Product of vectors

SCALAR PRODUCT

Definitions and Key Points :

Def: Let \vec{a}, \vec{b} be two vectors dot product (or) scalar product (or) direct product (or)

inner product denoted by $\vec{a}.\vec{b}$. Which is defined as $|\vec{a}||\vec{b}|\cos\theta$ where $\theta = (\vec{a},\vec{b})$.

* The product $\vec{a}.\vec{b}$ is zero when $|\vec{a}| = 0$ (or) $|\vec{b}| = 0$ (or) $\theta = 90^{\circ}$.

* Sign of the scalar product : Let \vec{a}, \vec{b} are two non-zero vectors

- (i) If θ is acute then $\vec{a}.\vec{b} > 0$ (i.e $0 < \theta < 90^{\circ}$).
- (ii) If θ is obtuse then $\vec{a}\cdot\vec{b} < 0$ (i.e $90^{\circ} < \theta < 180^{\circ}$).
- (iii) If $\theta = 90^\circ$ then $\vec{a}.\vec{b} = o$.

(iv) If $\theta = 0^{\circ}$ then $\vec{a}.\vec{b} = |\vec{a}||\vec{b}|$.

(v) If $\theta = 180^{\circ}$ then $\vec{a}.\vec{b} = |\vec{a}||\vec{b}|$.

Note:-

- (1) The dot product of two vectors is always scalar.
- (2) $\vec{a}.\vec{b} = \vec{b}.\vec{a}$ i.e dot product of two vectors is commutative.
- (3) If $\vec{a}.\vec{b}$ are two vectors then $\vec{a}.(-\vec{b}) = (-\vec{a}).\vec{b} = -(\vec{a}.\vec{b})$.

 $(4)(-\vec{a}).(-\vec{b}) = \vec{a}.\vec{b}.$

- (5) If l,m are two scalars and $\vec{a}.\vec{b}$ are two vectors then $(l\vec{a}).(m\vec{b}) = lm(\vec{a}.\vec{b})$.
- (6) If \vec{a} and \vec{b} are two vectors then $\vec{a}.\vec{b} = \pm |\vec{a}| |\vec{b}|$.
- (7) If \vec{a} is a vector then $\vec{a}.\vec{a} = \left|\vec{a}\right|^2$.
- (8) If \vec{a} is a vector $\vec{a}.\vec{a}$ is denoted by $(\vec{a})^2$ hence $(\vec{a})^2 = |\vec{a}|^2$.

* Component and orthogonal projection

Def: Let $\vec{a} = \overrightarrow{OA}$ $\vec{b} = \overrightarrow{OB}$ be two non zero vectors let the plane passing through B and perpendicular to \vec{a} intersect $\overrightarrow{OA} \ln M$.

- (i) If (\vec{a}, \vec{b}) is acute then OM is called component of \vec{b} on \vec{a} .
- (ii) If (\vec{a}, \vec{b}) is obtuse then –(OM) is called the component of \vec{b} on \vec{a} .

(iii) The vector \overrightarrow{OM} is called component vector of \vec{b} on \vec{a} .

Def: Let $\vec{a} = \vec{OA}$; $\vec{b} = \vec{PQ}$ be two vectors let the planes passing through P, Q and perpendicular to \vec{a} intersect \vec{OA} in L, M respectively then \vec{LM} is called orthogonal projection of \vec{b} on \vec{a}

Note : i) The orthogonal projection of a vector \vec{b} on \vec{a} is equal to component vector of \vec{b} on \vec{a} .

ii) Component of a vector \vec{b} on \vec{a} is also called projection of \vec{b} on \vec{a}

iii) If A< B, C, D are four points in the space then the component of \overline{AB} on \overline{CD} is same as the projection of \overline{AB} on the ray \overline{CD} .

- * If \vec{a}, \vec{b} be two vectors $(\vec{a} \neq \vec{o})$ then
- i) The component of \vec{b} on \vec{a} is $\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|}$

iii) The orthogonal projection of \vec{b} on \vec{a} is $\frac{(\vec{b}.\vec{a})\vec{a}}{|\vec{a}|^2}$.

* If $\vec{i}, \vec{j}, \vec{k}$ form a right handed system of Ortho normal triad then i) $\vec{i}, \vec{j} = \vec{j}, \vec{j} = \vec{k}, \vec{k} = 1$ ii) $\vec{i}, \vec{j} = \vec{j}, \vec{i} = 0$; $\vec{j}, \vec{k} = \vec{k}, \vec{j} = 0$; $\vec{k}, \vec{i} = \vec{i}, \vec{k} = 0$ * If $\vec{a} = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}$; $\vec{b} = b_1\vec{i} + b_2\vec{j} + b_3\vec{k}$ then $\vec{a}, \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$. * If $\vec{a}, \vec{b}, \vec{c}$ are three vectors then i) $(\vec{a} + \vec{b})^2 = (\vec{a})^2 + (\vec{b})^2 + 2\vec{a}.\vec{b}$ ii) $(\vec{a} - \vec{b})^2 = (\vec{a})^2 + (\vec{b})^2 - 2\vec{a}.\vec{b}$ iii) $(\vec{a} + \vec{b}).(\vec{a} - \vec{b}) = (\vec{a})^2 - (\vec{b})^2$ iv) $(\vec{a} + \vec{b})^2 = (\vec{a} - \vec{b})^2 = 2\{(\vec{a})^2 + (\vec{b})^2\}$ v) $(\vec{a} + \vec{b})^2 - (\vec{a} - \vec{b})^2 = 4\vec{a}.\vec{b}$ vi) $(\vec{a} + \vec{b} + \vec{c})^2 = (\vec{a})^2 + (\vec{b})^2 + (\vec{c})^2 + 2\vec{a}.\vec{b} + 2\vec{b}.\vec{c} + 2\vec{c}.\vec{a}$. * If \vec{r} is vector then $\vec{r} = (\vec{r}.\vec{i})\vec{i} + (\vec{r} + \vec{j}).\vec{j} + (\vec{r}.\vec{k})\vec{k}$.

Angle between the planes :- The angle between the planes is defined as the angle between the normals to the planes drawn from any point in the space.

SPHERE * The vector equation of a sphere with centre C having position vector \vec{c} and radius a is $(\vec{r} - \vec{c})^2 = a^2$ i.e. $\vec{r}^2 - 2\vec{r}.\vec{c} + c^2 = a^2$

* The vector equation of a sphere with $A(\vec{a})$ and $B(\vec{b})$ as the end points of a diameter is $(\vec{r}-\vec{a}).(\vec{r}-\vec{b})=0$ (or) $(\vec{r})^2 - \vec{r}.(\vec{a}+\vec{b}) + \vec{a}.\vec{b}=0$

Work done by a force :- If a force \vec{F} acting on a particle displaces it from a position A to the position B then work done W by this force \vec{F} is $\vec{F}.\vec{AB}$

* The vector equation of the plane which is at a distance of p from the origin along the unit vector \vec{n} is $\vec{r}.\vec{n} = p$.

* The vector equation of the plane passing through the origin and perpendicular to the vector m is $\mathbf{r.m} = \mathbf{0}$

* The Cartesian equation of the plane which is at a distance of p from the origin along the unit vector $\mathbf{n} = \mathbf{l}\mathbf{i} + \mathbf{m}\mathbf{j} + \mathbf{n}\mathbf{k}$ of the plane is $\mathbf{n} = \mathbf{l}x + \mathbf{m}y + \mathbf{n}z$

* The vector equation of the plane passing through the point a having position vector \vec{a} and perpendicular to the vector \vec{m} is $(\vec{r} - \vec{a}).\vec{m} = 0$.

* The vector equation of the plane passing through the point a having position vector \vec{a} and parallel to the plane $\mathbf{r.m=q}$ is $(\vec{r}-\vec{a}).\vec{m}=0$.

CROSS(VECTOR) PRODUCT OF VECTORS

* Let \vec{a}, \vec{b} be two vectors. The cross product or vector product or skew product of vectors \vec{a}, \vec{b} is denoted by $\vec{a} \times \vec{b}$ and is defined as follows

i) If $\vec{a} = 0$ or $\vec{b} = 0$ or \vec{a}, \vec{b} are parallel then $\vec{a} \times \vec{b} = 0$

ii) If $\vec{a} \neq 0$, $\vec{b} \neq 0$, \vec{a}, \vec{b} are not parallel then $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| (\sin \theta) \vec{n}$ where \vec{n} is a unit vector

perpendicular to \vec{a} and \vec{b} so that $\vec{a}, \vec{b}, \vec{n}$ form a right handed system.

Note :- i) $\vec{a} \times \vec{b}$ is a vector

ii) If \vec{a}, \vec{b} are not parallel then $\vec{a} \times \vec{b}$ is perpendicular to both \vec{a} and \vec{b}

iii) If \vec{a}, \vec{b} are not parallel then $\vec{a}, \vec{b}, \vec{a} \times \vec{b}$ form a right handed system.

iv) If \vec{a}, \vec{b} are not parallel then $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin(\vec{a}, \vec{b})$ and hence $|\vec{a} \times \vec{b}| \le |\vec{a}| |\vec{b}|$

- v) For any vector $\vec{a} \quad \vec{a} \times \vec{b} = \vec{o}$
- 2. If \vec{a}, \vec{b} are two vectors $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$ this is called "anti commutative law"
- 3. If \vec{a}, \vec{b} are two vectors then $\vec{a} \times (-\vec{b}) = (-\vec{a}) \times \vec{b} = -(\vec{a} \times \vec{b})$
- 4. If \vec{a}, \vec{b} are two vectors then $(-\vec{a}) \times (-\vec{b}) = \vec{a} \times \vec{b}$
- 5. If \vec{a}, \vec{b} are two vectors l,m are two scalars then $(l\vec{a}) \times (m\vec{b}) = lm(\vec{a} \times \vec{b})$
- 6. If $\vec{a}, \vec{b}, \vec{c}$ are three vectos, then
- i) $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ ii) $(\vec{b} + \vec{c}) \times \vec{a} = \vec{b} \times \vec{a} + \vec{c} \times \vec{a}$
- 7. If $\vec{l}, \vec{l}, \vec{k}$ from a right handed system of orthonormal triad then
- i) $\vec{l} \times \vec{l} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = \vec{o}$ ii) $\vec{i} \times \vec{j} = \vec{k} = -\vec{j} \times \vec{l}$; $\vec{j} \times \vec{k} = \vec{l} = -\vec{k} \times \vec{j}$; $\vec{k} \times \vec{l} = \vec{j} = -\vec{l} \times \vec{k}$ * If $\vec{a} = a_1\vec{l} + a_2\vec{j} + a_3\vec{k}$, $\vec{b} = b_1\vec{l} + b_2\vec{j} + b_3\vec{k}$ then $\vec{a}\times\vec{b} = \begin{vmatrix} \vec{l} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$.

If $\vec{a} = a_1\vec{l} + a_2\vec{m} + a_3\vec{n}$, $\vec{b} = b_1\vec{l} + b_2\vec{m} + b_3\vec{n}$ where $\vec{l}, \vec{m}, \vec{n}$ form a right system of non

coplanar vectors then $\vec{a} \times \vec{b} = \begin{vmatrix} \vec{m} \times \vec{n} & \vec{n} \times \vec{l} & \vec{l} \times \vec{m} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$

* If \vec{a}, \vec{b} are two vectors then $(\vec{a} \times \vec{b})^2 + (\vec{a}.\vec{b})^2 = a^2b^2$.

* VECTOR AREA :-

If A is the area of the region bounded by a plane curve and \vec{n} is the unit vector perpendicular to the plane of the curve such that the direction of curve drawn can be considered anti clock wise then $A\vec{n}$ is called vector area of the plane region bounded by the curve.

