CHAPTER 10

ERRORS AND APPROXIMATIONS

INFINITESIMALS

Let x be a finite variable quantity and be a minute change in x. Such a quanitity, which is very small when compared to x and which is smaller than any pre-assigned small quantity, is called an infinitesimal or an infinitesimal of first order. If δx is an infinitesimal then $(\delta x)^{2},(\delta x)^{3}, \ldots \ldots$ ar called infinitesimals respectively of $2^{\text {nd }}$ order, $3^{\text {rd }}$ order....

If A is a finite quantity and is an infinitesimal then A. $\delta x, \mathrm{~A} \cdot(\delta x)^{2}, \mathrm{~A} \cdot(\delta x)^{3}, \ldots$. are also infinitesimals and they are infinitesimals respectively of first order, second order, third order

Definition: A quantity $\alpha=\alpha(\mathrm{x})$ is called an infinitesimal as $\boldsymbol{x} \rightarrow \boldsymbol{a}$ if $\underset{x \rightarrow a}{\boldsymbol{L} \boldsymbol{\alpha}} \boldsymbol{x}(\boldsymbol{x}) \boldsymbol{0}$

THEOREM

Let $\boldsymbol{y} \boldsymbol{f} \boldsymbol{f} \boldsymbol{x})$ be a differentiable function at x and be a small change in x . Then
$f^{\prime}(x)$ and $\frac{8 y}{8 x}$ differ by an infinitesimal $\boldsymbol{c}(8 x)$ as $8 \rightarrow 0$, where $8=f(x+8 x)-f(x)$.

DIFFERENTIAL

Definition: If $y=f(x)$ is a differentiable function of x then $f^{\prime}(x) .8 x$ is called the differential of f . It is denoted by df or dy .
$\therefore d y=f^{\prime}(x) \& x$ or $d f=f^{\prime}(x) \boldsymbol{\otimes x}$.
Note: $\quad \delta f \cong d f$ i.e., error in f is approximately equal to differential of f

APPROXIMATIONS

$$
\begin{aligned}
& \text { We have } \begin{array}{rl}
8 & f(x+8 x)-f(x) \\
& \Rightarrow d f \equiv f(x+8 x)-f(x) \\
\Rightarrow & f^{1}(x) \cdot 8 x \equiv f(x+8 x)-f(x) \\
\Rightarrow & f(x+8 x) \equiv f(x)+f^{1}(x) \cdot 8 x
\end{array}
\end{aligned}
$$

If we know the value of f at a point x, then the approximate value of f at a very nearby point $\mathrm{x}+\delta x$ can be calculated with the help of above formula.

ERRORS

Definition: Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be a function defined in a nbd of a point x . Let $\boldsymbol{8} \boldsymbol{x}$ be a small change in x and 8 be the corresponding change in y.

If $\boldsymbol{\mathcal { E }} \boldsymbol{x}$ is considered as an error in x, then
(i) $8 y$ is called the absolute error or error in y,
(ii) $\frac{8 y}{y}$ is called the relative error (or proportionate error) in y ,
(iii) $\frac{\boldsymbol{8} y}{y} \times 1 \mathbf{0 0}$ is called the percentage error in y corresponding to the error $\boldsymbol{8}$ in x .

EXERCISE

I. Find $\Delta \mathbf{y}$, dy for the following functions.

1. $y=x^{2}+3 x+6, x=10, \Delta x=0.01$. (Mar. '5)

Sol: $\Delta y=f(x+\Delta x)-f(x)=(x+\Delta x)^{2}+3(x+\Delta x)+6-\left(x^{2}+3 x+6\right)=(\Delta x)^{2}+2 x . \Delta x+3 \Delta x$ Put $\mathrm{x}=10$ and $\Delta x=0.01$

$$
\Rightarrow \Delta \mathrm{y}=(0.01)^{2}+2 \cdot 10 \cdot(0.01)+3(0.01)
$$

$$
=0.0001+0.2+0.03=0.2301
$$

$$
y=x^{2}+3 x+6
$$

$$
\mathrm{dy}=\mathrm{f}^{1}(\mathrm{x}) \delta \mathrm{x}
$$

$$
\mathrm{dy}=(2 \mathrm{x}+3) \delta \mathrm{x}=(2.10+3)(0.01)=0.23
$$

2. $\mathbf{y}^{\mathrm{x}} \mathrm{e}^{\mathrm{x}}, \mathrm{x}=0, \Delta \mathrm{x}=\mathbf{0}$.1.

