,. } y-y_{1}=-\left(\frac{d x}{d y}\right)_{P}\left(x-x_{1}\right)
$$

GEOMETRICAL APPLICATIONS EXERCISE

I 1. Find the slope of the tangent to the curve $y=3 x^{4}-4 x$ at $x=4$.
Sol: Equation of the curve is $y=3 x^{4}-4 x$

$$
\text { Diff. w.r.t. } x=>\frac{d y}{d x}=12 x^{3}-4
$$

At $\mathrm{x}=4$, slope of the tangent $=\left(\frac{d y}{d x}\right)_{x=4}=12(4)^{3}-4$

$$
=12 \times 64-4=786-4=764
$$

2. Find the slope of the tangent to the curve $y=\frac{x-1}{x-2}$ at $x \neq 2$ and $x=10$.

Sol: ans: $-\frac{1}{(10-2)^{2}}=-\frac{1}{64}$
3. Find the slope of the tangent to the curve, $y=x^{3}-x+1$ at the point whose x co-ordinate is 2.

Sol: ans: 11
4. Find the slope of the tangent to the curve, $y=x^{2}-3 x+2$ at the point whose x co-ordinates is 3 .

Sol: Equation of the curve is $y=x^{3}-3 x+2$

Diff. w.r.t. $x, \quad \frac{d y}{d x}=3 x^{2}-3$
At $\mathrm{x}=3$, slope of the tangent $=\left(\frac{d y}{d x}\right)_{x=3}=3(3)^{2}-3$

$$
=27-3=24
$$

5. Find the slope of the normal to the curve $x=a \operatorname{Cos}^{3} \theta, y=a \operatorname{Sin}^{3} \theta$ at $\theta=\frac{\pi}{4}$.

Sol: $\mathrm{x}=\mathrm{a} \operatorname{Cos}^{3} \theta$
Diff wrt $\theta, \quad \frac{d x}{d \theta}=a\left(3 \operatorname{Cos}^{2} \theta\right)\left(-\operatorname{Sin}_{\theta}\right)=-3 \operatorname{Cos}^{2} \theta . \operatorname{Sin}_{\theta}$
$y=a \operatorname{Sin}^{3} \theta$
Diff wrt $\theta, \quad \frac{d y}{d \theta}=a\left(3 \operatorname{Sin}^{2}{ }_{\theta}\right) \operatorname{Cos}_{\theta}=3 a \operatorname{Sin}^{2} \theta \operatorname{Cos}_{\theta}$
$\frac{d y}{d x}=\frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}=\frac{3 a \operatorname{Sin}^{2 \theta} \operatorname{Cos} \theta}{-3 a \operatorname{Cos}^{2} \theta \operatorname{Sin} \theta}=-\frac{\operatorname{Sin} \theta}{\operatorname{Cos} \theta}=-\tan _{\theta}$
At $\theta=\frac{\pi}{4}$, slope of the tangent $=\tan \frac{\pi}{4}=-1$
Slope of the normal $=-\frac{1}{m}=1$.
6. Find the slope of the normal to the curve $x=1-a \operatorname{Sin} \theta, y=b \operatorname{Cos}^{2} \theta$ at $\theta=\frac{\pi}{2}$.

Ans:

$$
\frac{-a}{2 b}
$$

7. Find the points at which the tangent to the curve $y=x^{3}-3 x^{2}-9 x+7$ is parallel to the \mathbf{x} - axis.

Sol: Equation of the curve is $y=x^{3}-3 x^{2}-9 x+7$
Diff.wrt $x, \quad \frac{d y}{d x}=3 x^{2}-6 x-x$
Since tangent is parallel to $x-$ axis, Slope of the tangent $=0$
$\Rightarrow\left(\frac{d y}{d x}\right)=0$
$\Rightarrow 3 x^{2}-6 x-9=0 \Rightarrow x^{2}-2 x-3=0$
$\Rightarrow(x-3)(x+1)=0 \Rightarrow x=3$ or -1
$y=x^{3}-3 x^{2}-9 x+7$
$x=3 \Rightarrow y=27-27-27+7=-20$
$x=-1, y=-1-3+9+7=12$
The points are $(3,-20),(-1,12)$.
8. Find a point on the curve $y=(x-2)^{2}$ at which the tangent us parallel to the chord joining the points $(2,0)$ and $(4,4)$.