* The vector area of triangle ABC is $\frac{1}{2}\overrightarrow{AB} \times \overrightarrow{AC} = \frac{1}{2}\overrightarrow{BC} \times \overrightarrow{BA} = \frac{1}{2}\overrightarrow{CA} \times \overrightarrow{CB}$

* If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of the vertices of a triangle then the vector area of the triangle is $\frac{1}{2}(\vec{a}\times\vec{b}+\vec{b}\times\vec{c}+\vec{c}\times\vec{a})$

* If ABCD is a parallelogram and $\overline{AB} = \vec{a}$, $\overline{BC} = \vec{b}$ then the vector area of ABCD is $\vec{a} \times \vec{b}$.

* If ABCD is a parallelogram and $\overrightarrow{AC} = \vec{a}$, $\overrightarrow{BC} = \vec{b}$ then vector area of parallelogram ABCD is $\frac{1}{2}(\vec{a} \times \vec{b})$

* The vector equation of a line passing through the point A with position vector \vec{a} and perpendicular to the vectors $\vec{b} \times \vec{c}$ is $\vec{r} = \vec{a} + t(\vec{b} \times \vec{c})$.

* The vector equation of a line passing through the point A with position vector \vec{a} and perpendicular to the vectors $\vec{b} \times \vec{c}$ is $\vec{r} = \vec{a} + t(\vec{b} \times \vec{c})$.

SCALAR TRIPLE PRODUCT

* If $\vec{a}, \vec{b}, \vec{c}$ are the three vectors, then the real numbers $(\vec{a} \times \vec{b}).\vec{c}$ is called scalar triple product denoted by $[\vec{a} \ \vec{b} \ \vec{c}]$. This is read as 'box' $\vec{a}, \vec{b}, \vec{c}$

2. If V is the volume of the parallelepiped with coterminous edges $\vec{a}, \vec{b}, \vec{c}$ then $V = |[\vec{a} \ \vec{b} \ \vec{c}]|$

3. If $\vec{a}, \vec{b}, \vec{c}$ form the right handed system of vectors then $V = [\vec{a} \ \vec{b} \ \vec{c}]$

4. If $\vec{a}, \vec{b}, \vec{c}$ form left handed system of vectors then $-V = [\vec{a}, \vec{b}, \vec{c}]$

Note: i) The scalar triple product is independent of the position of dot and cross. i.e. $\vec{a} \times \vec{b}.\vec{c} = \vec{a}.\vec{b} \times \vec{c}$

ii) The value of the scalar triple product is unaltered so long as the cyclic order remains unchanged

 $[\vec{a}\vec{b}\vec{c}] = [\vec{b}\vec{c}\vec{a}] = [\vec{c}\vec{a}\vec{b}]$

iii) The value of a scalar triple product is zero if two of its vectors are equal

 $[\vec{a}\,\vec{a}\,\vec{b}] = 0 [\vec{b}\,\vec{b}\,\vec{c}] = 0$

iv) If $\vec{a}, \vec{b}, \vec{c}$ are coplanar then $[\vec{a}\vec{b}\vec{c}] = 0$

v) If $\vec{a}, \vec{b}, \vec{c}$ form right handed system then $[\vec{a}\vec{b}\vec{c}] > 0$

vi) If $\vec{a}, \vec{b}, \vec{c}$ form left handed system then $[\vec{a} \ \vec{b} \ \vec{c}] < 0$

vii)The value of the triple product changes its sign when two vectors are interchanged $[\vec{a} \ \vec{b} \ \vec{c}] = -[\vec{a} \ \vec{c} \ \vec{b}]$

viii) If l,m, n are three scalars $\vec{a}, \vec{b}, \vec{c}$ are three vectors then $[l\vec{a} m \vec{b} n \vec{c}] = lmn[\vec{a} \ \vec{b} \ \vec{c}]$ * Three non zero non parallel vectors $\vec{a} \ \vec{b} \ \vec{c}$ nare coplanar iff $[\vec{a} \ \vec{b} \ \vec{c}] = 0$

* If
$$\vec{a} = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}$$
, $\vec{b} = b_1\vec{i} + b_2\vec{j} + b_3\vec{k}$, $\vec{c} = c_1\vec{i} + c_2\vec{j} + c_3\vec{k}$ then $[\vec{a}\vec{b}\vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$

* If $\vec{a} = a_1\vec{l} + a_2\vec{m} + a_3\vec{n}$, $\vec{b} = b_1\vec{l} + b_2\vec{m} + b_3\vec{n}$, $\vec{c} = c_1\vec{l} + c_2\vec{m} + c_3\vec{n}$ where $\vec{l}, \vec{m}, \vec{n}$ form a right

handed system of non coplanar vectors, then $[\vec{a}\vec{b}\vec{c}] = \begin{vmatrix} \vec{m} \times \vec{n} & \vec{n} \times \vec{l} & \vec{l} \times \vec{m} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$

* The vectors equation of plane passing through the points A, B with position vectors \vec{a}, \vec{b} and parallel to the vector \vec{c} is $[\vec{r} - \vec{a} \ \vec{b} - \vec{a} \ \vec{c}] = 0$ (or) $[\vec{r} \ \vec{b} \ \vec{c} + [\vec{r} \ \vec{c} \ \vec{a}] = [\vec{a} \ \vec{b} \ \vec{c}]$

* The vector equation of the plane passing through the point A with position vector \vec{a} and parallel to \vec{b}, \vec{c} is $[\vec{r} - \vec{a} \ \vec{b} \ \vec{c}] = 0$ i.e. $[\vec{r} \ \vec{b} \ \vec{c}] = [\vec{a} \ \vec{b} \ \vec{c}]$

<u>Skew lines :-</u> Two lines are said to be skew lines if there exist no plane passing through them i.e. the lines lie on two difference planes

Def:- l_1 and l_2 are two skew lines. If P is a point on l_1 and Q is a point on l_2 such that $\overrightarrow{PQ} \perp^r l_1$ and $\overrightarrow{PQ} \perp^r l_2$ then PQ is called shortest distance and \overrightarrow{PQ} is called shortest distance line between the lines l_1 and l_2 .

The shortest distance between the skew lines $\vec{r} = \vec{a} + t\vec{b}$ and $\vec{r} = \vec{c} + t\vec{d}$ is $\frac{|\vec{a} - \vec{c} \cdot \vec{b} \cdot \vec{d}||}{|\vec{b} \times \vec{d}|}$

VECTOR TRIPLE PRODUCT

- **Cross Product of Three vectors** : For any three vectors \overline{a} , \overline{b} and \overline{c} then cross product or vector product of these vectors are given as $\overline{a} \times (\overline{b} \times \overline{c})$, $(\overline{a} \times \overline{b}) \times \overline{c}$ or $(\overline{b} \times \overline{c}) \times \overline{a}$ etc.
- i. $\overline{a} \times (\overline{b} \times \overline{c})$ is vector quantity and $|\overline{a} \times (\overline{b} \times \overline{c})| = |(\overline{b} \times \overline{c}) \times \overline{a}|$
- **ii.** In general $\overline{a} \times (\overline{b} \times \overline{c}) \neq (\overline{a} \times \overline{b}) \times \overline{c}$
- **iii.** $\overline{a} \times (\overline{b} \times \overline{c}) = (\overline{a} \times \overline{b}) \times \overline{c}$ if \overline{a} and \overline{c} are collinear
- iv. $\bar{a} \times (\bar{b} \times \bar{c}) = -(\bar{b} \times \bar{c}) \times \bar{a}$
- **v.** $(\bar{a} \times \bar{b}) \times \bar{c} = -\bar{c} \times (\bar{a} \times \bar{b}) =$

 $(\overline{a} \cdot \overline{c})\overline{b} - (\overline{a} \cdot \overline{b})\overline{c} = \overline{a} \times (\overline{b} \times \overline{c})$

- vi. If \overline{a} , \overline{b} and \overline{c} are non zero vectors and $\overline{a} \times (\overline{b} \times \overline{c}) = \overline{O}$ then \overline{b} and \overline{c} are parallel (or collinear) vectors.
- vii. If \bar{a} , \bar{b} and \bar{c} are non zero and non parallel vectors then $\bar{a} \times (\bar{b} \times \bar{c})$, $\bar{b} \times (\bar{c} \times \bar{a})$ and $\bar{c} \times (\bar{a} \times \bar{b})$ are non collinear vectors.
- viii. If \bar{a} , \bar{b} and \bar{c} are any three vectors then $\bar{a}(\bar{b} \times \bar{c}) + \bar{b} \times (\bar{c} \times \bar{a}) + \bar{c} \times (\bar{a} \times \bar{b}) = \bar{0}$
- ix. If \bar{a} , \bar{b} and \bar{c} are any three vectors then $\bar{a}(\bar{b}\times\bar{c}) + \bar{b}\times(\bar{c}\times\bar{a}) + \bar{c}\times(\bar{a}\times\bar{b})$ are coplanar. [since sum of these vectors is zero]
- **x.** $\overline{a}(\overline{b} \times \overline{c})$ is vector lies in the plane of \overline{b} and \overline{c} or parallel to the plane of \overline{b} and \overline{c} .

PRODUCT OF FOUR VECTORS

- * **Dot product of four vectors** : The dot product of four vectors \overline{a} , \overline{b} , \overline{c} and \overline{d} is given as $(\overline{a} \times \overline{b}) \cdot (\overline{c} \times \overline{d}) = (\overline{a} \cdot \overline{c})(\overline{b} \cdot \overline{d}) (\overline{a} \cdot \overline{d})(\overline{b} \cdot \overline{c}) = \begin{vmatrix} \overline{a} \cdot \overline{c} & \overline{a} \cdot \overline{d} \\ \overline{b} \cdot \overline{c} & \overline{b} \cdot \overline{d} \end{vmatrix}$
- * Cross product of four vectors : If \bar{a} , \bar{b} , \bar{c} and \bar{d} are any four vectors then $(\bar{a} \times \bar{b})$ $\times (\bar{c} \times \bar{d}) = [\bar{a} \bar{c} \bar{d}] \bar{b} - [\bar{b} \bar{c} \bar{d}] \bar{a}$

$$= \begin{bmatrix} \overline{a} \ \overline{b} \ \overline{d} \end{bmatrix} \overline{c} - \begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix} \overline{d}$$

$$* \quad \begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix} \begin{bmatrix} \overline{l} \ \overline{m} \ \overline{n} \end{bmatrix} = \begin{vmatrix} \overline{a.\overline{l}} & \overline{b.\overline{l}} & \overline{c.\overline{l}} \\ \overline{a.\overline{m}} & \overline{b.\overline{m}} & \overline{c.\overline{m}} \\ \overline{a.\overline{n}} & \overline{b.\overline{n}} & \overline{c.\overline{n}} \end{vmatrix}$$

