

INFINITESIMALS

Let x be a finite variable quantity and be a minute change in x. Such a quantity, which is very small when compared to x and which is smaller than any pre-assigned small quantity, is called an infinitesimal or an infinitesimal of first order. If δx is an infinitesimal then $(\delta x)^2$, $(\delta x)^3$, are called infinitesimals respectively of 2nd order, 3rd order....

If A is a finite quantity and is an infinitesimal then A. δx , A. $(\delta x)^2$, A. $(\delta x)^3$, are also infinitesimals and they are infinitesimals respectively of first order, second order, third order

Definition: A quantity $\alpha = \alpha(x)$ is called an infinitesimal as $x \rightarrow a$ if $Lt \alpha(x) = 0$

THEOREM

Let y = f(x) be a differentiable function at x and be a small change in x. Then

$$f'(x)$$
 and $\frac{\partial y}{\partial x}$ differ by an infinitesimal $\mathbf{C}(\partial x)$ as $\partial x \to 0$, where $\partial y = f(x + \partial x) - f(x)$.

DIFFERENTIAL

Definition: If y = f(x) is a differentiable function of x then f'(x). If f'(x) is called the differential of f. It is denoted by df or dy.

 $\therefore dy = f'(x) \delta x \text{ or } df = f'(x) \delta x.$

Note: $\delta f \cong df$ i.e., error in f is approximately equal to differential of f

APPROXIMATIONS

We have
$$\delta f = f(x + \delta x) - f(x)$$
------(1)
 $\Rightarrow df \equiv f(x + \delta x) - f(x)$
 $\Rightarrow f^1(x) \delta x \equiv f(x + \delta x) - f(x)$
 $\Rightarrow f(x + \delta x) \equiv f(x) + f^1(x) \delta x$

If we know the value of f at a point x, then the approximate value of f at a very nearby point $x + \delta x$ can be calculated with the help of above formula.

ERRORS

Definition: Let y=f(x) be a function defined in a nbd of a point x. Let δx be a small change in x and δy be the corresponding change in y.

If **b***x* is considered as an error in x, then

(i) by is called the absolute error or error in y,

(ii) $\frac{\mathbf{O}y}{y}$ is called the relative error (or proportionate error) in y,

(iii) $\frac{\delta y}{v} \times 100$ is called the percentage error in y corresponding to the error δx in x.

EXERCISE

Find \triangle y, dy for the following functions. I.

1.
$$y = x^2 + 3x + 6, x = 10, \Delta x = 0.01$$
. (Mar. '5)

Sol: $\Delta y = f(x + \Delta x) - f(x) = (x + \Delta x)^2 + 3(x + \Delta x) + 6 - (x^2 + 3x + 6) = (\Delta x)^2 + 2x \Delta x + 3\Delta x$

Put x=10and
$$\triangle x = 0.01$$

 $\Rightarrow \Delta y = (0.01)^2 + 2.10.(0.01) + 3(0.01)$
 $= 0.0001 + 0.2 + 0.03 = 0.2301$
 $y = x^2 + 3x + 6$
 $dy = f^1(x) \, \delta x$

dy = $(2x + 3) \delta x = (2.10 + 3) (0.01) = 0.23$

2.
$$y = e^x, x = 0, \Delta x = 0.1.$$

D 4

Sol: $\Delta y = f(x + \Delta x) - f(x)$

$$= e^{(x+\delta x)} - e^{x} \text{ put } x = 0 \text{ and } \Delta x = 0.1$$

$$\Delta y = e^{0.1} - e^{0} = e^{0.1} - 1.$$

$$dy = e^{1}(x) = \delta x = e^{x} \Delta x = e^{0}(0.1) = 0.1$$

3.
$$y = \frac{1}{x}, x = 2, \Delta x = 0.002.$$

Ans: $-\frac{1}{2000}$

 $y = \log x, x = 3, \Delta x = 0.003.$ 4.

