MATHEMATICS PAPER IA- JUNE 2008. ALGEBRA, VECTOR ALGEBRA AND TRIGONOMETRY Max. Marks.75

TIME: 3hrs Note: This question paper consists of three sections A, B and C.

SECTION A VERY SHORT ANSWER TYPE OUESTIONS.

10X2 = 20

5X4 = 20

Note: Attempt all questions. Each question carries 2 marks.

- 1. N is the set of natural numbers. Is the function $f:N \rightarrow N$ defined by f(x) = 2x+5 onto ? Explain the reason.
- 2. If $f = \{(1,2), (2,-3), (3,-1)\}$ then find 2+f
- 3. The position vectors of A and B are **a** and **b** respectively. If C is a point on the line \overline{AB} such that $\overline{AC} = 5\overline{AB}$ then find the position vector of C.
- 4. Find the vector equation of the line joining the points $2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ and $-4\mathbf{i} + 3\mathbf{j} \mathbf{k}$.
- 5. Find the area of the parallelogram having 2i-3j and 3i-3k as adjacent sides .
- 6. write the period of $\cos(6-5x)$.
- 7. If $\cos \theta = \frac{1}{4}$ and $270^{\circ} < \theta < 360^{\circ}$ then find $\tan \frac{\theta}{2}$.
- 8. If $\tanh^2 x = \tan^2 \theta$ then prove that $\cosh 2x = \sec 2\theta$.
- 9. In $\triangle ABC$, s=12 and A =90⁰ then find r₁.
- 10. IF Z = x+iy is a point in the Argand plane such that |Z-3+i| = 4 then find the locus of Z.

SECTION B

SHORT ANSWER TYPE QUESTIONS Note : Answer any FIVE questions. Each question carries 4 marks.

- 11. Show that the points with position vectors -2i+3j+6k, 6i-2j+3k, 3i+6j-2k form an equilateral triangle.
- 12. By vector method prove that angle in a semi circle is a right angle.
- 13. If A+B =225[°] and none of A and B is an integral multiple of π then prove that $\left(\frac{\cot A}{1+\cot A}\right)\left(\frac{\cot B}{1+\cot B}\right) = \frac{1}{2}$.
- 14. Solve $\sqrt{2}(\sin x + \cos x) = \sqrt{3}$

15. solve
$$\operatorname{Tan}^{-1}\left(\frac{x+1}{x-1}\right) + \operatorname{Tan}^{-1}\left(\frac{x-1}{x}\right) = \pi + \operatorname{Tan}^{-1}(-7)$$

- 16. In $\triangle ABC$ show that $(b-c)^2 \cos^2 \frac{A}{2} + (b+c)^2 \sin^2 \frac{A}{2} = a^2$
- 17. Show that $32 \cos^2 \theta \sin^4 \theta = \cos 6\theta 2\cos 4\theta \cos 2\theta + 2$

SECTION C

LONG ANSWER TYPE QUESTIONS

5X7 =35

Note: Answer any Five of the following. Each question carries 7 marks.

- 18. If $f: A \to B$, $g: B \to C$ be bijections. Then show that $gof: A \to C$ is a bijection.
- 19. Using mathematical induction, Show that $3.5^{2n+1} + 2^{3n+1}$ is divisible by 17 for all $n \in N$.
- 20. **a,b,c** are non-zero vectors and **a** is perpendicular to both **b** and **c**. If $|\mathbf{a}| = 2$, $|\mathbf{b}| = 3$, $|\mathbf{c}| = 4$ and

(**b**,**c**) = , then find |[**abc**]|.

21. If
$$A+B+C=2S$$
, then prove that $\sin(S-A)\sin(S-B)+\sin S\sin(S-C)=\sin A\sin B$

- 22. In $\triangle ABC$, prove that $\frac{ab-r_1r_2}{r_3} = r$
- 23. A pillar is leaning towards east and a and b are the angles of elevation of the top of the pillar from two points due west of the pillar at distance a and b respectively. Show that the angle between the pillar and the horizontal is $Tan^{-1}\left(\frac{b-a}{b\cot\alpha a\cot\beta}\right)$.
- 24. If $\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma$ then show that
 - (i) $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3\sin(\alpha + \beta + \gamma)$ (ii) $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3\sin(\alpha + \beta + \gamma)$