Sol: $\Delta y=f(x+\Delta x)-f(x)$
$=e^{(x+\delta x)}-e^{x}$ put $x=0$ and $\Delta x=\mathbf{0 . 1}$
$\Delta y=e^{0.1}-e^{0}=e^{0.1}-1$.
$d y={ }_{f}(x) \cdot \delta x=e^{x} \cdot \Delta x=e^{0}(0.1)=0.1$
3. $\mathrm{y}=\frac{1}{\mathrm{x}}, \mathrm{x}=2, \Delta \mathrm{x}=0.002$.

Ans: $-\frac{1}{2000}$
4. $\mathrm{y}=\log \mathrm{x}, \mathrm{x}=3, \mathrm{~A} \mathrm{x}=0.003$.

Ans: 0.001
5. $y=x^{2}+2 x, x=5, \Delta x=-0.1$

Sol: $\Delta \mathrm{y}=-1.19$ ans $\quad \mathrm{dy}=-1.2$
6. If the increase in the side of a square is 1%, find the percentage of change in the area of the square.

Sol: Let x be the side and Abe the area of the
Square Percentage error in x is $\frac{\delta \mathrm{x}}{\mathrm{x}} \times 100=1$
Area $\quad A=x^{2}$
Applying logs on both sides
$\log \mathrm{A}=2 \log \mathrm{X}$
Taking differentials on both sides
$\frac{1}{\mathrm{~A}} \delta \mathrm{~A}=2 \cdot \frac{1}{\mathrm{x}} \delta \mathrm{x} \Rightarrow \frac{\delta \mathrm{A}}{\mathrm{A}} \times 100=2 \cdot \frac{\delta \mathrm{x}}{\mathrm{x}} \times 100=2 \times 1$

Therefore, percentage error in A is 2%
7. Area of $\Delta \mathrm{ABC}$ is measured, by the measure of a, b, c. If Δc is the error in measuring

Sol: area of the triangle is $\mathrm{A}=\frac{1}{2} \mathrm{ab} \sin \mathrm{c}$

c, then what is the percentage error in the area?

Applying logs on both sides,$\quad \log \mathrm{A}=\log \left(\frac{1}{2} \mathrm{ab} \sin \mathrm{c}\right)$
$\log A=\log \left(\frac{1}{2} a b\right)+\log \sin C$
Taking differentials on both sides
$\frac{1}{\mathrm{~A}} \delta \mathrm{~A}=0+\frac{1}{\sin \mathrm{C}} \cos \mathrm{C} \delta \mathrm{C} \Rightarrow \frac{\delta \mathrm{A}}{\mathrm{A}} \times 100=\delta \mathrm{C} \cot \mathrm{C} \times 100$ Percentage error in $\mathrm{A}=100 \cot \mathrm{C} . \Delta c$
8. The diameter of a sphere us measured to be $\mathbf{2 0} \mathbf{~ c m s . ~ I f ~ a n ~ e r r o r ~ o f ~} \mathbf{0 . 0 2} \mathbf{~ c m}$ occurs in this, find the error in volume and surface area of the sphere.

Sol: let d be the diameter of the sphere.
Volume of the sphere is $V=\frac{4}{3} \pi r^{3}=\frac{4 \pi}{3}\left(\frac{d}{2}\right)^{3}$
$=\frac{4 \pi \mathrm{~d}^{3}}{3 \times 8}=\frac{\pi \mathrm{d}^{3}}{6}=\frac{\pi \mathrm{d}^{3}}{6}$
$\Delta \mathrm{V}=\frac{\pi}{6}\left(3 \mathrm{~d}^{2}\right) \cdot \Delta \mathrm{d}=\frac{\pi}{2} \mathrm{~d}^{2} \cdot \Delta \mathrm{~d}$
Given $\mathrm{d}=20, \Delta \mathrm{~d}=0.02$

$$
\Delta V=\frac{\pi}{2}(20)^{2}(0.02)=\pi(400)(0.01)=4 \pi \mathrm{~cm}^{3}
$$

\therefore Error in volume $=4 \pi \mathrm{cms}^{3}$
Let S be the surface area of the sphere.