Ans: 0.001

5.
$$y = x^2 + 2x, x = 5, \Delta x = -0.1$$

Sol: $\Delta y = -1.19$ ans dy = -1.2

- 6. If the increase in the side of a square is 1%, find the percentage of change in the area of the square.
- Sol: Let x be the side and Abe the area of the

Square Percentage error in x is $\frac{\delta x}{x} \times 100 = 1$

Area $A = x^2$

Applying logs on both sides

Log A = 2 log x

Taking differentials on both sides

$$\frac{1}{A}\delta A = 2.\frac{1}{x}\delta x \Rightarrow \frac{\delta A}{A} \times 100 = 2.\frac{\delta x}{x} \times 100 = 2 \times 1$$

Therefore, percentage error in A is 2%

7. Area of \triangle ABC is measured, by the measure of a, b, c. If \triangle c is the error in measuring c, then what is the percentage error in the area?

Sol: area of the triangle is $A = \frac{1}{2}ab \sin c$

Applying logs on both sides , $\text{Log } A = \log \left(\frac{1}{2}ab \sin c\right)$

$$Log A = log(\frac{1}{2}ab) + log sinC$$

Taking differentials on both sides

$$\frac{1}{A}\delta A = 0 + \frac{1}{\sin C}\cos C \ \delta C \Rightarrow \frac{\delta A}{A} \times 100 = \delta C \cot C \times 100 \text{ Percentage error in } A = 100 \cot C. \Delta C$$

- 8. The diameter of a sphere us measured to be 20 cms. If an error of 0.02 cm occurs in this, find the error in volume and surface area of the sphere.
- Sol: let d be the diameter of the sphere.

Volume of the sphere is
$$V = \frac{4}{3}\pi r^3 = \frac{4\pi}{3}\left(\frac{d}{2}\right)^3$$

$$= \frac{4\pi d^3}{3\times 8} = \frac{\pi d^3}{6} = \frac{\pi d^3}{6}$$
$$\Delta V = \frac{\pi}{6} (3d^2) \cdot \Delta d = \frac{\pi}{2} d^2 \cdot \Delta d$$

Given d= 20, $\Delta d = 0.02$

$$_{\Delta} V = \frac{\pi}{2} (20)^2 (0.02) = \pi (400) (0.01) = 4 \pi \text{ cm}^3$$

 \therefore Error in volume = 4π cms³

Let S be the surface area of the sphere.

Then
$$S = 4\pi r^2 = 4\pi \left(\frac{d}{2}\right)^2 = 4\pi \left(\frac{d^2}{4}\right)^2 = \pi d^2$$

$$\Delta S = \pi (2d). \ \Delta d = 2 \pi d \ . \ \Delta d$$

Put d = 20, Δ d = 0.02

$$\Delta S = 2\pi (20) (0.02) = 0.8 \pi \text{ cm}^2$$

 \therefore Error un surface area = 0 .8 π sq.cms².

9. The time t of a complete oscillation of a simple pendulum of length l is given by the equation $t = {}_{2\pi} \sqrt{\frac{1}{g}}$ where g gravitational constant. Find the approximate percentage error in the calculated g, corresponding to an error of 0.01 percent is the value of t.

Sol: percentage error in t is
$$\frac{\Delta t}{t} \times 100 = 0.01$$

Given t=
$$2\pi \sqrt{\frac{1}{g}}$$

 $\log t = \log (2\pi) + \frac{1}{2} \{ (\log (1) - \log g) \}$ Taking logs on both sides Taking differentials on both sides, $\frac{1}{t} (\Delta t) = 0 + \frac{1}{2} \left\{ o - \frac{1}{g} \cdot (\Delta g) \right\}$ $\frac{\Delta t}{t} \times 100 = -\frac{1}{2} \frac{\Delta g}{g} \times 100$ Multiplying with 100, $\Rightarrow 0.001 = -\frac{1}{2}\frac{\Delta g}{g} \times 100$ $\Rightarrow \frac{\Delta g}{g} \times 100 = -0.02$ \therefore Percentage error in g = -0.02 II. Find the approximate value of 4) ³√7.8 1) $\sqrt{82}$ **3**) √25.2 2) $\sqrt[3]{63}$ 5) Sin 60°1' $\left(\frac{1}{180} = 0.0175\right)$ 6) cos 45°6' 7) $(x - 1)^3 (x-2)^2 (x-3)$ when x = 0.001. $\sqrt{82}$ **Sol:** let $f(x) = \sqrt{x}$, x = 81, $\Delta x = 1$

Now

1.

$$= \sqrt{x} + \frac{1}{2\sqrt{x}} \Delta x, \text{ put } x = 81, \Delta x = 1$$
$$= \sqrt{81} + \frac{1}{2\sqrt{81}} \Delta x = 9 + \frac{1}{2.9} = 9 + \frac{1}{18} = 9 + 0.056 = 9.056$$

3√63 2.