Sol: Equation of the curve is $\mathrm{y}=(\mathrm{x}-2)^{2}$
Diff wrt $x, \frac{d y}{d x}=2(x-2)$
Slope of the chord joining A $(2,0)$ and $B(4,4)=\frac{4-0}{4-2}=\frac{4}{2}=2$.
since tangent us parallel to the chord, slope of tangent $=$ slope of chord AB
$\Rightarrow 2(x-2)=2 \Rightarrow x-2=1$
$\Rightarrow x=3$
$\Rightarrow \mathrm{y}=(\mathrm{x}-2)^{2}=(3-2)^{2}=1$
The required point is $\mathrm{p}(3,1)$.
9. Find the point on the curvey $=x^{2}-11 x+5$ at which the tangent is $y=x-11$.

Sol: Equation if the curve is $y=x^{2}-11 x+5$
$\Rightarrow \frac{d y}{d x}=3 x^{2}-11$
Since tangent is $\mathrm{y}=\mathrm{x}-1=>$ slope $=1$
$\Rightarrow 3 x^{2}-11=1 \Rightarrow 3 x^{2}=12 \Rightarrow x^{2}=4 \Rightarrow x= \pm 2$
$y=x-11$
$\mathrm{x}=2 \Rightarrow \mathrm{y}=2-11=-9$
The point on the curve is $\mathrm{p}(2,-9)$.
10. Find the equations of all lines having slope O which are tangent to the curve $y=\frac{1}{x^{2}-2 x+3}$.

Sol: ans: $2 \mathrm{y}-1=0$

1. Find the equation of tangent and normal to the following curves at the points indicated against.
i) $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $(0,5)$.

Sol: $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$
$\Rightarrow \frac{d y}{d x}=4 x^{3}-18 x^{2}+26 x-10$
At $x=(0,5)$
Slope of the tangent $m=\left(\frac{d y}{d x}\right)_{a t(0,5)}=0-0+0-10=0-0+0-10=-10$
Equation of the tangent is $y-5=-10(x-0)$

$$
=-10 x
$$

$$
10 x+y-5=0
$$

Slope of the normal $=-\frac{1}{m}=\frac{1}{10}$
Equation of the normal is $\mathrm{y}-5=\frac{1}{10}(\mathrm{x}-0)$

$$
10 y-50=x \Rightarrow x-10 y+50=0
$$

ii) $y=x^{3}$ at (1, 1). Ans: $3 x-y-2=0, x+3 y-4=0$
iii) $y=x^{2}$ at $(0,0)$. ans: $x=0, y=0$
iv) $x=\operatorname{Cos} t, y=\operatorname{Sin} t$, at $t=\frac{\pi}{4}$.

Sol: $\mathrm{x}=\operatorname{Cos} \mathrm{t}, \mathrm{y}=\operatorname{Sin} \mathrm{t}$

$$
\Rightarrow \frac{d x}{d t}=-\sin t, \frac{d t}{d x}=\cos t
$$

Therefore $\frac{d y}{d x}=\frac{\left(\frac{d y}{d x}\right)}{\left(\frac{d x}{d t}\right)}=\frac{\cos t}{-\sin t}=-\cot t$

$$
\Rightarrow m=\left(\frac{d y}{d x}\right)_{a t \frac{\pi}{4}}=-\cot \frac{\pi}{4}=-1 \quad \text { and } \mathrm{x}=-\cot \frac{\pi}{4}=\frac{1}{\sqrt{2}}, \mathrm{y}=\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}
$$

Point on the curve $\mathrm{p}\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
Equation of the tangent is $y-\frac{1}{\sqrt{2}}=-\left(x-\frac{1}{\sqrt{2}}\right)=-x+\frac{1}{\sqrt{2}}$
$\Rightarrow x+y=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\frac{2}{\sqrt{2}} \Rightarrow x+y=\sqrt{2}$
Slope of the normal $=-\frac{1}{m}=\frac{-1}{-1}=1$
Equation of the normal is $\mathrm{y}-\frac{1}{\sqrt{2}}=\mathrm{x}-\frac{1}{\sqrt{2}} \Rightarrow \mathrm{x}-\mathrm{y}=0$
v) $y=x^{2}-4 x+2$ at $P(4,2)$

