Geometrical Representation of Complex Numbers

Very Short Answer Questions

1. Show that the triangle formed with the points in the argand diagram represented by (2+2i), $-2-2i-2\sqrt{3}+2\sqrt{3}i$ is equilateral triangle.

Solution: -

Let $A(2,2)B(-2,-2)C(-2\sqrt{3},2\sqrt{3})$ be the points represented by the given complex numbers 2+2i, $-2-2i-2\sqrt{3}+2\sqrt{3}i$ respectively

$$AB = \sqrt{(2+2)^2 + (2+2)^2} = \sqrt{32}$$

$$BC = \sqrt{\left(-2\sqrt{3} + 2\right)^2 + \left(2\sqrt{3} + 2\right)^2} = \sqrt{32}$$

$$CA = \sqrt{\left(-2\sqrt{3} - 2\right)^2 + \left(2\sqrt{3} - 2\right)^2} = \sqrt{32}$$

$$AB = BC = CA$$

- :. Triangle ABC is equilateral
- 2. Find the equation of the perpendicular bisector of the lines segment joining the points 7 + 7i, 7 7i in the argand diagram

Solution: -

Let A(7, 7) B (7, -7) be the ends of the line segment represented by the complex numbers (7+7i) and (7-7i) represents

Mid point of AB = (7, 0)

Slope of
$$AB = \frac{-7 - 7}{7 - 7}$$

 \therefore Slope of perpendicular bisector = 0

Equal of perpendicular bisector is (y-0) = 0(x-7)

$$y = 0$$

3. If z = x + iy and if the point P in the argand plane represents z_1 find the locus of z satisfying the equation

(i)
$$|z-2-3i|=5$$
 (ii) $2|z-2|=|z-1|$ (iii) $Im(z^2)=4$

Solution (i) |z-2-3i| = 5

$$|z-2-3i| = 5 \implies \sqrt{(x-2)^2 + (y-3)^2} = 5$$

 $x^2 + y^2 - 4x - 6y - 12 = 0$

(ii)
$$z |z-2| = |z-1|$$

 $2 |(x-2) + iy| = |(x-1) + iy| \Rightarrow 2\sqrt{(x-2)^2 + y^2} = (x-1)^2 + y^2$

$$4\{(x-2)^2 + y^2\} = (x-1)^2 + y^2 \Rightarrow 4x^2 + 4y^2 - 16x + 16 = x^2 + y^2 - 2x + 1$$

$$\therefore 3x^2 + 3y^2 - 14x + 15 = 0$$

(iii)
$$\operatorname{Im}(z^2) = 4$$

$$z^2 = (x + iy)^2 = x^2 - y^2 + 2ixy$$

 $\operatorname{Im}(z^2) = 2xy \{\operatorname{Im}(z^2) \text{ means Imaginary part of } z^2\}$

$$im(z^2) = 4 \Rightarrow 2x \ y = 4 \Rightarrow xy = 2$$

SHORT ANSWER QUESTIONS

1. If $\frac{z_3-z_1}{z_2-z_1}$ is a real number then show that the points represented by the complex number z_1, z_2, z_3 are collinear

Solution: -

Let
$$\frac{z_3 - z_1}{z_2 - z_1} = k$$
 where K is a real number

$$z_3 - z_1 = kz_2 - kz_1$$

$$kz_1 - z_1 = kz_2 - z_3$$

$$z_1 = \frac{kz_2 - z_2}{k - 1}$$

i.e, z_1 divides the line joining of z_2 and z_3

Externally in the ratio K:1

Hence z_1, z_2, z_3 are collinear

2. Show that the four points in the argand plane represented by the complex numbers z + i, 4 + 3i, 2 + 5i, 3i are the vertices of a square

Solution: -

Let A(2,1) B(4,3) C(2,5) D(0,3) be the given vertices

$$AB = \sqrt{(4-2)^2 + (3-1)^2} = \sqrt{8}$$

$$BC = \sqrt{(2-4)^2 + (5-3)^2} = \sqrt{8}$$

$$CD = \sqrt{(0-2)^2 + (3-5)^2} = \sqrt{8}$$

$$AD = \sqrt{(0-2)^2 + (3-1)^2} = \sqrt{8}$$

$$AC = \sqrt{(4-2)^2 + (5-1)^2} = 4$$

$$BD = \sqrt{(0-4)^2 + (3-3)^2} = 4$$

Here
$$AB = BC = CD = AD$$
 and $AC = BD$

Hence ABCD is a square

3. Show that the points represented by the complex number -2 + 7i, $\frac{-3}{2} + \frac{1}{2}i$, 4 - 3i, $\frac{7}{2}(1+i)$ are the vertices of a rhombus