- * The vectorial equation of the plane passing through the point \overline{a} and parallel to the vectors \overline{b} , \overline{c} is $[\overline{r}\overline{b}\overline{c}] = [\overline{a}\overline{b}\overline{c}]$.
- * The vectorial equation of the plane passing through the points $\overline{a}, \overline{b}$ and parallel to the vector \overline{c} is $[\overline{r}\overline{b}\overline{c}] + [\overline{r}\overline{c}\overline{a}] = [\overline{a}\overline{b}\overline{c}]$.
- * The vectorial equation of the plane passing through the points $\overline{a}, \overline{b}, \overline{c}$ is $[\overline{r}\overline{b}\overline{c}] + [\overline{r}\overline{c}\overline{a}] + [\overline{r}\overline{a}\overline{b}] = [\overline{a}\overline{b}\overline{c}].$
- * If the points with the position vectors $\overline{a}, \overline{b}, \overline{c}, \overline{d}$ are coplanar, then the condition is $[\overline{a}\overline{b}\overline{d}] + [\overline{b}\overline{c}\overline{d}] + [\overline{c}\overline{a}\overline{d}] = [\overline{a}\overline{b}\overline{c}]$
- * Length of the perpendicular from the origin to the plane passing through the points $\overline{a}, \overline{b}, \overline{c}$ is $\frac{\left|\left[\overline{a}\overline{b}\overline{c}\right]\right|}{\left|\overline{b}\times\overline{c}+\overline{c}\times\overline{a}+\overline{a}\times\overline{b}\right|}$.
- * Length of the perpendicular from the point \overline{c} on to the line joining the points \overline{a} , \overline{b} is $\frac{|(\overline{a} \overline{c}) \times (\overline{c} \overline{b})|}{|\overline{a} \overline{b}|}$.
- * P, Q, R are non collinear points. Then distance of P to the plane OQR is $\frac{|\overline{OP}.(\overline{OQ}x\overline{OR})|}{|\overline{OQ}x\overline{OR}|}$

* Perpendicular distance from $P(\overline{\alpha})$ to the plane passing through $A(\overline{a})$ and parallel to the vectors \overline{b} and \overline{c} is $\left|\frac{\left[\overline{\alpha} - \overline{a} \quad \overline{b} \quad \overline{c}\right]}{\left|\overline{b}x\overline{c}\right|}\right|$

Length of the perpendicular from the point \overline{c} to the line $\overline{r} = \overline{a} + t\overline{b}$ is * $\frac{|(\overline{c} - \overline{a}) \times \overline{b}|}{|\overline{b}|}$

PROBLEMS

<u>VSAQ'S</u>

09.00 1. Find the angle between the vectors $\overline{i} + 2\overline{j} + 3\overline{k}$ and $3\overline{i} - \overline{j} + 2\overline{k}$.

Sol. Let $\overline{a} = \overline{i} + 2\overline{j} + 3\overline{k}$ and $\overline{b} = 3\overline{i} - \overline{j} + 2\overline{k}$

Let θ be the angle between the vectors.

Then
$$\cos \theta = \frac{\overline{a} \cdot \overline{b}}{|\overline{a}||\overline{b}|}$$

 $\cos \theta = \frac{(\overline{i} + 2\overline{j} + 3\overline{k}) \cdot (3\overline{i} - \overline{j} + 2\overline{k})}{\sqrt{\overline{i} + 2\overline{j} + 3\overline{k}}\sqrt{3\overline{i} - \overline{j} + 2\overline{k}}}$
 $= \frac{3 - 2 + 6}{\sqrt{14}\sqrt{14}} = \frac{7}{14} = \frac{1}{2}$
 $\cos \theta = \frac{1}{2} \Rightarrow \cos \theta = \cos 60^{\circ}$
 $\therefore \theta = 60^{\circ}$

- 2. If the vectors $2\overline{i} + \lambda \overline{j} \overline{k}$ and $4\overline{i} 2\overline{j} + 2\overline{k}$ are perpendicular to each other, then find λ .
- **Sol.** Let $\overline{a} = 2\overline{i} + \lambda \overline{j} \overline{k}$ and $\overline{b} = 4\overline{i} 2\overline{j} + 2\overline{k}$

By hypothesis, $\overline{a}, \overline{b}$ are perpendicular then $\overline{a} \cdot \overline{b} = 0$

$$\Rightarrow (2\overline{i} + \lambda\overline{j} - \overline{k}) \cdot (4\overline{i} - 2\overline{j} + 2\overline{k}) = 0$$

$$\Rightarrow 8 - 2\lambda - 2 = 0$$

$$\Rightarrow 6 - 2\lambda = 0$$

$$\Rightarrow \lambda = 3$$

3. $\overline{a} = 2\overline{i} - \overline{j} + \overline{k}, \overline{b} = \overline{i} - 3\overline{j} - 5\overline{k}$. Find the vector c such that $\overline{a}, \overline{b}$ and \overline{c} form the

sides of triangle.

Sol.

We know that $\overline{AB} + \overline{BC} + \overline{CA} = 0$

$$\overline{c} + \overline{a} + \overline{b} = 0$$

$$\overline{c} = -\overline{a} - \overline{b}$$

$$\overline{c} = -2\overline{i} + \overline{j} - \overline{k} - \overline{i} + 3\overline{j} + 5\overline{k}$$

$$\overline{c} = -3\overline{i} + 4\overline{j} + 4\overline{k}$$

4. Find the angle between the planes $\overline{r} \cdot (2\overline{i} - \overline{j} + 2\overline{k}) = 3$ and $\overline{r} \cdot (3\overline{i} + 6\overline{j} + \overline{k}) = 4$.

Sol. Given $\overline{\mathbf{r}} \cdot (2\overline{\mathbf{i}} - \overline{\mathbf{j}} + 2\overline{\mathbf{k}}) = 3$

 $\overline{\mathbf{r}} \cdot (3\overline{\mathbf{i}} + 6\overline{\mathbf{j}} + \overline{\mathbf{k}}) = 4$

Given equation $\overline{r} \cdot \overline{n}_1 = p$, $\overline{r} \cdot \overline{n}_2 = q$

Let θ be the angle between the planes.

Then
$$\cos\theta = \frac{\overline{n}_1 \cdot \overline{n}_2}{|\overline{n}_1||\overline{n}_2|}$$

$$= \frac{(2\overline{i} - \overline{j} + 2\overline{k}) \cdot (3\overline{i} + 6\overline{j} + \overline{k})}{\sqrt{2\overline{i} - \overline{j} + 2\overline{k}}\sqrt{3\overline{i} + 6\overline{j} + \overline{k}}}$$
$$= \frac{6 - 6 + 2}{\sqrt{9}\sqrt{46}} = \frac{2}{3\sqrt{46}}$$
$$\cos\theta = \frac{2}{3\sqrt{46}}$$

$$\therefore \theta = \cos^{-1} \left(\frac{2}{3\sqrt{46}} \right)$$

5. Let \overline{e}_1 and \overline{e}_2 be unit vectors containing angle θ . If $\frac{1}{2} | \overline{e}_1 - \overline{e}_2 | = \sin \lambda \theta$, then

find λ .

Sol. $\frac{1}{2} |\overline{\mathbf{e}}_1 - \overline{\mathbf{e}}_2| = \sin \lambda \theta$

Squaring on both sides

$$\frac{1}{2} |\overline{e}_{1} - \overline{e}_{2}| = \sin \lambda \theta$$
Squaring on both sides
$$\Rightarrow \frac{1}{4} (\overline{e}_{1} - \overline{e}_{2})^{2} = \sin^{2} \lambda \theta$$

$$\Rightarrow \frac{1}{4} [(\overline{e}_{1})^{2} + (\overline{e}_{2})^{2} - 2\overline{e}_{1}\overline{e}_{2}] = \sin^{2} \lambda \theta$$

$$\Rightarrow \frac{1}{4} [\overline{e}_{1}^{2} + \overline{e}_{2}^{2} - 2|\overline{e}_{1}||\overline{e}_{2}|\cos\theta] = \sin^{2} \lambda \theta$$

$$\Rightarrow \frac{1}{4} [1 + 1 - 2\cos\theta] = \sin^{2} \lambda \theta$$

$$\Rightarrow \frac{1}{4} [2 - 2\cos\theta] = \sin^{2} \lambda \theta$$

$$\Rightarrow \frac{1}{4} [1 - \cos\theta] = \sin^{2} \lambda \theta$$

$$\Rightarrow \frac{1}{2} [1 - \cos\theta] = \sin^{2} \lambda \theta$$

$$\Rightarrow \frac{1}{2} [1 - \cos\theta] = \sin^{2} \lambda \theta$$

$$\Rightarrow \frac{1}{2} [2\sin^{2}\frac{\theta}{2}] = \sin^{2} \lambda \theta$$

$$\Rightarrow \sin^{2}\frac{\theta}{2} = \sin^{2} \lambda \theta$$

$$\Rightarrow \frac{\theta}{2} = \lambda \theta \Rightarrow \lambda = \frac{1}{2}$$

6. Find the equation of the plane through the point (3, -2, 1) and perpendicular to the vector (4, 7, -4).

Sol. Let $\overline{a} = 3\overline{i} - 2\overline{j} + \overline{k}$, $\overline{b} = 4\overline{i} - 7\overline{j} - 4\overline{k}$

Equation of the required plane will be in the form $\overline{r} \cdot \overline{b} = \overline{a} \cdot \overline{b}$

$$\overline{\mathbf{r}} \cdot (4\overline{\mathbf{i}} + 7\overline{\mathbf{j}} - 4\overline{\mathbf{k}}) =$$

$$(3\overline{\mathbf{i}} - 2\overline{\mathbf{j}} + \overline{\mathbf{k}}) \cdot (4\overline{\mathbf{i}} + 7\overline{\mathbf{j}} - 4\overline{\mathbf{k}})$$

$$\Rightarrow \overline{\mathbf{r}} \cdot (4\overline{\mathbf{i}} + 7\overline{\mathbf{j}} - 4\overline{\mathbf{k}}) = 12 - 14 - 4$$

$$\Rightarrow \overline{\mathbf{r}} \cdot (4\overline{\mathbf{i}} + 7\overline{\mathbf{j}} - 4\overline{\mathbf{k}}) = -6$$

7. If $|\overline{p}|=2$, $|\overline{q}|=3$ and $(\overline{p},\overline{q})=\frac{\pi}{6}$, then find $|\overline{p}\times\overline{q}|^2$.

Sol. Given $|\overline{p}| = 2$, $|\overline{q}| = 3$ and $(\overline{p}, \overline{q}) = \frac{\pi}{6}$

$$|\overline{\mathbf{p}} \times \overline{\mathbf{q}}|^{2} = [|\overline{\mathbf{p}}||\overline{\mathbf{q}}|\sin(\overline{\mathbf{p}},\overline{\mathbf{q}})]^{2}$$
$$= \left[2 \cdot 3\sin\frac{\pi}{6}\right]^{2} = \left[2 \cdot 3 \cdot \frac{1}{2}\right]^{2}$$
$$|\overline{\mathbf{p}} \times \overline{\mathbf{q}}|^{2} = [3]^{2} = 9$$
$$\Rightarrow |\overline{\mathbf{p}} \times \overline{\mathbf{q}}|^{2} = 9$$

8. If $\overline{a} = 2\overline{i} - 3\overline{j} + \overline{k}$ and $\overline{b} = \overline{i} + 4\overline{j} - 2\overline{k}$, then find $(\overline{a} + \overline{b}) \times (\overline{a} - \overline{b})$.

Sol.
$$\overline{a} + \overline{b} = 3\overline{i} + \overline{j} - \overline{k}, \ \overline{a} - \overline{b} = \overline{i} - 7\overline{j} + 3\overline{k}$$

$$(\overline{a} + \overline{b}) \times (\overline{a} - \overline{b}) = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 3 & 1 & -1 \\ 1 & -7 & 3 \end{vmatrix}$$
$$= \overline{i}(3 - 7) - \overline{j}(9 + 1) + \overline{k}(-21 - 1)$$
$$(\overline{a} + \overline{b}) \times (\overline{a} - \overline{b}) = -4\overline{i} - 10\overline{j} - 22\overline{k}$$

9. If $4\overline{i} + \frac{2p}{3}\overline{j} + p\overline{k}$ is parallel to the vector $\overline{i} + 2\overline{j} + 3\overline{k}$, find p.