Sol: Equation of the curve is $y=x^{2}-4 x+2 \Rightarrow \frac{d y}{d x}=2 x-4$
At $\mathrm{P}(4,2)$, slope of the tangent $=2.4-4=8-4=4$
Equation of the tangent at P is

$$
y-2=4(x-4)=4 x-16 \quad \Rightarrow_{4 x-y-14}=0
$$

Slope of the normal $=-\frac{1}{m}=-\frac{1}{4}$

Equation of the normal at P is $y-2=-\frac{1}{4}(x-4)$
$\Rightarrow_{4 y-8=-x+4} \Rightarrow x+4 y-12=0$
vi)

$$
y=\frac{1}{1+x^{2}} \text { at }(0,1)
$$

2. Find the equations of tangent and normal to the curve $x y=10$ at $(2,5)$.

Sol: Equation of the curve is $\mathrm{xy}=10$

$$
\begin{aligned}
& y=\frac{10}{x} \\
& \frac{d y}{d x}=\frac{-10}{x^{2}} \\
& m=\left(\frac{d y}{d x}\right)_{\mathrm{P}(2,5)}=\frac{-10}{4}=\frac{-5}{2}
\end{aligned}
$$

Equation of the tangent is $y-5=-\frac{5}{2}(x-2)$
\Rightarrow

$$
2 y-10=-5 x+10 \quad \Rightarrow_{5 x+2 y-20=0}
$$

Slope of normal $=2 / 5$
Equation of the normal is $y-5=\frac{2}{5}(x-2)$
$\Rightarrow 5 y-25=2 x-4$
$\Rightarrow 2 x-5 y+21=0$
3. Find the equation of tangent and normal to the curve $y=x^{3}+4 x^{2}$ at $(-1,3)$.

$$
5 x+y+2=09 x-5 y+16=0
$$

4. If the slope of the tangent to the curve $x^{2}-2 x y+4 y=0$ at a point on it is $-\frac{3}{2}$ then find the tangent and normal at that point.

Sol: Equation of the curve is $x^{2}-2 x y+4 y=0---(1)$
Diff . w.r.to x, $\quad 2 x-2 x \cdot \frac{d y}{d x}-2 y+4 \frac{d y}{d x}=0$

$$
\begin{aligned}
& 2(x-y)=2(x-2) \frac{d y}{d x} \\
& \frac{d y}{d x}=\frac{2(x-y)}{2(x-2)}=\frac{x-y}{x-2}
\end{aligned}
$$

But given $\frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{3}{2} \Rightarrow \quad \therefore \frac{\mathrm{x}-\mathrm{y}}{\mathrm{x}-2}=-\frac{3}{2}$

$$
\begin{align*}
& \Rightarrow 2 x-2 y=-3 x+6 \Rightarrow 5 x-2 y=6 \\
& \Rightarrow_{2 y=5 x-6}---(2) \tag{2}
\end{align*}
$$

Solving (1) and (2),

$$
\begin{aligned}
& \mathrm{x}^{2}-\mathrm{x}(5 \mathrm{x}-6)+2(5 \mathrm{x}-6)=0 \\
& \Rightarrow \mathrm{x}^{2}-5 \mathrm{x}^{2}+6 \mathrm{x}+10 \mathrm{x}-12=0 \Rightarrow-4 \mathrm{x}^{2}-16 \mathrm{x}-12=0 \\
& \Rightarrow-4\left(\mathrm{x}^{2}-4 \mathrm{x}+3\right)=0 \Rightarrow \mathrm{x}^{2}-4 \mathrm{x}+3=0 \\
& \Rightarrow(\mathrm{x}-1)=0 \text { or } \mathrm{x}-3=0
\end{aligned}
$$

Case (i) : $x=1$ from (1),

$$
1-2 y+4 y=0 \Rightarrow \quad 2 y=-1 \Rightarrow y=-\frac{1}{2}
$$

Therefore point is ${ }_{\mathrm{P}}\left(1,-\frac{1}{2}\right)$
Equation of the tangent is $y+\frac{1}{2}=-\frac{3}{2}(x-1)$

$$
\Rightarrow \frac{2 y+1}{2}=\frac{-3(x-1)}{2} \Rightarrow_{2 y+1=-3 x+3} \Rightarrow_{3 x+2 y-2}=0
$$

Slope of normal is $2 / 3$
Equation of the normal is $y+\frac{1}{2}=\frac{2}{3}(x-1)$
$\Rightarrow \frac{2 \mathrm{y}+1}{2}=\frac{2}{3}(\mathrm{x}-1) \Rightarrow 6 \mathrm{y}+3=4 \mathrm{x}-4 \Rightarrow_{4 \mathrm{x}-6 \mathrm{y}-7=0}$