$$
\begin{aligned}
& \text { Then } \mathrm{S}=4 \pi \mathrm{r}^{2}=4 \pi\left(\frac{\mathrm{~d}}{2}\right)^{2}=4 \pi \frac{\mathrm{~d}^{2}}{4}=\pi \mathrm{d}^{2} \\
& \Delta \mathrm{~S}=\pi(2 \mathrm{~d}) \cdot \Delta \mathrm{d}=2 \pi \mathrm{~d} \cdot \Delta \mathrm{~d}
\end{aligned}
$$

Put d $=20, \Delta \mathrm{~d}=0.02$

$$
\Delta \mathrm{S}=2 \pi(2 \mathrm{o})(0.02)=0.8 \pi \mathrm{~cm}^{2}
$$

\therefore Error un surface area $=0.8 \pi \quad$ sq. cms^{2}.
9. The time t of a complete oscillation of a simple pendulum of length l is given by the equation $t={ }_{2 \pi} \sqrt{\frac{\mathbf{1}}{g}}$ where g gravitational constant. Find the approximate percentage error in the calculated g, corresponding to an error of 0.01 percent is the value of t.

Sol: percentage error in t is $\frac{\Delta \mathrm{t}}{\mathrm{t}} \times 100=0.01$

Given $\mathrm{t}=2 \pi \sqrt{\frac{1}{\mathrm{~g}}}$
Taking logs on both sides $\quad \log \mathrm{t}=\log (2 \pi)+\frac{1}{2}\{(\log (1)-\log g\}$
Taking differentials on both sides, $\frac{1}{\mathrm{t}}(\Delta \mathrm{t})=0+\frac{1}{2}\left\{\mathrm{o}-\frac{1}{\mathrm{~g}} .(\Delta \mathrm{g})\right\}$
Multiplying with 100,

$$
\frac{\Delta \mathrm{t}}{\mathrm{t}} \times 100=-\frac{1}{2} \frac{\Delta \mathrm{~g}}{\mathrm{~g}} \times 100
$$

$$
\begin{aligned}
& \Rightarrow 0.001=-\frac{1}{2} \frac{\Delta \mathrm{~g}}{\mathrm{~g}} \times 100 \\
& \Rightarrow \frac{\Delta \mathrm{~g}}{\mathrm{~g}} \times 100=-0.02
\end{aligned}
$$

\therefore Percentage error in $\mathrm{g}=-0.02$
II. Find the approximate value of

1) $\sqrt{82}$
2) $\sqrt[3]{63}$
3) $\sqrt{25.2}$
4) $\sqrt[3]{7.8}$
5) $\operatorname{Sin} 60^{\circ} 1^{\prime}\left(\frac{\boldsymbol{\pi}}{180}=0.0175\right)$ 6) $\cos 45^{\circ} 6^{\prime}$, 7) $(x-1)^{3}(x-2)^{2}(x-3)$ when $x=0.001$.
1. $\sqrt{82}$

Sol: let $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}, \mathrm{x}=81, \Delta \mathrm{x}=1$
Now

$$
f(x+\delta x)=f(x)+f^{1}(x) \delta x
$$

$$
=\sqrt{\mathrm{x}}+\frac{1}{2 \sqrt{\mathrm{x}}} \cdot \Delta \mathrm{x}, \text { put } \mathrm{x}=81, \Delta \mathrm{x}=1
$$

$$
=\sqrt{81}+\frac{1}{2 \sqrt{81}} \cdot 1=9+\frac{1}{2.9}=9+\frac{1}{18}=9+0.056=9.056
$$

2. $\sqrt[3]{63}$

Sol: let $f(x)=\sqrt[3]{x}, x=64, \Delta x=-1$

Follow above method.
3. $\sqrt{25.2}$

Sol: Let $\mathrm{x}=25, \Delta \mathrm{x}=0.2, \mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}$

Follow above method

$\therefore \sqrt{25.2}=5.02$

4. $\sqrt[3]{7.8}$

Sol: Let $x=8, \Delta x=-0.2, f(x)=\sqrt[3]{x}$ ans $: \sqrt[3]{7.8}=1.9834$
5. $\operatorname{Sin} 60^{\circ} 1^{\prime},=\frac{\pi}{80}=0.0175$.