Sol. Let
$$\overline{a} = 4\overline{i} + \frac{2p}{3}\overline{j} + p\overline{k}, \ \overline{b} = \overline{i} + 2\overline{j} + 3\overline{k}$$

From hyp. \overline{a} is parallel to \overline{b} then $\overline{a} = \lambda \overline{b}$, λ is a scalar.

$$\Rightarrow 4\overline{i} + \frac{2p}{3}\overline{j} + p\overline{k} = \lambda[\overline{i} + 2\overline{j} + 3\overline{k}]$$

Comparing $\overline{i}, \overline{j}, \overline{k}$ on both sides

$$4 = \lambda \Longrightarrow \lambda = 4$$

$$\frac{2p}{3} = 2\lambda \Longrightarrow p = 3\lambda \Longrightarrow p = 12$$

10. Compute $\overline{a} \times (\overline{b} + \overline{c}) + \overline{b} \times (\overline{c} + \overline{a}) + \overline{c} \times (\overline{a} + \overline{b})$. Sol. $\overline{a} \times (\overline{b} + \overline{c}) + \overline{b} \times (\overline{c} + \overline{a}) + \overline{c} \times (\overline{a} + \overline{b})$ $= \overline{a} \times \overline{b} + \overline{a} \times \overline{c}) + \overline{b} \times \overline{c} + \overline{b} \times \overline{a}) + \overline{c} \times \overline{a} + \overline{c} \times \overline{b}$ $= \overline{a} \times \overline{b} - \overline{c} \times \overline{a} - \overline{c} \times \overline{b} - \overline{a} \times \overline{b} + \overline{c} \times \overline{a} + \overline{c} \times \overline{b} = 0$

11. Compute
$$2\overline{j} \times (3\overline{i} - 4\overline{k}) + (\overline{i} + 2\overline{j}) \times \overline{k}$$
.

Sol.
$$2\overline{j} \times (3\overline{i} - 4\overline{k}) + (\overline{i} + 2\overline{j}) \times \overline{k}$$

 $= 6(\overline{j} \times \overline{i}) - 8(\overline{j} \times \overline{k}) + (\overline{i} \times \overline{k}) + 2(\overline{j} \times \overline{k})$
 $= -6\overline{k} - 8\overline{i} - \overline{j} + 2\overline{i}$
 $= -6\overline{i} - \overline{j} - 6\overline{k}$

12. Find unit vector perpendicular to both $\overline{i} + \overline{j} + \overline{k}$ and $2\overline{i} + \overline{j} + 3\overline{k}$.

Sol. Let $\overline{a} = \overline{i} + \overline{j} + \overline{k}$ and $\overline{b} = 2\overline{i} + \overline{j} + 3\overline{k}$

$$\overline{\mathbf{a}} \times \overline{\mathbf{b}} = \begin{vmatrix} \overline{\mathbf{i}} & \overline{\mathbf{j}} & \overline{\mathbf{k}} \\ 1 & 1 & 1 \\ 2 & 1 & 3 \end{vmatrix}$$
$$= \overline{\mathbf{i}} (3-1) - \overline{\mathbf{j}} (3-2) + \overline{\mathbf{k}} (1-2)$$
$$= 2\overline{\mathbf{i}} - \overline{\mathbf{j}} - \overline{\mathbf{k}}$$
$$|\overline{\mathbf{a}} \times \overline{\mathbf{b}}| = \sqrt{6}$$

Unit vector perpendicular to

$$\overline{a} \text{ and } \overline{b} = \pm \frac{\overline{a} \times \overline{b}}{|\overline{a} \times \overline{b}|} = \pm \frac{2\overline{i} - \overline{j} - \overline{k}}{\sqrt{6}}$$

13. If θ is the angle between the vectors $\overline{i} + \overline{j}$ and $\overline{j} + \overline{k}$, then find sin θ .

Sol. Let $\overline{a} = \overline{i} + \overline{j}$ and $\overline{b} = \overline{j} + \overline{k}$

$$\overline{\mathbf{a}} \times \overline{\mathbf{b}} = \begin{vmatrix} \overline{\mathbf{i}} & \overline{\mathbf{j}} & \overline{\mathbf{k}} \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}$$
$$= \overline{\mathbf{i}} (1-0) - \overline{\mathbf{j}} (1-0) + \overline{\mathbf{k}} (1-0)$$
$$\overline{\mathbf{a}} \times \overline{\mathbf{b}} = \overline{\mathbf{i}} - \overline{\mathbf{j}} + \overline{\mathbf{k}}$$
$$|\overline{\mathbf{a}} \times \overline{\mathbf{b}}| = \sqrt{3}, |\overline{\mathbf{a}}| = \sqrt{2}, |\overline{\mathbf{b}}| = \sqrt{2}$$
$$\sin \theta = \frac{|\overline{\mathbf{a}} \times \overline{\mathbf{b}}|}{|\overline{\mathbf{a}}||\overline{\mathbf{b}}|} = \frac{\sqrt{3}}{\sqrt{2}\sqrt{2}}$$
$$\Rightarrow \sin \theta = \frac{\sqrt{3}}{2}$$

- 14. Find the area of the parallelogram having $\overline{a} = 2\overline{j} \overline{k}$ and $\overline{b} = -\overline{i} + \overline{k}$ as adjacent sides.
- **Sol.** Given $\overline{a} = 2\overline{j} \overline{k}$ and $\overline{b} = -\overline{i} + \overline{k}$
 - : Area of parallelogram = $|\overline{a} \times \overline{b}|$

$$= \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 0 & 2 & -1 \\ -1 & 0 & 1 \end{vmatrix} = |2\overline{i} - \overline{j} + 2\overline{k}| = \sqrt{9} = 3$$

15. Find the area of the parallelogram whose diagonals are

 $3\overline{i} + \overline{j} - 2\overline{k}$ and $\overline{i} - 3\overline{j} + 4\overline{k}$.

Sol. Given $\overline{AC} = 3\overline{i} + \overline{j} - 2\overline{k}$, $\overline{BD} = \overline{i} - 3\overline{j} + 4\overline{k}$

Area of parallelogram = $\frac{1}{2} | \overline{AC} \times \overline{BD} |$

$$= \frac{1}{2} \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 3 & 1 & -2 \\ 1 & -3 & 4 \end{vmatrix}$$
$$= \begin{vmatrix} \frac{1}{2} \left[\overline{i} (4-6) - \overline{j} (12+2) + \overline{k} (-9-1) \right] \\= \begin{vmatrix} \frac{1}{2} \left[-2\overline{i} - 14\overline{j} - 10\overline{k} \right] \end{vmatrix}$$

$$= |-\overline{i} - 7\overline{j} - 5\overline{k}|$$
$$= \sqrt{1 + 49 + 25} = \sqrt{75}$$

 \therefore Area of parallelogram = $5\sqrt{3}$ sq.units.

16. Find the area of the triangle having $3\overline{i} + 4\overline{j}$ and $-5\overline{i} + 7\overline{j}$ as two of its sides. Sol.

Given $\overline{AB} = 3\overline{i} + 4\overline{j}, \overline{BC} - 5\overline{i} + 7\overline{j}$

We know that,

$$\overline{AB} + \overline{BC} + \overline{CA} = 0$$

$$\overline{CA} = -\overline{AB} - \overline{BC} = -3\overline{i} - 4\overline{j} + 5\overline{i} - 7\overline{j}$$

$$\overline{CA} = 2\overline{i} - 11\overline{j}$$

$$\therefore$$
 Area of $\triangle ABC = \frac{1}{2} |\overline{AB} \times \overline{AC}|$

$$= \frac{1}{2} \begin{vmatrix} i & j & k \\ 3 & 4 & 0 \\ 2 & -11 & 0 \end{vmatrix} = \frac{1}{2} \left[\overline{k} (-33 - 8) \right]$$
$$= \left| \frac{-41\overline{k}}{2} \right| = \frac{41}{2}$$

17. Find unit vector perpendicular to the plane determined by the vectors $\overline{a} = 4\overline{i} + 3\overline{j} - \overline{k}$ and $\overline{b} = 2\overline{i} - 6\overline{j} - 3\overline{k}$.

Sol. Given $\overline{a} = 4\overline{i} + 3\overline{j} - \overline{k}$, $\overline{b} = 2\overline{i} - 6\overline{j} - 3\overline{k}$

$$\overline{\mathbf{a}} \times \overline{\mathbf{b}} = \begin{vmatrix} \overline{\mathbf{i}} & \overline{\mathbf{j}} & \overline{\mathbf{k}} \\ 4 & 3 & -1 \\ 2 & -6 & -3 \end{vmatrix}$$
$$= \overline{\mathbf{i}} (-9 - 6) - \overline{\mathbf{j}} (-12 + 2) + \overline{\mathbf{k}} (-24 - 6)$$
$$= -15\overline{\mathbf{i}} + 10\overline{\mathbf{j}} - 30\overline{\mathbf{k}} = 5(-3\overline{\mathbf{i}} + 2\overline{\mathbf{j}} - 6\overline{\mathbf{k}})$$

 $|\overline{\mathbf{a}} \times \overline{\mathbf{b}}| = 5\sqrt{9+4+36} = 5 \times 7 = 35$

: Unit vector perpendicular to both

$$\overline{a}$$
 and $\overline{b} = \pm \frac{\overline{a} \times \overline{b}}{|\overline{a} \times \overline{b}|} = \pm \frac{-15\overline{i} + 10\overline{j} - 30\overline{k}}{35}$

18. If $|\overline{a}|=13$, $|\overline{b}|=5$ and $\overline{a} \cdot \overline{b} = 60$, then find $|\overline{a} \times \overline{b}|$.

Sol. Given $|\overline{a}|=13$, $|\overline{b}|=5$ and $\overline{a} \cdot \overline{b} = 60$

We know that

$$|\overline{\mathbf{a}} \times \overline{\mathbf{b}}|^{2} = |\overline{\mathbf{a}}|^{2} |\overline{\mathbf{b}}|^{2} - (\overline{\mathbf{a}} \cdot \overline{\mathbf{b}})^{2}$$
$$= 169 \cdot 25 - 3600$$
$$= 25(169 - 144) = 625$$
$$|\overline{\mathbf{a}} \times \overline{\mathbf{b}}|^{2} = 625$$
$$\therefore |\overline{\mathbf{a}} \times \overline{\mathbf{b}}| = 25$$

19. If $\overline{a} = \overline{i} - 2\overline{j} - 3\overline{k}$, $\overline{b} - 2\overline{i} + \overline{j} - \overline{k}$, $\overline{c} = \overline{i} + 3\overline{j} - 2\overline{k}$ then compute $\overline{a} \cdot (\overline{b} \times \overline{c})$.

Sol. Given $\overline{a} = \overline{i} - 2\overline{j} - 3\overline{k}, \overline{b} - 2\overline{i} + \overline{j} - \overline{k}, \overline{c} = \overline{i} + 3\overline{j} - 2\overline{k}$

$$\overline{\mathbf{b}} \times \overline{\mathbf{c}} = \begin{vmatrix} \overline{\mathbf{i}} & \overline{\mathbf{j}} & \overline{\mathbf{k}} \\ 2 & 1 & -1 \\ 1 & 3 & -2 \end{vmatrix} = \overline{\mathbf{i}} + 3\overline{\mathbf{j}} + 5\overline{\mathbf{k}}$$
$$\overline{\mathbf{a}} \cdot (\overline{\mathbf{b}} \times \overline{\mathbf{c}}) = (\overline{\mathbf{i}} - 2\overline{\mathbf{j}} - 3\overline{\mathbf{k}}) \cdot (\overline{\mathbf{i}} + 3\overline{\mathbf{j}} + 5\overline{\mathbf{k}})$$
$$= 1 - 6 - 15 = -20$$
$$\therefore \overline{\mathbf{a}} \cdot (\overline{\mathbf{b}} \times \overline{\mathbf{c}}) = -20$$

20. Simplify $(\overline{i} - 2\overline{j} + 3\overline{k}) \times (2\overline{i} + \overline{j} - \overline{k}) \cdot (\overline{j} + \overline{k})$.