Case (ii) : $\mathrm{x}=3$
Substituting in (1), $9-6 y+4 y=0 \Rightarrow 2 y=9 \Rightarrow y=\frac{9}{2}$
\therefore The point is $\left(3, \frac{9}{2}\right)$
Equation of the tangent is $y-\frac{9}{2}=-\frac{3}{2}(x-3)$
$\Rightarrow \frac{2 y-9}{2}=\frac{-3(x-3)}{2} \Rightarrow 2 y-9=-3 x+9 \Rightarrow_{3 x+2 y-18}=0$
Equation of the normal is $y-\frac{9}{2}=\frac{2}{3}(x-3)$
$\frac{2 y-9}{2}=\frac{2(x-3)}{3} \Rightarrow_{6 y-27}=4 x-12 \Rightarrow_{4 x-6 y+15}=0$
5. If the slope of the tangent to the curve $y=x \log x$ at the point on it is $\frac{3}{2}$, then find the equations of tangents and normal at that point.
$3 x-2 y-2 \sqrt{e}=0,4 x+6 y-7 \sqrt{e}=0$
6. Find the tangent and normal to the curves $y=2 e^{-x / 3}$ at the point where the curve meets the y - axis. ?

Sol: Equation of the curve is $y=2 e^{-x / 3}--(1)$
Equation of y-axis is $x=0$
$\Rightarrow \mathrm{y}=2 . \mathrm{e}^{0}=2.1=2$
The point of intersection of the curve and the y-axis is $\quad \mathrm{P}(0,2)$
Diff (1) w.r.t. $x, \Rightarrow \frac{d y}{d x}=2\left(-\frac{1}{3}\right) \cdot e^{-x / 3}$
$m=\left(\frac{d y}{d x}\right)_{a t(0,2)}=\frac{-2}{3} e^{0}=\frac{-2}{3}$
Equation of the tangent at P is

$$
y-2=-\frac{2}{3}(x-0) \quad \Rightarrow_{3 y-6=-2 x} \Rightarrow_{2 x+3 y-6=0}
$$

Slope of normal $=3 / 2$

Equation of the normal is $\quad y-2=\frac{3}{2}(x-0)$
$\Rightarrow 2 y-4=3 x ; 3 x-2 y+4=0$
III. 1. Show that the tangent at $\mathbf{P}\left(x_{1}, y_{1}\right)$ on the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$ is $\mathrm{yy}_{1}{ }^{-1 / 2}+\mathrm{xx}_{1}{ }^{-1 / 2}=\mathrm{a}^{1 / 2}$.

Sol: Equation of the curve is $\sqrt{x}+\sqrt{y}=\sqrt{a}-\cdots--(1)$ let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be a point on the curve. Then $\sqrt{x_{1}}+\sqrt{y_{1}}=\sqrt{a}$

Differente (1) w.r.to x
$\frac{1}{2 \sqrt{x}}+\frac{1}{2 \sqrt{y}} \cdot \frac{d y}{d x}=0 \Rightarrow \frac{1}{2 \sqrt{y}} \cdot \frac{d y}{d x}=-\frac{1}{2 \sqrt{x}} \Rightarrow \frac{d y}{d x}=-\frac{2 \sqrt{y}}{2 \sqrt{x}}=-\frac{y^{1 / 2}}{x^{1 / 2}}$
Slope of the tangent at $P\left(x_{1}, y_{1}\right)=-\frac{\left(y_{1}\right)^{1 / 2}}{\left(x_{1}\right)^{1 / 2}}$
Equation of the tangent at P is $y-y_{1}=\frac{-y_{1}{ }^{1 / 2}}{x_{1}{ }^{1 / 2}}\left(x-x_{1}\right)$
$\frac{y}{y_{1}{ }^{1 / 2}}-\frac{y_{1}}{y_{1}{ }^{1 / 2}}=-\frac{x}{x_{1}{ }^{1 / 2}}+\frac{x_{1}}{x_{1}{ }^{1 / 2}}=x_{1}^{1 / 2}+y_{1}{ }^{1 / 2}=a^{1 / 2}$
Equation of the tangent at P is
$y \cdot y_{1}{ }^{-1 / 2}+x \cdot x_{2}{ }^{-1 / 2}=a^{1 / 2}$
2. At what points on the curve $x^{2}-y^{2}=2$, the slope of the tangents are equal to 2 .

