MATHEMATICS PAPER IA- JUNE 2008. ALGEBRA, VECTOR ALGEBRA AND TRIGONOMETRY

TIME: 3hrs
Max. Marks. 75
Note: This question paper consists of three sections A, B and C.

SECTION A

VERY SHORT ANSWER TYPE QUESTIONS.
$10 \times 2=20$

Note: Attempt all questions. Each question carries 2 marks.

1. N is the set of natural numbers. Is the function $f: N \rightarrow N$ defined by $f(x)=2 x+5$ onto ? Explain the reason.
2. If $f=\{(1,2),(2,-3),(3,-1)\}$ then find $2+f$
3. The position vectors of A and B are \mathbf{a} and \mathbf{b} respectively. If C is a point on the line $\overleftrightarrow{A B}$ such that $\overrightarrow{\mathrm{AC}}=5 \overrightarrow{\mathrm{AB}}$ then find the position vector of C .
4. Find the vector equation of the line joining the points $2 \mathbf{i}+\mathbf{j}+3 \mathbf{k}$ and $-4 \mathbf{i}+3 \mathbf{j}-\mathbf{k}$.
5. Find the area of the parallelogram having $2 \mathrm{i}-3 \mathrm{j}$ and $3 \mathrm{i}-3 \mathrm{k}$ as adjacent sides
6. write the period of $\cos (6-5 x)$.
7. If $\cos \theta=\frac{1}{4}$ and $270^{\circ}<\theta<360^{\circ}$ then find $\tan \frac{\theta}{2}$.
8. If $\tanh ^{2} x=\tan ^{2} \theta$ then prove that $\cosh 2 \mathrm{x}=\sec 2 \theta$.
9. In $\triangle A B C, s=12$ and $A=90^{\circ}$ then find r_{1}.
10. IF $Z=x+i y$ is a point in the Argand plane such that $|Z-3+i|=4$ then find the locus of Z.

SECTION B

SHORT ANSWER TYPE QUESTIONS

$$
5 X 4=20
$$

Note : Answer any FIVE questions. Each question carries 4 marks.
11. Show that the points with position vectors $-2 i+3 j+6 k, 6 i-2 j+3 k, 3 i+6 j-2 k$ form an equilateral triangle.
12. By vector method prove that angle in a semi circle is a right angle.
13. If $\mathrm{A}+\mathrm{B}=225^{\circ}$ and none of A and B is an integral multiple of π then prove that $\left(\frac{\cot A}{1+\cot A}\right)\left(\frac{\cot B}{1+\cot B}\right)=\frac{1}{2}$.
14. Solve $\sqrt{2}(\sin x+\cos x)=\sqrt{3}$
15. solve $\operatorname{Tan}^{-1}\left(\frac{x+1}{x-1}\right)+\operatorname{Tan}^{-1}\left(\frac{x-1}{x}\right)=\pi+\operatorname{Tan}^{-1}(-7)$
16. In $\triangle \mathrm{ABC}$ show that $(b-c)^{2} \cos ^{2} \frac{A}{2}+(b+c)^{2} \sin ^{2} \frac{A}{2}=a^{2}$
17. Show that $32 \cos ^{2} \theta \sin ^{4} \theta=\cos 6 \theta-2 \cos 4 \theta-\cos 2 \theta+2$

SECTION C

LONG ANSWER TYPE QUESTIONS

$5 \times 7=35$

Note: Answer any Five of the following. Each question carries 7 marks.

18. If $f: A \rightarrow B, g: B \rightarrow C$ be bijections. Then show that $g o f: A \rightarrow C$ is a bijection.
19. Using mathematical induction, Show that $3.5^{2 n+1}+2^{3 n+1}$ is divisible by 17 for all $n € N$.
20. $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are non-zero vectors and \mathbf{a} is perpendicular to both \mathbf{b} and \mathbf{c}. If $|\mathbf{a}|=2,|\mathbf{b}|=3,|\mathbf{c}|=4$ and
$(\mathbf{b}, \mathbf{c})=$, then find $|[\mathbf{a b c}]|$.
21. If $A+B+C=2 S$, then prove that $\sin (S-A) \sin (S-B)+\sin S \sin (S-C)=\sin A \sin B$
22. In $\triangle \mathrm{ABC}$, prove that $\frac{a b-r_{1} r_{2}}{r_{3}}=r$
23. A pillar is leaning towards east and a and b are the angles of elevation of the top of the pillar from two points due west of the pillar at distance a and b respectively. Show that the angle between the pillar and the horizontal is $\operatorname{Tan}^{-1}\left(\frac{\mathrm{~b}-\mathrm{a}}{\mathrm{b} \cot \alpha-\mathrm{a} \cot \beta}\right)$.
24. If $\cos \alpha+\cos \beta+\cos \gamma=0=\sin \alpha+\sin \beta+\sin \gamma$ then show that
(i) $\sin 3 \alpha+\sin 3 \beta+\sin 3 \gamma=3 \sin (\alpha+\beta+\gamma)$ (ii) $\sin 3 \alpha+\sin 3 \beta+\sin 3 \gamma=3 \sin (\alpha+\beta+\gamma)$