Sol. $(\overline{i} - 2\overline{j} + 3\overline{k}) \times (2\overline{i} + \overline{j} - \overline{k}) \cdot (\overline{j} + \overline{k})$

$$\begin{vmatrix} 1 & -2 & 3 \\ 2 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix}$$

= 1(1+1) + 2(2-0) + 3(2-0)
= 2+4+6=12

21. Find the volume of parallelepiped having co-terminous edges $\overline{i} + \overline{j} + \overline{k}$, $\overline{i} - \overline{j}$ and $\overline{i} + 2\overline{j} - \overline{k}$.

Sol. Let $\overline{a} = \overline{i} + \overline{j} + \overline{k}$, $\overline{b} = \overline{i} - \overline{j}$, $\overline{c} = \overline{i} + 2\overline{j} - \overline{k}$

Volume of parallelepiped = $\begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$

$$=\begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 2 & -1 \end{vmatrix}$$
$$= 1(1-0) - 1(-1-0) + 1(2+1)$$
$$= 1+1+3 = 5$$
 Cubic units

22. Compute
$$\begin{bmatrix} \overline{i} & -\overline{j} & \overline{j} & -\overline{k} & \overline{k} & -\overline{i} \end{bmatrix}$$
.

Sol.
$$\begin{bmatrix} \overline{i} - \overline{j} & \overline{j} - \overline{k} & \overline{k} - \overline{i} \end{bmatrix} = \begin{vmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{vmatrix}$$

= 1(1-0) + 1(0-1) + 0(0+1)
= 1-1 = 0

23. For non-coplanar vectors $\overline{a}, \overline{b}$ and \overline{c} determine the value of p in order that $\overline{a} + \overline{b} + \overline{c}, \overline{a} + p\overline{b} + 2\overline{c}$ and $-\overline{a} + \overline{b} + \overline{c}$ are coplanar.

Sol. Let

$$\overline{A} = \overline{a} + \overline{b} + \overline{c}, \overline{B} = \overline{a} + p\overline{b} + 2\overline{c}, \overline{C} = -\overline{a} + \overline{b} + \overline{c}$$

From hyp. Given vectors are coplanar.

Then
$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & p & 2 \\ -1 & 1 & 1 \end{vmatrix} \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} = 0$$
$$\Rightarrow [1(p-2)-1(1+2)+1(1+p)][\overline{a} \ \overline{b} \ \overline{c}] = 0$$
$$\Rightarrow [p-2-3+1+p][\overline{a} \ \overline{b} \ \overline{c}] = 0$$
$$[\because [\overline{a} \ \overline{b} \ \overline{c}] \neq 0]$$
$$\Rightarrow 2p-4 = 0$$
$$[\because \overline{a}, \overline{b}, \overline{c} \text{ are non-coplanar vectors}]$$
$$\Rightarrow 2p = 4$$
$$\therefore p = 2$$

24. Find the volume of tetrahedron having the edges $\overline{i} + \overline{j} + \overline{k}$, $\overline{i} - \overline{j}$ and

 $\overline{i} + 2\overline{j} + \overline{k}$.

Sol. Let $\overline{a} = \overline{i} + \overline{j} + \overline{k}$, $\overline{b} = \overline{i} - \overline{j}$, $\overline{c} = \overline{i} + 2\overline{j} + \overline{k}$

: Volume of the tetrahedraon

$$= \frac{1}{6} \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$$

$$= \frac{1}{6} \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 2 & 1 \end{vmatrix}$$

$$= \frac{1}{6} [1(-1-0) - 1(1-0) + 1(2+1)]$$

$$= \frac{1}{6} [-1-1+3]$$

$$= \frac{1}{6} [1] = \frac{1}{6} \text{ cubic units}$$

25. Let $\overline{a}, \overline{b}$ and \overline{c} be non-coplanar vectors and $\alpha = \overline{a} + 2\overline{b} + 3\overline{c}, \beta = 2\overline{a} + \overline{b} - 2\overline{c}$ and $\gamma = 3\overline{a} - 7\overline{c}$ then find $[\alpha \ \beta \ \gamma]$.

Sol.
$$[\alpha \ \beta \ \gamma] = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 1 & -2 \\ 3 & 0 & -7 \end{vmatrix} \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$$

= $[1(-7-0) - 2(-14+6) + 3(0-3)] \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$
= $[-7+16-9] \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$
= $0 \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} = 0$

26. Prove that $\overline{a} \times \left[\overline{a} \times (\overline{a} \times \overline{b})\right] = (\overline{a} \cdot \overline{a})(\overline{b} \times \overline{a})$.

Sol. $\overline{\mathbf{a}} \times \left[\overline{\mathbf{a}} \times (\overline{\mathbf{a}} \times \overline{\mathbf{b}})\right] = \overline{\mathbf{a}} \times \left[(\overline{\mathbf{a}} \cdot \overline{\mathbf{b}})\overline{\mathbf{a}} - (\overline{\mathbf{a}} \cdot \overline{\mathbf{a}})\overline{\mathbf{b}}\right]$ $= (\overline{\mathbf{a}} \cdot \overline{\mathbf{b}})\overline{\mathbf{a}} \times \overline{\mathbf{a}} - (\overline{\mathbf{a}} \cdot \overline{\mathbf{a}})\overline{\mathbf{a}} \times \overline{\mathbf{b}} (\because \overline{\mathbf{b}} \times \overline{\mathbf{a}} = -\overline{\mathbf{a}} \times \overline{\mathbf{b}})$ $= (\overline{\mathbf{a}} \cdot \overline{\mathbf{b}})(0) + (\overline{\mathbf{a}} \cdot \overline{\mathbf{a}})(\overline{\mathbf{b}} \times \overline{\mathbf{a}})$ $\overline{\mathbf{a}} \times \left[\overline{\mathbf{a}} \times (\overline{\mathbf{a}} \times \overline{\mathbf{b}})\right] = (\overline{\mathbf{a}} \cdot \overline{\mathbf{a}})(\overline{\mathbf{b}} \times \overline{\mathbf{a}})$

27. If $\overline{a}, \overline{b}, \overline{c}$ and \overline{d} are coplanar vectors then show that $(\overline{a} \times \overline{b}) \times (\overline{c} \times \overline{d}) = 0$.

If $\overline{a}, \overline{b}, \overline{c}$ are coplanar $\Leftrightarrow [\overline{a} \ \overline{b} \ \overline{c}] = 0$ Sol. $(\overline{a} \times \overline{b}) \times (\overline{c} \times \overline{d}) = [(\overline{a} \times \overline{b}) \cdot \overline{d}] \cdot \overline{c} - [(\overline{a} \times \overline{b}) \cdot \overline{c}] \overline{d}$ $= [\overline{a} \ \overline{b} \ \overline{d}]\overline{c} - [\overline{a} \ \overline{b} \ \overline{c}]\overline{d}$ $=\overline{0}\cdot\overline{c}-\overline{0}\cdot\overline{d}$ [:: a, b, c, d are coplanar] $\therefore (\overline{a} \times \overline{b}) \times (\overline{c} \times \overline{d}) = \overline{0}$

28. Show that $[(\overline{a} \times \overline{b}) \times (\overline{a} \times \overline{c})] \cdot \overline{d} = (\overline{a} \cdot \overline{d})[\overline{a} \ \overline{b} \ \overline{c}]$.

Sol.
$$[(\overline{a} \times \overline{b}) \times (\overline{a} \times \overline{c})] \cdot \overline{d}$$

= $[(\overline{a} \times \overline{b}) \cdot \overline{c}]\overline{a} - [(\overline{a} \times \overline{b}) \cdot \overline{a} \overline{c}] \cdot \overline{d}$

$$= \left[[\overline{a} \ \overline{b} \ \overline{c}]\overline{a} - [\overline{a} \ \overline{b} \ \overline{a}]\overline{c} \right] \cdot \overline{d}$$
$$= \left[[\overline{a} \ \overline{b} \ \overline{c}]\overline{a} - 0 \cdot \overline{c} \right] \cdot \overline{d}$$
$$= [\overline{a} \ \overline{b} \ \overline{c}]\overline{a} \cdot \overline{d} \quad (\because \overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{a})$$
$$\therefore [(\overline{a} \times \overline{b}) \times (\overline{a} \times \overline{c})] \cdot \overline{d} = (\overline{a} \cdot \overline{d})[\overline{a} \ \overline{b} \ \overline{c}]$$

29. Show that $\overline{a} \cdot \left[(\overline{b} + \overline{c}) \times [\overline{a} + \overline{b} + \overline{c}] \right] = 0$.

```
L.H.S. = \overline{a} \cdot \left[ (\overline{b} + \overline{c}) \times [\overline{a} + \overline{b} + \overline{c}] \right]
Sol.
                              =\overline{a} \cdot [\overline{b} \times \overline{a} + \overline{b} \times \overline{b} + \overline{b} \times \overline{c} + \overline{c} \times \overline{a} + \overline{c} \times \overline{b} + \overline{c} \times \overline{c}]
                               =\overline{a} \cdot [\overline{b} \times \overline{a} + 0 - \overline{c} \times \overline{b} + \overline{c} \times \overline{a} + \overline{c} \times \overline{b} + 0]
                               =\overline{a} \cdot [\overline{b} \times \overline{a} + \overline{c} \times \overline{a}]
                               =\overline{a}\cdot(\overline{b}\times\overline{a})+\overline{a}\cdot(\overline{c}\times\overline{a})
                               = [\overline{a} \ \overline{b} \ \overline{a}] + [\overline{a} \ \overline{c} \ \overline{a}]
                               = 0 + 0 = 0 = R.H.S.
```

30. If $\overline{a}, \overline{b}$ and \overline{c} are unit vectors then find $\left[2\overline{a}-\overline{b} \quad 2\overline{b}-\overline{c} \quad 2\overline{c}-\overline{a}\right]$.

Sol.
$$\begin{bmatrix} 2\overline{a} - \overline{b} & 2\overline{b} - \overline{c} & 2\overline{c} - \overline{a} \end{bmatrix}$$

$$= \begin{vmatrix} 2 & -1 & 0 \\ 0 & 2 & -1 \\ -1 & 0 & 2 \end{vmatrix} \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$$

$$= \begin{bmatrix} 2(4-0) + 1(0-1) + 0(0-2) \end{bmatrix} \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$$

$$= \begin{bmatrix} 2 \times 4 - 1 \end{bmatrix} (0)$$

$$= \begin{bmatrix} 8 - 1 \end{bmatrix} (0)$$

$$= \begin{bmatrix} 7 \end{bmatrix} (0) = 0$$

31. Show that $(\overline{a} + \overline{b}) \cdot (\overline{b} + \overline{c}) \times (\overline{c} + \overline{a}) = 2 \left[\overline{a} \ \overline{b} \ \overline{c} \right].$

Sol. We know that $\overline{a} \cdot (\overline{b} \times \overline{c}) = (\overline{a} \ \overline{b} \ \overline{c})$

$$(\overline{a} + \overline{b}) \cdot (\overline{b} + \overline{c}) \times (\overline{c} + \overline{a}) = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$$
$$= [1(1-0) - 1(0-1) + 0(0-1)] \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix} = (1+1) \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$$
$$= 2 \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$$

- 32. Find the equation of the plane passing through (a, b, c) and parallel to the plane $\overline{r} \cdot (\overline{i} + \overline{j} + \overline{k}) = 2$.
- Sol. Cartesian form of the given plane is

$$\mathbf{x} + \mathbf{y} + \mathbf{z} = 2$$

Equation of the required plane will be in the form x + y + z = k

Since it is passing through (a, b, c)

$$\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{k}$$

Required plane is

 $\mathbf{x} + \mathbf{y} + \mathbf{z} = \mathbf{a} + \mathbf{b} + \mathbf{c}$

Its vector form is : $\overline{r} \cdot (\overline{i} + \overline{j} + \overline{k}) = a + b + c$.