Sol: Equation of the curve is $\mathrm{x}^{2}-\mathrm{y}^{2}=2 \ldots$. (1)
Differentiating w.r.to $x, 2 x-2 y \cdot \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{x}{y} \quad$ but slope of the tangent $=\frac{\mathrm{dy}}{\mathrm{dx}}=2$
$\therefore \frac{y}{x}=2 \rightarrow y=2 x$

Sustituting in (1), $4 y^{2}-y^{2}=2 \Rightarrow \quad 3 y^{2}=2$
$y^{2}=\frac{2}{3} \Rightarrow y= \pm \sqrt{\frac{2}{3}} \Rightarrow x=2 y= \pm 2 \sqrt{\frac{2}{3}}$
\therefore The required points are
$\mathrm{P}\left(2 \sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}\right)$ and $\mathrm{Q}\left(-2 \sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}\right)$.
3. Show that the curves $x^{2}+y^{2}=2$ and $3 x^{2}+x^{2}=4 x$ have a common tangent at the point $(1,1)$.

Sol: Equation of the first curve is $x^{2}+y^{2}=2$
Differentiating w, r, to x
$\Rightarrow 2 x+2 y \frac{d y}{d x}=0 \Rightarrow 2 y \frac{d y}{d x}=-2 x \Rightarrow \frac{d y}{d x}=-\frac{2 x}{2 y}=-\frac{x}{y}$
At $p(1,1)$ slope of the tangent $=-\frac{-1}{1}=-1$
Equation of the second curve is $3 x^{2}+y^{2}=4 y$.
Differentiating w. r. to $x, 6 x+2 y \cdot \frac{d y}{d x}=4 \Rightarrow 2 y \cdot \frac{d y}{d x}=4-6 x$
$\Rightarrow \frac{d y}{d x}=\frac{4-6 x}{2 y}=\frac{2 y-3 x}{y}$
At $\mathrm{p}(1,1)$ slope of the tangent $=\frac{2-3}{1}=-\frac{1}{1}=-1$
The slope of the tangents to both the curves at $(1,1)$ are same and pass through the same point $(1,1)$
\therefore The given curves have a common tangent $\mathrm{p}(1,1)$

4. At a point $\left(x_{1}, y_{1}\right)$ on the curve $x^{2}+y^{2}=3 a x y$, show that the tangent
 is $\left(\mathrm{x}_{1}^{2}-\mathrm{ay} \mathrm{y}_{1}\right) \mathrm{x}+\left(\mathrm{y}_{1}^{2}-\mathrm{ax} \mathrm{x}_{1}\right) \mathrm{y}=a \mathrm{ax}_{1} \mathrm{y}_{1}$.

Sol: Equation of the curve is $x^{3}+y^{3}=3 a x y$
Let $\mathrm{P}\left(\mathbf{x}_{\mathbf{1}}, \mathbf{y}_{\mathbf{1}}\right)$ be a point on the curve. Then $x_{1}^{2}+y_{1}^{2}=3 a x_{1} y_{1}$

Differentiate $x^{3}+y^{3}=3 a x y$ w. r. to $x, 3 x^{2}+3 y^{2} \cdot \frac{d y}{d x}=3 a\left(x \cdot \frac{d y}{d x}+y\right)$

$$
\begin{aligned}
& x^{2}+y^{2} \frac{d y}{d x}=a\left(x \cdot \frac{d y}{d x}+y\right)=a x \cdot \frac{d y}{d x}+a y \\
& \Rightarrow\left(y^{2}-a x\right) \frac{d y}{d x}=a y-x^{2} \Rightarrow \frac{d y}{d x}=\frac{a y-x^{2}}{y^{2}-a x}=-\frac{\left(x^{2}-a y\right)}{\left(y^{2}-a x\right)}
\end{aligned}
$$