Sol: Let $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}, \mathrm{x}=60^{\circ}=\frac{\pi}{3} \operatorname{and} \Delta \mathrm{x}=1^{\prime}=\frac{\pi}{60 \times 180}$ radians $\quad \mathrm{f}(\mathrm{x}+\delta \mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{f}^{1}(\mathrm{x}) \delta \mathrm{x}$

$$
\begin{aligned}
& =\sin x+\cos x \cdot \Delta x=\sin 60+\cos 60 \cdot \frac{\pi}{60 \times 180} \\
& =\frac{\sqrt{3}}{2}+\frac{1}{2} \cdot \frac{0.01745}{60}=0.86605+0.00013=0.86618
\end{aligned}
$$

$\therefore \mathrm{Sun} 60^{\circ} 1^{\prime}=0.86618$

6. $\operatorname{Cos} 45^{\circ} 6^{\prime}$

Ans; $\operatorname{Cos} 45^{\circ} 6^{\prime}=0.7059$
7. $(x-1)^{3}(x-2)^{2}(x-3)$ at $x=0.001$.

Sol: $f(x)=(x-1)^{3}(x-2)^{2}(x-3)$

$$
\begin{aligned}
\mathrm{f}^{1}(\mathrm{x}) & =(\mathrm{x}-1)^{3}(\mathrm{x}-2)^{2} \cdot 1+(\mathrm{x}+1)^{3}(\mathrm{x}-3)+2(\mathrm{x}-2)+(\mathrm{x}-2)^{2}(\mathrm{x}-3) 3(\mathrm{x}-1)^{2} \\
= & (\mathrm{x}-1)^{2}(\mathrm{x}-2)[(\mathrm{x}-1)(\mathrm{x}-2)+2(\mathrm{x}-1)(\mathrm{x}-3)+3(\mathrm{x}-2)(\mathrm{x}-3)] \\
= & (\mathrm{x}-1)^{2}(\mathrm{x}-2)\left[\mathrm{x}^{2}-3 \mathrm{x}+2+2 \mathrm{x}^{2}-8 \mathrm{x}+6+3 \mathrm{x}^{2}-15 \mathrm{x}+18\right] \\
= & (\mathrm{x}-1)^{2}(\mathrm{x}-2)\left(6 \mathrm{x}^{2}-26 \mathrm{x}+26\right)
\end{aligned}
$$

$$
\begin{aligned}
& d y=f^{1}(x) \cdot \Delta x \text { put } x=0, \Delta x=0.001 \\
& d y=\left[(-1)^{2}(-2)(0-0+26)\right](0.001) \\
& =-52(0.001) \\
& =-0.052 \\
& f(x+\delta x)=f(x)+f^{1}(x) \delta x \\
& \text { i.e., } f(x+\delta x) \simeq f(x)+d y \\
& =f(0)+d y=(-1)^{3}(-2)(-3)+(-0.052) \\
& =12-0.052=11.948
\end{aligned}
$$

8. $y=\cos (x), x=60^{\circ}$ and $\Delta x=1^{\circ}$.

Sol. $\Delta y=f(x+\Delta x)-f(x)$

$$
\begin{aligned}
& =\cos (x+\Delta x)-\cos x \\
& =\cos \left(60^{\circ}+1^{\circ}\right)-\cos 60^{\circ} \\
& =\cos 61^{\circ}-\cos 60^{\circ} \\
& =0.4848-\frac{1}{2}=0.4848-0.5=-0.0152
\end{aligned}
$$

$$
\begin{aligned}
d y & =f^{\prime}(x) \Delta x \\
& =-\sin x \Delta x \\
& =-\sin 60^{\circ}\left(1^{\circ}\right)=\frac{-\sqrt{3}}{2}(0.0174) \\
& =-(0.8660)(0.0174)=-0.0151
\end{aligned}
$$