33. Let \overline{a} and \overline{b} be non-zero, non collinear vectors. If $|\overline{a} + \overline{b}| = |\overline{a} - \overline{b}|$, then find the angle between \overline{a} and \overline{b} .

Sol. $|\overline{a} + \overline{b}| = |\overline{a} - \overline{b}|$ $\Rightarrow |\overline{a} + \overline{b}|^2 = |\overline{a} - \overline{b}|^2$ $\Rightarrow (\overline{a} + \overline{b})(\overline{a} + \overline{b}) = (\overline{a} - \overline{b})(\overline{a} - \overline{b})$ $\Rightarrow \overline{a}^2 + 2\overline{a}\overline{b} + \overline{b}^2 = \overline{a}^2 - 2\overline{a}\overline{b} + \overline{b}^2$ $\Rightarrow 4\overline{a}\overline{b} = 0 \Rightarrow \overline{a} \cdot \overline{b} = 0$

Angle between \overline{a} and \overline{b} is 90°.

34. Let $\overline{a}, \overline{b}$ and \overline{c} be unit vectors such that \overline{b} is not parallel to \overline{c} and

$$\overline{a} \times (\overline{b} \times \overline{c}) = \frac{1}{2}\overline{b}$$
. Find the angles made y \overline{a} with each of \overline{b} and \overline{c} .

Sol.
$$\frac{1}{2}\overline{\mathbf{b}} = \overline{\mathbf{a}} \times (\overline{\mathbf{b}} \times \overline{\mathbf{c}}) = (\overline{\mathbf{a}} \cdot \overline{\mathbf{c}})\overline{\mathbf{b}} - (\overline{\mathbf{a}} \cdot \overline{\mathbf{b}})\overline{\mathbf{c}}$$

Such \overline{b} and \overline{c} are non-coplanar vectors, equating corresponding coefficients on both sides, $\overline{a} \cdot \overline{c} = \frac{1}{2}$ and $\overline{a} \cdot \overline{b} = 0$.

oth sides,
$$\overline{a} \cdot \overline{c} = \frac{1}{2}$$
 and $\overline{a} \cdot b = 0$.

- \therefore \overline{a} makes angle $\pi/3$ with \overline{c} and is perpendicular to \overline{b} .
- **35.** For any four vectors $\overline{a}, \overline{b}, \overline{c}$ and \overline{d} , prove that $(\overline{b} \times \overline{c}) \cdot (\overline{a} \times \overline{d}) + (\overline{c} \times \overline{a}) \cdot (\overline{b} \times \overline{d}) + (\overline{a} \times \overline{b}) \cdot (\overline{c} \times \overline{d}) = 0$.
- **Sol.** L.H.S. =
 - $= \begin{vmatrix} \overline{\mathbf{b}} \cdot \overline{\mathbf{a}} & \overline{\mathbf{b}} \cdot \overline{\mathbf{d}} \\ \overline{\mathbf{c}} \cdot \overline{\mathbf{a}} & \overline{\mathbf{c}} \cdot \overline{\mathbf{d}} \end{vmatrix} + \begin{vmatrix} \overline{\mathbf{c}} \cdot \overline{\mathbf{b}} & \overline{\mathbf{c}} \cdot \overline{\mathbf{d}} \\ \overline{\mathbf{a}} \cdot \overline{\mathbf{b}} & \overline{\mathbf{a}} \cdot \overline{\mathbf{d}} \end{vmatrix} + \begin{vmatrix} \overline{\mathbf{a}} \cdot \overline{\mathbf{c}} & \overline{\mathbf{a}} \cdot \overline{\mathbf{d}} \\ \overline{\mathbf{b}} \cdot \overline{\mathbf{c}} & \overline{\mathbf{b}} \cdot \overline{\mathbf{d}} \end{vmatrix}$

 $=(\overline{b}\cdot\overline{a})(\overline{c}\cdot\overline{d})-(\overline{b}\cdot\overline{d})(\overline{c}\cdot\overline{a})+(\overline{c}\cdot\overline{b})(\overline{a}\cdot\overline{d})-(\overline{a}\cdot\overline{b})(\overline{c}\cdot\overline{d})+(\overline{a}\cdot\overline{c})(\overline{b}\cdot\overline{d})-(\overline{a}\cdot\overline{d})(\overline{b}\cdot\overline{c})=0$

36. Find the distance of a point (2, 5, -3) from the plane $\overline{r} \cdot (6\overline{i} - 3\overline{j} + 2\overline{k}) = 4$.

Sol. Here $\overline{a} = 2\overline{i} + 5\overline{j} - 3\overline{k}$, $N = 6\overline{i} - 3\overline{j} + 2\overline{k}$, and d = 4.

 \therefore The distance of the point (2, 5, -3) from the given plane is

$$\frac{|(2\overline{i}+5\overline{j}-3\overline{k})(6\overline{i}-3\overline{j}+2\overline{k})-4|}{|6\overline{i}-3\overline{j}+2\overline{k}|}$$
$$=\frac{|12-15-6-4|}{\sqrt{36+9+4}}=\frac{13}{7}$$

37. Find the angle between the line $\frac{x+1}{2} = \frac{y}{3} = \frac{z-3}{6}$ and the plane

```
10x + 2y - 11z = 3.
```

Sol. Let ϕ be the angle between the given line and the normal to the plane. Converting the given equations into vector form, we have

$$\overline{\mathbf{r}} = (-\overline{\mathbf{i}} + 3\overline{\mathbf{k}}) + \lambda(2\overline{\mathbf{i}} + 3\overline{\mathbf{j}} + 6\overline{\mathbf{k}})$$

and $\overline{\mathbf{r}} \cdot (10\overline{\mathbf{i}} + 2\overline{\mathbf{j}} - 11\overline{\mathbf{k}}) = 3$
Here,
$$\mathbf{b} = 2\overline{\mathbf{i}} + 3\overline{\mathbf{j}} + 6\overline{\mathbf{k}} \text{ and } \mathbf{n} = 10\overline{\mathbf{i}} + 2\overline{\mathbf{j}} - 11\overline{\mathbf{k}}$$
$$\sin \phi = \frac{(2\overline{\mathbf{i}} + 3\overline{\mathbf{j}} + 6\overline{\mathbf{k}}) \cdot (10\overline{\mathbf{i}} + 2\overline{\mathbf{j}} - 11\overline{\mathbf{k}})}{\sqrt{2^2 + 3^2 + 6^2}\sqrt{10^2 + 2^2 + 11^2}}$$
$$= \left|\frac{-40}{7 \times 15}\right| = \frac{8}{21}$$
$$\Rightarrow \phi = \sin^{-1}\left(\frac{8}{21}\right)$$

38. If $\overline{a} \cdot \overline{b} = \overline{a} \cdot \overline{c}$ and $\overline{a} \times \overline{b} = \overline{a} \times \overline{c}, a \neq 0$ then show that $\overline{b} = \overline{c}$.

Sol. Given that,

 $\overline{a} \cdot \overline{b} = \overline{a} \cdot \overline{c} \Longrightarrow \overline{a}(\overline{b} - \overline{c}) = 0 \quad \dots(1)$ $\overline{a} \times \overline{b} = \overline{a} \times \overline{c} \Longrightarrow \overline{a} \times (\overline{b} - \overline{c}) = 0 \dots(2)$

From (1) and (2) it is evident that, the vector $(\overline{b} - \overline{c})$ cannot be both perpendicular

to \overline{a} and parallel to \overline{a} .

Unless it is zero

$$\therefore \overline{\mathbf{b}} - \overline{\mathbf{c}} = 0 \ (\overline{\mathbf{a}} \neq 0)$$

 $\therefore \overline{b} = \overline{c}$

SAQ'S

39. If $|\overline{a}|=2$, $|\overline{b}|=3$ and $|\overline{c}|=4$ and each of $\overline{a}, \overline{b}, \overline{c}$ is perpendicular to the sum of the other two vectors, then find the magnitude of $\overline{a}+\overline{b}+\overline{c}$.

Sol.
$$\overline{a} \perp (\overline{b} + \overline{c})$$

 $\Rightarrow \overline{a} \cdot (\overline{b} + \overline{c}) = 0$
 $\Rightarrow \overline{a} \cdot \overline{b} + \overline{c} \cdot \overline{a} = 0$...(1)
 $\overline{b} \perp (\overline{c} + \overline{a})$
 $\Rightarrow \overline{b} \cdot (\overline{c} + \overline{a})$
 $\Rightarrow \overline{b} \cdot \overline{c} + \overline{b} \cdot \overline{a} = 0$...(2)
 $\overline{c} \perp (\overline{a} + \overline{b})$
 $\Rightarrow \overline{c} \cdot (\overline{a} + \overline{b}) = 0$
 $\Rightarrow \overline{c} \cdot \overline{a} + \overline{c} \cdot \overline{b} = 0$...(3)

 $(1) + (2) + (3) \Longrightarrow$ $2[\overline{a} \cdot \overline{b} + \overline{b} \cdot \overline{c} + \overline{c} \cdot \overline{a}] = 0$ $\Longrightarrow \overline{a} \cdot \overline{b} + \overline{b} \cdot \overline{c} + \overline{c} \cdot \overline{a} = 0 \qquad \dots (4)$

Consider

$$|\overline{\mathbf{a}} + \overline{\mathbf{b}} + \overline{\mathbf{c}}|^2 = (\overline{\mathbf{a}} + \overline{\mathbf{b}} + \overline{\mathbf{c}})^2$$

= $(\overline{\mathbf{a}})^2 + (\overline{\mathbf{b}})^2 + (\overline{\mathbf{c}})^2 + 2(\overline{\mathbf{a}} \cdot \overline{\mathbf{b}} + \overline{\mathbf{b}} \cdot \overline{\mathbf{c}} + \overline{\mathbf{c}} \cdot \overline{\mathbf{a}}) = 2^2 + 3^2 + 4^2$
= $|\overline{\mathbf{a}}|^2 + |\overline{\mathbf{b}}|^2 + |\overline{\mathbf{c}}|^2 + 0$ (:: from(4))
= $4 + 9 + 16 = 29$
 $|\overline{\mathbf{a}} + \overline{\mathbf{b}} + \overline{\mathbf{c}}| = \sqrt{29}$

40. Let $\overline{a} = \overline{i} + \overline{j} + \overline{k}$ and $\overline{b} = 2\overline{i} + 3\overline{j} + \overline{k}$ find

i) The projection vector of \overline{b} on \overline{a} and its magnitude.

ii) The vector components of \overline{b} in the direction of \overline{a} and perpendicular to \overline{a} .