Slope of the tangent $p\left(x_{1}, y_{1}\right)=-\frac{\left(x_{1}^{2}-a y_{1}\right)}{\left(y_{1}^{2}-a x_{1}\right)}$
Equation of the tangent at $p\left(x_{1}, y_{1}\right)$ is $y-y_{1}=-\frac{\left(x_{1}^{2}-a y_{1}\right)}{\left(y_{1}^{2}-a x_{1}\right)}\left(x-x_{1}\right)$
$\Rightarrow \mathrm{y}\left(\mathrm{y}_{1-\mathrm{ax}}^{2}\right)-\mathrm{y}\left(\mathrm{y}_{1}^{2}-\mathrm{ax} x_{1}\right)=-\mathrm{x}\left(\mathrm{x}_{1}^{2}-\mathrm{ay}_{1}\right)+\mathrm{x}_{1}\left(\mathrm{x}_{1}^{2}-\mathrm{ay}_{1}\right)$
$\Rightarrow \mathrm{x}\left(\mathrm{x}_{1}^{2}-\mathrm{ay}_{1}\right)+\mathrm{y}\left(\mathrm{y}_{1}^{2}-\mathrm{ax}_{1}\right)=\mathrm{x}_{1}\left(\mathrm{x}_{1}^{2}-\mathrm{ay}_{1}\right)+\mathrm{y}_{1}\left(\mathrm{y}_{1-\mathrm{ax}_{1}}^{2}\right)$
$=x_{1}^{3}-a x_{1} y_{1}+y_{1}^{3}-a x_{1} y_{1}=x_{1+}^{3} y_{1}^{3}-2 a x_{1} y_{1}=3 a x_{1} y_{1}-2 a x_{1} y_{1}=a x_{1} y_{1}$
5. Show that the tangent at the point $P(2,-2)$ on the curve $y(1-x)=x$ makes intercepts of equal length on the coordinate axes and the normal at P passes through the origin.

Sol: Equation of the curve is $y(1-x)=x$
$y=\frac{x}{1-x}$
Differentiation w. r. to $x, \quad \frac{d y}{d x}=\frac{(1-x) \cdot 1-x(-1)}{(1-x)^{2}}$
$\Rightarrow \frac{1-\mathrm{x}+\mathrm{x}}{(1-\mathrm{x})^{2}}=\frac{1}{(1-\mathrm{x})^{2}}$
Slope $\mathrm{m}=\Rightarrow\left(\frac{d y}{d x}\right)_{a t P}=\frac{1}{(1-2)^{2}}=1$
Equation of the tangent at P is $\mathrm{y}+2=+(\mathrm{x}-2)=\mathrm{x}-2 ; \mathrm{x}-\mathrm{y}=4$
$\frac{x}{4}-\frac{y}{4}=1 \Rightarrow \frac{x}{4}+\frac{y}{(-4)}=1$
\therefore The tangent makes equal intercepts on the co-ordinates axes but they are in opposite in sign.

Slope of normal is -1
Equation of the normal at P is $y+2=-(x-2)=-x+2$

$$
\Rightarrow x+y=0
$$

There is no constant term in the equation.
\therefore The normal at $\mathrm{P}(2,-2)$ passes through the origin.
6. If the tangent at any point on the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ intersects the coordinate axes in A, B show that the length $A B$ is constant,

Sol: Equation of the curve is $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$
The parametric equations of the curve are $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$

$$
\frac{d y}{d x}=\frac{a \cdot 3 \sin ^{2} \theta \cdot \cos \theta}{a 3 \cos ^{2} \theta(-\sin \theta)}=-\tan \theta
$$

Equation of the tangent at $\left(a \cos ^{3} \theta, a \sin ^{3} \theta\right)$ is

$$
\begin{aligned}
& y-a \sin ^{3} \theta=-\tan \theta\left(x-a \cos ^{3} \theta\right) \\
& \frac{x}{\cos \theta}+\frac{y}{\sin \theta}=a
\end{aligned}
$$

X intercept $=\mathbf{a c o s} \theta$ and $\mathbf{y}-$ intercept $=\mathbf{a} \sin \theta$
$A=(a \cos \theta, 0)$ and $\mathrm{B}=(0, a \sin \theta)$

$$
\begin{aligned}
& \text { now } \mathrm{AB}=\sqrt{(a \cos \theta)^{2}+(a \sin \theta)^{2}} \\
& =\sqrt{a^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}=a
\end{aligned}
$$

Therefore, $\mathbf{A B}=\mathbf{a}$, constant.
7. If the tangent at a point P on the curve
$x^{m} y^{n}=a^{m+n}(m n \neq 0)$ meets the coordinate axes in A, B. show that AP:PB is constant.

