MATHEMATICS PAPER IA- MAY 2010. ALGEBRA, VECTOR ALGEBRA AND TRIGONOMETRY

TIME: 3hrs
Max. Marks. 75
Note: This question paper consists of three sections A, B and C.

SECTION A

VERY SHORT ANSWER TYPE QUESTIONS.
$10 \times 2=20$
Note: Attempt all questions. Each question carries 2 marks.

1. If $A=\{-2,-1,0,1,2\}$ and $f: A \rightarrow B$ is a surjection defined by $f(x)=x^{2}+x+1$, then find B.
2. find the domain of the function $f(x)=\sqrt{4 x-x^{2}}$.
3. If the vectors are $-3 \mathbf{i}+4 \mathbf{j}++\mathbf{l} \mathbf{k} \quad \boldsymbol{i}+8 \mathbf{j}+6 \mathbf{k}$, are collinear vectors then find $1, \mu$.
4. Find the vector equation of the line passing through the point $(2,3,1)$ and parallel to the vector (4, $-2,3$)
5. If $(\mathbf{r}-2 \mathbf{i}+\mathbf{j}-4 \mathbf{k}) .(\mathbf{r}+2 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k})=0$ is the equation of the sphere, then find its centre.
6. Find the maximum and minimum values of the following functions over R .

$$
f(x)=5 \sin x+12 \cos x-13
$$

7. Find the period of the function $f(x)=\cos \left(\frac{4 x+9}{5}\right)$
8. If $\sinh x=3$, show that $x=\log _{e}(3+\sqrt{10})$
9. If $\mathrm{a}=6, \mathrm{~b}=5, \mathrm{c}=9$, then find angle A .
10. Find the square root of $3+4 i$.

SECTION B

SHORT ANSWER TYPE QUESTIONS

5X4 =20

Note: Answer any FIVE questions. Each question carries 4 marks.

11. a, \mathbf{b}, \mathbf{c} are non-coplanar vectors. Prove that the following four points are coplanar $-a+4 b-3 c, 3 a+2 b-5 c,-3 a+8 b-5 c,-3 a+2 b+c$.
12. Find a unit vector perpendicular to the plane determined by the points $\mathrm{P}(1,2,3), \mathrm{Q}(2,-1,1)$ and $\mathrm{R}(1,2,-4)$.
13. Prove that $\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}$
14. If θ_{1}, θ_{2} are solutions of the equation $a \cos 2 \theta+b \sin 2 \theta=c$, $\tan \theta_{1} \neq \tan \theta_{2}$ and $a+c \neq 0$ then find the values of (i) $\tan \theta_{1}+\tan \theta_{2}$ (ii) $\tan \theta_{1} \cdot \tan \theta_{2}$
15. Prove that $\operatorname{Tan}^{-1} \frac{1}{2}+\operatorname{Tan}^{-1} \frac{1}{5}+\operatorname{Tan}^{-1} \frac{1}{8}=\frac{\pi}{4}$
16. Show that $\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}$
17. Show that $16 \sin ^{5} \theta=\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta$

SECTION C

LONG ANSWER TYPE QUESTIONS

$$
5 \times 7=35
$$

Note: Answer any Five of the following. Each question carries 7 marks.

18. If $f: A \rightarrow B, g: B \rightarrow C$ be bijections. Then show that $g o f: A \rightarrow C$ is a bijection.
19. Using mathematical induction, Show that $3.5^{2 n+1}+2^{3 n+1}$ is divisible by 17 for all $n € N$.

20 If the angle between any two diagonals of a cube is θ, then by vector method, prove that $\cos \theta=$ 1/3
21. If $\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$, then prove that $\cos ^{2} \frac{\mathrm{~A}}{2}+\cos ^{2} \frac{\mathrm{~B}}{2}-\cos ^{2} \frac{\mathrm{C}}{2}=2 \cos \frac{\mathrm{~A}}{2} \cos \frac{\mathrm{~B}}{2} \sin \frac{\mathrm{C}}{2}$.
22. If $\mathrm{a}=13, \mathrm{~b}=14, \mathrm{c}=15$, show that $\mathrm{R}=\frac{65}{8}, \mathrm{r}=4, \mathrm{r}_{1}=\frac{21}{2}, \mathrm{r}_{2}=12$ and $\mathrm{r}_{3}=14$.
23. A pillar is leaning towards east and a and b are the angles of elevation of the top of the pillar from two points due west of the pillar at distance a and b respectively. Show that the angle between the pillar and the horizontal is $\operatorname{Tan}^{-1}\left(\frac{b-a}{b \cot \alpha-a \cot \beta}\right)$.
24. Show that one of $\left(\frac{1+\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}}{1+\sin \frac{\pi}{8}-i \cos \frac{\pi}{8}}\right)^{\frac{8}{3}}=-1$