Sol. Given that
$$\overline{a} = \overline{i} + \overline{j} + \overline{k}$$
, $\overline{b} = 2\overline{i} + 3\overline{j} + \overline{k}$

i) Then projection of
$$\overline{b}$$
 on $\overline{a} = \frac{\overline{a} \cdot \overline{b}}{|\overline{a}|^2} \cdot \overline{a}$

$$= \frac{(\overline{i} + \overline{j} + \overline{k}) \cdot (2\overline{i} + 3\overline{j} + 3\overline{k})}{|\overline{i} + \overline{j} + \overline{k}|^2} \cdot |\overline{i} + \overline{j} + \overline{k}|$$

$$= \frac{2 + 3 + 1}{(\sqrt{3})^2} \cdot \overline{i} + \overline{j} + \overline{k}$$

$$= \frac{6(\overline{i} + \overline{j} + \overline{k})}{3} = 2(\overline{i} + \overline{j} + \overline{k})$$
Magnitude
$$= \frac{|\overline{a} \cdot \overline{b}|}{|\overline{a}|} = \frac{|(\overline{i} + \overline{j} + \overline{k}) \cdot (2\overline{i} + 3\overline{j} + \overline{k})|}{|\overline{i} + \overline{j} + \overline{k}|}$$

$$= \frac{|2 + 3 + 1|}{|\sqrt{3}|} = \frac{6}{\sqrt{3}} = 2\sqrt{3} \text{ unit}$$

ii) The component vector of $\overline{\mathbf{b}}$ in the direction of $\overline{\mathbf{a}} = \frac{(\overline{\mathbf{a}} \cdot \overline{\mathbf{b}})}{|\overline{\mathbf{a}}|^2} \cdot \overline{\mathbf{a}}$

 $=2(\overline{i}+\overline{j}+\overline{k})$ (:: from 10(i))

The vector component of \overline{b} perpen-dicular to \overline{a} .

$$=\overline{\mathbf{b}} - \frac{(\overline{\mathbf{a}} \cdot \overline{\mathbf{b}})\overline{\mathbf{a}}}{|\overline{\mathbf{a}}|^2} = (2\overline{\mathbf{i}} + 3\overline{\mathbf{j}} + \overline{\mathbf{k}}) - 2(\overline{\mathbf{i}} + \overline{\mathbf{j}} + \overline{\mathbf{k}})$$
$$= 2\overline{\mathbf{i}} + 3\overline{\mathbf{j}} + \overline{\mathbf{k}} - 2\overline{\mathbf{i}} - 2\overline{\mathbf{j}} - 2\overline{\mathbf{k}} = \overline{\mathbf{j}} - \overline{\mathbf{k}}$$

41. If $\overline{a} + \overline{b} + \overline{c} = 0$, $|\overline{a}| = 3$, $|\overline{b}| = 5$ and $|\overline{c}| = 7$ then find the angle between \overline{a} and \overline{b} .

Sol. Given $|\overline{a}| = 3$, $|\overline{b}| = 5$, $|\overline{c}| = 7$ and

$$\overline{a} + \overline{b} + \overline{c} = 0$$
$$\overline{a} + \overline{b} = -\overline{c}$$

Squaring on both sides

$$\overline{a}^{2} + \overline{b}^{2} + 2\overline{a} \cdot \overline{b} = \overline{c}^{2}$$

$$\Rightarrow |\overline{a}|^{2} + |\overline{b}|^{2} |2[|\overline{a}||\overline{b}|\cos(\overline{a},\overline{b})] = |\overline{c}|^{2}$$

$$\Rightarrow 9 + 25 + 2[3.5\cos(\overline{a},\overline{b})] = 49$$

$$\Rightarrow 2[15\cos(\overline{a},\overline{b})] = 49 - 34$$

$$\Rightarrow \cos(\overline{a},\overline{b}) = \frac{15}{30}$$

$$\Rightarrow \cos(\overline{a},\overline{b}) = \frac{1}{2} = \cos\frac{\pi}{3}$$

$$\Rightarrow (\overline{a},\overline{b}) = \frac{\pi}{3}$$

- \therefore Angle between \overline{a} and \overline{b} is 60°.
- 42. Find the equation of the plane passing through the point $\overline{a} = 2\overline{i} + 3\overline{j} \overline{k}$ and perpendicular to the vector $3\overline{i} - 2\overline{j} - 2\overline{k}$ and the distance of this plane from the origin.

Sol. Let $\overline{a} = 2\overline{i} + 3\overline{j} - \overline{k}$ and $\overline{b} = 3\overline{i} - 2\overline{j} - 2\overline{k}$

Equation of the required plane is

$$\overline{\mathbf{r}} \cdot \overline{\mathbf{b}} = \overline{\mathbf{a}} \cdot \overline{\mathbf{b}}$$

$$\overline{\mathbf{r}} \cdot (3\overline{\mathbf{i}} - 2\overline{\mathbf{j}} - 2\overline{\mathbf{k}}) =$$

$$(2\overline{\mathbf{i}} + 3\overline{\mathbf{j}} - \overline{\mathbf{k}}) \cdot (3\overline{\mathbf{i}} - 2\overline{\mathbf{j}} - 2\overline{\mathbf{k}})$$

$$= 6 - 6 + 2$$

$$\overline{\mathbf{r}} \cdot (3\overline{\mathbf{i}} - 2\overline{\mathbf{j}} - 2\overline{\mathbf{k}}) = 2$$

Its Cartesian form is

 $(x\overline{i} + y\overline{j} + z\overline{k}) \cdot (3\overline{i} - 2\overline{j} - 2\overline{k}) = 2$ $\Rightarrow 3x - 2y - 2z = 2$

Perpendicular distance from the origin to the above plane is

$$\frac{|\overline{\mathbf{a}} \cdot \overline{\mathbf{b}}|}{|\overline{\mathbf{b}}|} = \frac{2}{\sqrt{9+4+4}} = \frac{2}{\sqrt{17}}$$

43. If $\overline{a} = 2\overline{i} + \overline{j} - \overline{k}$, $\overline{b} = -\overline{i} + 2\overline{j} - 4\overline{k}$ and $\overline{c} = \overline{i} + \overline{j} + \overline{k}$ then find $(\overline{a} \times \overline{b}) \cdot (\overline{b} \times \overline{c})$.

Sol.
$$\overline{a} \times \overline{b} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2 & 1 & -1 \\ -1 & 2 & -4 \end{vmatrix}$$

$$= \overline{i} (-4+2) - \overline{j} (-8-1) + \overline{k} (4+1)$$
$$= -2\overline{i} + 9\overline{j} + 5\overline{k}$$
$$\overline{b} \times \overline{c} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ -1 & 2 & -4 \\ 1 & 1 & 1 \end{vmatrix}$$
$$= \overline{i} (2+4) - \overline{j} (-1+4) + \overline{k} (-1-2)$$
$$= 6\overline{i} - 3\overline{j} - 3\overline{k}$$

$$(\overline{a} \times b) \cdot (b \times \overline{c})$$

= $(-2\overline{i} + 9\overline{j} + 5\overline{k}) \cdot (6\overline{i} - 3\overline{j} - 3\overline{k})$
= $-12 - 27 - 15 = -54$

44. If $\overline{a}, \overline{b}, \overline{c}$ are unit vectors such that \overline{a} is perpendicular to the plane of $\overline{b}, \overline{c}$ and the angle between \overline{b} and \overline{c} is $\pi/3$, then find $|\overline{a} + \overline{b} + \overline{c}|$.

Sol. \overline{a} perpendicular to plane contain \overline{b} and \overline{c} .

$$\Rightarrow \overline{a} \cdot \overline{b} = 0, \ \overline{a} \cdot \overline{c} = 0$$

Consider

$$|\overline{\mathbf{a}} + \overline{\mathbf{b}} + \overline{\mathbf{c}}|^{2} = (\overline{\mathbf{a}} + \overline{\mathbf{b}} + \overline{\mathbf{c}})^{2}$$

$$= \overline{\mathbf{a}}^{2} + \overline{\mathbf{b}}^{2} + \overline{\mathbf{c}}^{2} + 2\overline{\mathbf{a}}\overline{\mathbf{b}} + 2\overline{\mathbf{b}}\overline{\mathbf{c}} + 2\overline{\mathbf{c}}\overline{\mathbf{a}}$$

$$= |\overline{\mathbf{a}}|^{2} + |\overline{\mathbf{b}}|^{2} + |\overline{\mathbf{c}}|^{2} + 0$$

$$+ 2|\overline{\mathbf{b}}||\overline{\mathbf{c}}|\cos(\overline{\mathbf{b}}, \overline{\mathbf{c}}) + 0$$

$$=1+1+2+2(1)(1)\cos\frac{\pi}{3}$$
$$=3+2\times\frac{1}{2}=3+1=4$$
$$\therefore |\overline{a}+\overline{b}+\overline{c}|=2$$

45. If $\overline{a} = 2\overline{i} + 3\overline{j} + 4\overline{k}$, $\overline{b} = \overline{i} + \overline{j} - \overline{k}$ and $\overline{c} = \overline{i} - \overline{j} + \overline{k}$ then compute $\overline{a} \times (\overline{b} \times \overline{c})$ and COR

verify that it is perpendicular to a.

Sol. Given
$$\overline{a} = 2\overline{i} + 3\overline{j} + 4\overline{k}, \overline{b} = \overline{i} + \overline{j} - \overline{k}, \overline{c} = \overline{i} - \overline{j} + \overline{k}$$

 $\overline{b} \times \overline{c} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{vmatrix} = \overline{i}(1-1) - \overline{j}(1+1) + \overline{k}(-1-1) = -2\overline{j} - 2\overline{k}$
 $\overline{a} \times (\overline{b} \times \overline{c}) = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2 & 3 & 4 \\ 0 & -2 & -2 \end{vmatrix} = \overline{i}(-6+8) - \overline{j}(-4-0) + \overline{k}(-4-0) = 2\overline{i} + 4\overline{j} - 4\overline{k}$
 $(\overline{a} \times (\overline{b} \times \overline{c}) \cdot \overline{a} = (2\overline{i} + 4\overline{j} - 4\overline{k}) \cdot (2\overline{i} + 3\overline{j} + 4\overline{k})$
 $= 4+12-16=16-16=0$
 $\therefore \overline{a} \times (\overline{b} \times \overline{c})$ is perpendicular to \overline{a} .

46. Let $\overline{a}, \overline{b}$ and \overline{c} are non-coplanar vectors prove that if $\left\lceil \overline{a} + 2\overline{b} \quad 2\overline{b} + \overline{c} \quad 5\overline{c} + \overline{a} \right\rceil =$ $\lambda \overline{a} \overline{b} \overline{c}$, then find λ .