Solution; -

Let
$$A(-2,7) B\left(-\frac{3}{2}, \frac{1}{2}\right) C(4, -3) D\left(\frac{7}{2}, \frac{7}{2}\right)$$
 be the given vertices
$$AB = \sqrt{\left(-\frac{3}{2} + 1\right)^2 + \left(\frac{1}{2} - 7\right)^2} = \sqrt{\frac{170}{4}} CD = \sqrt{\left(\frac{7}{2} - 4\right)^2 + \left(\frac{7}{2} + 3\right)^2} = \sqrt{\frac{170}{4}}$$

$$BC = \sqrt{\left(4 + \frac{3}{2}\right)^2 + \left(-3 - \frac{1}{2}\right)^2} = \sqrt{\frac{170}{4}}$$

$$AD = \sqrt{\left(\frac{7}{2} + 2\right)^2 + \left(\frac{7}{2} - 7\right)^2} = \sqrt{\frac{170}{4}}$$

$$AC = \sqrt{(4+2)^2 + (-3-7)^2} = \sqrt{136}$$

$$AC = \sqrt{(4+2)^2 + (-3-7)^2} = \sqrt{136}$$

$$AB = BC = CD = AD$$
 and $AC \neq BD$

Hence ABCD is a rhombus

4. Show that the points in the argand diagram represented by the complex numbers z_1 , z_2 , z_3 are collinear if and only if there exists three real numbers \mathbf{p} , \mathbf{q} , \mathbf{r} not all zero satisfying $pz_1 + qz_2 + rz_3 = 0$ and p + q + r = 0

Solution: -

Given
$$pz_1 + qz_2 + r z_3 = 0$$
 and $p + q + r = 0$

$$\therefore r = -p -q$$

:.
$$pz_1 + qz_2 + (-p - q)z_3 = 0$$
 {:: $r = -p - q$ }

$$pz_1 + qz_2 = (p+q)z_3$$

$$z_3 = \frac{qz_2 + pz_1}{q + p}$$

 z_3 divides the line joining of z_1 and z_2 in the ratio q: p

$$\therefore z_1, z_2, z_3$$
 are collinear

Given z_1, z_2, z_3 are collinear the

 \therefore Let z_2 divide line joining of $z_1 \& z_3$ in the ratio K: 1

$$\therefore z_2 = \frac{k \ z_3 + l \ z_1}{k + l}$$

$$(z_1 + (-k - l) z_2 + k z_3 = 0)$$

This is of the form $pz_1 + qz_2 + r z_3 = 0$

Where
$$p = l$$
 $q = -k - l$; $r = k$

$$p + q + r = 0$$

Hence Proved

5. The points P, Q denote the complex numbers z_1 z_2 in the argand diagram. O is the origin if $z_1\overline{z}_2 + \overline{z}_1z_2 = 0$ then show that $POQ = 90^0$

Solution: -

Let
$$z_1 = x_1 + iy_1$$
 and $z_2 = x_2 + iy_2$

$$\therefore P = (x_2, y_1) Q = (x_2, y_2)$$

Slope of
$$OP = \frac{y_1}{x_1}$$
 slope of $OQ = \frac{y_2}{x_2}$

Given
$$z_1\overline{z}_2 + z_1\overline{z}_2 = 0$$

$$(x_1 + iy_1)(x_2 - iy_2) + (x_1 - iy_1)(x_2 + iy_2) = 0$$

$$x_1x_2 - i \times_1 y_2 + i \times_2 y_1 + y_1y_2 + x_1x_2 + i \times_1 y_2 - i \times_2 y_1 + y_1y_2 = 0$$

$$x_1 x_2 + y_1 y_2 = 0 \Rightarrow = -x_1 x_2 = y_1 y_2$$

$$\therefore \frac{y_1}{x_1} \times \frac{y_2}{x_2} = -1$$

Slope of
$$OP \times$$
 slope of $OQ = -1$

$$\therefore \angle POQ = 90^{0}$$