Sol: Equation of the curve is $x^{m} \cdot y^{n}=a^{m+n}$
Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be a point on the curve. Then $x_{1}^{m} \cdot y_{1}{ }^{n}=a^{m+n}$
Differente given curve w. r. to x ,

$$
x^{m} \cdot n y^{n-1} \cdot \frac{d y}{d x}+y^{n} \cdot m x^{m-1}=0
$$

$$
n x^{m} \cdot y^{n-1} \frac{d y}{d x}=-m \cdot x^{m-1} \cdot y^{n} \Rightarrow \frac{d y}{d x}=\frac{-m \cdot x^{m-1} \cdot y^{n}}{n \cdot x^{m} y^{n-1}}=-\frac{m y}{n x}
$$

Slope of the tangent at $P\left(x_{1}, y_{1}\right)=-\frac{m y_{1}}{n x_{1}}$
Equation of the tangent at P is $y-y_{1}=-\frac{m y_{1}}{n x_{1}}\left(x-x_{1}\right)$

$$
\begin{aligned}
& \Rightarrow \mathrm{nx}_{1} \mathrm{y}-\mathrm{nx}_{1} \mathrm{y}_{1}=-\mathrm{my}_{1} \mathrm{x}+\mathrm{mx}_{1} \mathrm{y}_{1} \\
& \Rightarrow \mathrm{my}_{1} \mathrm{x}+\mathrm{nx}_{1} \mathrm{y}=\mathrm{mx}_{1} \mathrm{y}_{1}+\mathrm{nx}_{1} \mathrm{y}_{1}=(\mathrm{m}+\mathrm{n}) \mathrm{x}_{1} \mathrm{y}_{1} \\
& \Rightarrow \frac{\mathrm{my}_{1}}{(\mathrm{~m}+\mathrm{n}) \mathrm{x}_{1} \mathrm{y}_{1}} \cdot \mathrm{x}+\frac{\mathrm{nx}}{1}(\mathrm{~m}+\mathrm{n}) \mathrm{x}_{1} \mathrm{y}_{1} \\
& \\
& \Rightarrow \frac{\mathrm{x}}{\frac{\mathrm{~m}+\mathrm{n}}{\mathrm{~m}} \cdot \mathrm{x}_{1}}+\frac{\mathrm{y}}{\mathrm{~m}+\mathrm{n}} \frac{\mathrm{n}}{} \cdot \mathrm{y}_{1} \\
& \Rightarrow \mathrm{OA}=\frac{\mathrm{m}+\mathrm{n}}{\mathrm{~m}} \cdot \mathrm{x}_{1} \cdot O B=\frac{\mathrm{m}+\mathrm{n}}{\mathrm{n}}
\end{aligned}
$$

Co-ordinates of A are $\left[\frac{m+n}{m} \cdot x_{1}, 0\right]$ and B are $\left[0, \frac{m+n}{n} \cdot y_{1}\right]$
The ratio in which P divides AB is

$$
\frac{A P}{P B}=\frac{X-X_{1}}{X_{1}-0}=\frac{\frac{m+n}{m}-x_{1}}{x_{1}}=\frac{n x_{1}}{m x_{1}}=\frac{n}{m}
$$

8. Show that the tangent at the point $P(2,-2)$ on the curve $y(1-x)=x$ makes intercepts of equal length on the coordinate axes and the normal at P passes through the origin.

Sol.Equation of the curve is

$$
y(1-x)=x \Rightarrow y=\frac{x}{1-x}
$$

Differentiating w.r.t. x

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{(1-x) 1-x(-1)}{(1-x)^{2}} \\
& =\frac{1-x+x}{(1-x)^{2}}=\frac{1}{(1-x)^{2}}
\end{aligned}
$$

At $P(2,-2), \mathrm{f}^{\prime}\left(\mathrm{x}_{1}\right)=\frac{1}{(1-2)^{2}}=1=\mathrm{m}$
Equation of the tangent at P is
$y+2=1(x-2)=x-2 ; x-y=4$
$\frac{x}{4}-\frac{y}{4}=1 \Rightarrow \frac{x}{4}+\frac{y}{(-4)}=1$
$\therefore \mathrm{a}=4, \mathrm{~b}=-4$
\therefore The tangent makes equal intercepts on the coordinate axes but they are in opposite in sign. Equation of the normal at P is

$$
\begin{aligned}
& y-y_{1}=\frac{1}{f^{\prime}\left(x_{1}\right)}\left(x-x_{1}\right) \\
& y+2=-(x-2)=-x+2 \\
& x+y=0
\end{aligned}
$$

There is no constant term in the equation.
\therefore The normal at $\mathrm{P}(2,-2)$ passes through the origin.