Sol: let $f(x) = \sqrt[3]{x}, x = 64, \Delta x = -1$

 $f(x + \delta x) = f(x) + f^{1}(x) \delta x$

Follow above method.

3.
$$\sqrt{25.2}$$

Sol: Let x = 25, $\Delta x = 0.2$, $f(x) = \sqrt{x}$

Follow above method

$$\therefore \sqrt{25.2} = 5.02$$

4. $\sqrt[3]{7.8}$

Sol: Let
$$x = 8$$
, $\Delta x = -0.2$, $f(x) = \sqrt[3]{x}$

ans: $\sqrt[3]{7.8} = 1.9834$

5. Sin 60°1', = $\frac{1}{80}$ = 0.0175.

Sol: Let
$$f(x) = \sin x, x = 60^{\circ} = \frac{\pi}{3} \operatorname{and}_{\Delta} x = 1' = \frac{\pi}{60 \times 180} \operatorname{radians} \quad f(x + \delta x) = f(x) + f^{1}(x) \, \delta x$$

= $\sin x + \cos x \, \Delta x = \sin 60 + \cos 60 \cdot \frac{\pi}{60 \times 180}$
= $\frac{\sqrt{3}}{2} + \frac{1}{2} \cdot \frac{0.01745}{60} = 0.86605 + 0.00013 = 0.86618$

 \therefore S u n 6 0 ° 1 ' = 0.8 6 6 1 8

6. Cos 45°6'

Ans; Cos 45° 6' = 0.7059

7. $(x-1)^{3}(x-2)^{2}(x-3)$ at x = 0.001.

Sol: $f(x) = (x-1)^3 (x-2)^2 (x-3)$

$$f^{1} (x) = (x-1)^{3} (x-2)^{2} \cdot 1 + (x+1)^{3} (x-3) + 2(x-2) + (x-2)^{2} (x-3) (x-1)^{2}$$

= (x-1)² (x-2) [(x-1) (x-2)+2 (x-1) (x-3) + 3 (x-2) (x-3)]
= (x-1)² (x-2) [x² - 3x + 2 + 2x² - 8x + 6 + 3x² - 15x + 18]
= (x-1)² (x-2) (6x² - 26x + 26)

$$dy = f^{1}(x). \ _{\Delta} x \text{ put } x = 0, \ _{\Delta} x = 0.001$$

$$dy = [(-1)^{2} (-2) (0 - 0 + 26)] (0.001)$$

$$= -52 (0.001)$$

$$= -0.052$$

$$f(x + \delta x) = f(x) + f^{1}(x) \ \delta x$$

i.e.,
$$f(x + \delta x) \approx f(x) + dy$$

$$= f(0) + dy = (-1)^{3} (-2) (-3) + (-0.052)$$

$$= 12 - 0.052 = 11.948$$

.

8.
$$y = \cos(x), x = 60^{\circ} \text{ and } \Delta x = 1^{\circ}.$$

Sol. $\Delta y = f(x + \Delta x) - f(x)$
 $= \cos(x + \Delta x) - \cos x$
 $= \cos(60^{\circ} + 1^{\circ}) - \cos 60^{\circ}$
 $= \cos 61^{\circ} - \cos 60^{\circ}$
 $= 0.4848 - \frac{1}{2} = 0.4848 - 0.5 = -0.0152$
dy = f'(x) Δx
 $= -\sin x\Delta x$

$$= -\sin 60^{\circ}(1^{\circ}) = \frac{-\sqrt{3}}{2}(0.0174)$$
$$= -(0.8660)(0.0174) = -0.0151$$