Given Sol. $\begin{bmatrix} \overline{a} + 2\overline{b} & 2\overline{b} + \overline{c} & 5\overline{c} + \overline{a} \end{bmatrix} = \lambda \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$ $\begin{vmatrix} 1 & 2 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 5 \end{vmatrix} \left[\overline{a} \ \overline{b} \ \overline{c} \right] = \lambda \left[\overline{a} \ \overline{b} \ \overline{c} \right]$ $\Rightarrow [1(10-0) - 2(0-1) + 0(0-2)]$ $\begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix} = \lambda \begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix}$ $\Rightarrow (10+2) \begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix} = \lambda \begin{bmatrix} \overline{a} \ \overline{b} \ \overline{c} \end{bmatrix}$ $\therefore \lambda = 12$

47. If
$$\overline{a} = \overline{i} - 2\overline{j} - 3\overline{k}$$
, $\overline{b} = 2\overline{i} + \overline{j} - \overline{k}$ and $\overline{c} = \overline{i} + 3\overline{j} - 2\overline{k}$ verify that $\overline{a} \times (\overline{b} \times \overline{c}) \neq (\overline{a} \times \overline{b}) \times \overline{c}$.
Sol. $\overline{b} \times \overline{c} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2 & 1 & -1 \\ 1 & 3 & -2 \end{vmatrix}$
 $= \overline{i}(-2+3) - \overline{j}(-4+1) + \overline{k}(6-1)$
 $\overline{b} \times \overline{c} = \overline{i} + 3\overline{j} + 5\overline{k}$
 $\overline{a} \times (\overline{b} \times \overline{c}) = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & -2 & -3 \\ 1 & 3 & 5 \end{vmatrix} = \overline{i}(-10+9) - \overline{j}(5+3) + \overline{k}(3+2)$
 $\overline{a} \times (\overline{b} \times \overline{c}) = -\overline{i} - 8\overline{j} + 5\overline{k}$
 $\overline{a} \times (\overline{b} \times \overline{c}) = -\overline{i} - 8\overline{j} + 5\overline{k}$
 $\overline{a} \times \overline{b} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & -2 & -3 \\ 2 & 1 & -1 \end{vmatrix} = \overline{i}(2+3) - \overline{j}(-1+6) + \overline{k}(1+4)$
 $\overline{a} \times \overline{b} = 5\overline{i} - 5\overline{j} + 5\overline{k}$
 $(\overline{a} \times \overline{b}) \times \overline{c} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 5 & -5 & 5 \\ 1 & 3 & -2 \end{vmatrix} = \overline{i}(10-15) - \overline{j}(-10-5) + \overline{k}(15+5)$
 $(\overline{a} \times \overline{b}) \times \overline{c} = -5\overline{i} + 15\overline{j} + 20\overline{k}$
 $\therefore \overline{a} \times (\overline{b} \times \overline{c}) \neq (\overline{a} \times \overline{b}) \times \overline{c}$

48. Let $\overline{b} = 2\overline{i} + \overline{j} - \overline{k}$, $\overline{c} = \overline{i} + 3\overline{k}$. If \overline{a} is a unit vector then find the maximum value of $[\overline{a} \ \overline{b} \ \overline{c}]$.

Sol. Consider
$$\overline{b} \times \overline{c} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2 & 1 & -1 \\ 1 & 0 & 3 \end{vmatrix}$$
$$= \overline{i}(3) - \overline{j}(6+1) + \overline{k}(0-1)$$
$$= 3\overline{i} - 7\overline{j} - \overline{k}$$

 $|\overline{\mathbf{b}} \times \overline{\mathbf{c}}| = \sqrt{9 + 49 + 1} = \sqrt{59}$ Let $(\overline{\mathbf{a}}, \overline{\mathbf{b}} \times \overline{\mathbf{c}}) = \theta$ Consider $[\overline{\mathbf{a}} \ \overline{\mathbf{b}} \ \overline{\mathbf{c}}] = \overline{\mathbf{a}} \cdot \overline{\mathbf{b}} \times \overline{\mathbf{c}}$ $= |\overline{\mathbf{a}}| |\overline{\mathbf{b}} \times \overline{\mathbf{c}}| \cos[\overline{\mathbf{a}}, \overline{\mathbf{b}} \times \overline{\mathbf{c}}]$ $= (1)(\sqrt{59}) \cos \theta$ $= \sqrt{59} \cos \theta$

We know that $-1 \le \cos \theta \le 1$

- : Maximum value of $[\overline{a} \ \overline{b} \ \overline{c}] = \sqrt{59}$.
- **49.** Let $\overline{a}, \overline{b}, \overline{c}$ be mutually orthogonal vectors of equal magnitudes. Prove that the vector $\overline{a} + \overline{b} + \overline{c}$ is equally inclined to each of $\overline{a}, \overline{b}, \overline{c}$, the angle of

inclination being $\cos^{-1}\frac{1}{\sqrt{3}}$.

Sol. Let $|\overline{a}| = |\overline{b}| = |\overline{c}| = \lambda$

Now, $|\overline{a} + \overline{b} + \overline{c}|^2 = \overline{a}^2 + \overline{b}^2 + \overline{c}^2 + 2\Sigma\overline{a}\cdot\overline{b}$

 $= 3\lambda^2 (\because \overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{c} = \overline{c} \cdot \overline{a} = 0)$

Let θ be the angle between \overline{a} and $\overline{a} + \overline{b} + \overline{c}$

Then $\cos \theta = \frac{\overline{a} \cdot (\overline{a} + \overline{b} + \overline{c})}{|\overline{a}||\overline{a} + \overline{b} + \overline{c}|} = \frac{\overline{a} \cdot \overline{a}}{\lambda(\lambda\sqrt{3})} = \frac{1}{\sqrt{3}}$

Similarly, it can be proved that $\overline{a} + \overline{b} + \overline{c}$ inclines at an angle of $\cos^{-1} \frac{1}{\sqrt{3}}$ with

b and c.

50. In $\triangle ABC$, if $\overline{BC} = \overline{a}$, $\overline{CA} = \overline{b}$ and $\overline{AB} = \overline{c}$, then show that $\overline{a} \times \overline{b} = \overline{b} \times \overline{c} = \overline{c} \times \overline{a}$.

Sol. $\overline{a} + \overline{b} + \overline{c} = \overline{BC} + \overline{CA} + \overline{AB} = \overline{BB} = \overline{0}$ $\therefore \overline{a} + \overline{b} = -\overline{c}$ $\therefore \overline{a} \times (\overline{a} + \overline{b}) = \overline{a} \times (-\overline{c})$ $\therefore \overline{a} \times \overline{b} = -(\overline{a} \times \overline{c}) = \overline{c} \times \overline{a}$ Also $(\overline{a} + \overline{b}) \times \overline{b} = (-\overline{c}) \times \overline{b}$ $\therefore \overline{a} \times \overline{b} = -(\overline{c} \times \overline{b}) = \overline{b} \times \overline{c}$ $\therefore \overline{b} \times \overline{c} = \overline{a} \times \overline{b} = \overline{c} \times \overline{a}$ 51. Let $\overline{a} = 2\overline{i} + \overline{j} - 2\overline{k}$, $\overline{b} = \overline{i} + \overline{j}$. If \overline{c} is a vector such that $\overline{a} \cdot \overline{c} = |\overline{c}|, |\overline{c} - \overline{a}| = 2\sqrt{2}$ and the angle between $\overline{a} \times \overline{b}$ and \overline{c} is 30°, then find the value of $|(\overline{a} \times \overline{b}) \times \overline{c}|$.

Sol.
$$|\overline{a}| = 3, |\overline{b}| = \sqrt{2} \text{ and } \overline{a} \cdot \overline{c} = |\overline{c}|$$

 $2\sqrt{2} = |\overline{c} - \overline{a}|$
 $\Rightarrow 8 = |\overline{c} - \overline{a}|^2 = |\overline{c}|^2 + |\overline{a}|^2 - 2(\overline{a} \cdot \overline{c})$
 $\therefore 8 = |\overline{c}|^2 + 9 - 2 |\overline{c}|$
 $\therefore (|\overline{c}| - 1)^2 = 0$
 $\therefore |\overline{c}| = 1$
Now, $\overline{a} \times \overline{b} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2 & 1 & -2 \\ 1 & 1 & 0 \end{vmatrix} = 2\overline{i} - 2\overline{j} + \overline{k}$
 $\therefore |(\overline{a} \times \overline{b}) \times \overline{c}| = |\overline{a} \times \overline{b}| |\overline{c}| \sin 30^{\circ}$

$$=3(1)\left(\frac{1}{2}\right)=\frac{3}{2}$$

52. If \overline{a} is a non-zero vector and $\overline{b}, \overline{c}$ are two vectors such that $\overline{a} \times \overline{b} = \overline{a} \times \overline{c}$ and

 $\overline{a} \cdot \overline{b} = \overline{a} \cdot \overline{c}$ then prove that $\overline{b} = \overline{c}$.

Sol.
$$\overline{a} \times \overline{b} = \overline{a} \times \overline{c} \Longrightarrow \overline{a} \times (\overline{b} - \overline{c}) = 0$$

 \Rightarrow either $\overline{b} = \overline{c}$ or $\overline{b} - \overline{c}$ is collinear with \overline{a}

Again $\overline{a} \cdot \overline{b} = \overline{a} \cdot \overline{c} \Longrightarrow \overline{a} \cdot (\overline{b} - \overline{c}) = 0$

 $\Rightarrow \overline{b} = \overline{c} \text{ or } \overline{b} - \overline{c} \text{ is perpendicular to } \overline{a}$

 \therefore If $\overline{b} \neq \overline{c}$, then $\overline{b} - \overline{c}$ is parallel to \overline{a} and is perpendicular to \overline{a} which is impossible.

 $\therefore \overline{b} = \overline{c}$.

53. Prove that for any three vectors $\overline{a}, \overline{b}, \overline{c}, [\overline{b} + \overline{c} \quad \overline{c} + \overline{a} \quad \overline{a} + \overline{b}] = 2[\overline{a} \quad \overline{b} \quad \overline{c}]$.

Sol.
$$\left[\overline{b} + \overline{c} \quad \overline{c} + \overline{a} \quad \overline{a} + \overline{b}\right]$$

$$= (\overline{b} + \overline{c}) \cdot \left\{ (\overline{c} + \overline{a}) \times (\overline{a} + \overline{b}) \right\}$$

$$= (\overline{b} + \overline{c}) \cdot \left\{ \overline{c} \times \overline{a} + \overline{c} \times \overline{b} + \overline{a} \times \overline{b} \right\}$$

$$= \overline{b} (\overline{c} \times \overline{a}) + \overline{b} (\overline{c} \times \overline{b}) + \overline{b} (\overline{a} \times \overline{b})$$

$$+ \overline{c} (\overline{c} \times \overline{a}) + \overline{c} (\overline{c} \times \overline{b}) + \overline{c} (\overline{a} \times \overline{b})$$

 $= [\overline{b} \ \overline{c} \ \overline{a}] + 0 + 0 + 0 + 0 + 0 + [\overline{c} \ \overline{a} \ \overline{b}]$ $= 2[\overline{a} \ \overline{b} \ \overline{c}]$

54. For any three vectors $\overline{a}, \overline{b}, \overline{c}$ prove that $\left[\overline{b} \times \overline{c} \quad \overline{c} \times \overline{a} \quad \overline{a} \times \overline{b}\right] = [\overline{a} \ \overline{b} \ \overline{c}]^2$.

Sol.
$$\left[\overline{b} \times \overline{c} \quad \overline{c} \times \overline{a} \quad \overline{a} \times \overline{b}\right]$$

= $(\overline{b} \times \overline{c}) \cdot \{(\overline{c} \times \overline{a}) \times (\overline{a} \times \overline{b})\}$
= $(\overline{b} \times \overline{c}) \cdot \{[\overline{c} \ \overline{a} \ \overline{b}]\overline{a} - [\overline{a} \ \overline{a} \ \overline{b}]\overline{c}\}$
= $(\overline{b} \times \overline{c}) \cdot \overline{a}[\overline{c} \ \overline{a} \ \overline{b}] = [\overline{a} \ \overline{b} \ \overline{c}]^2$

55. For any four vectors $\overline{a}, \overline{b}, \overline{c}$ and \overline{d} , $(\overline{a} \times \overline{b}) \times (\overline{c} \times \overline{d}) = [\overline{a} \ \overline{c} \ \overline{d}]\overline{b} - [\overline{b} \ \overline{c} \ \overline{d}]\overline{a}$ and

 $(\overline{a} \times \overline{b}) \times (\overline{c} \times \overline{d}) = [\overline{a} \ \overline{b} \ \overline{d}]\overline{c} - [\overline{a} \ \overline{b} \ \overline{c}]\overline{d}$.

Sol. Let
$$m = c \times d$$

 $\therefore (\overline{a} \times \overline{b}) \times (\overline{c} \times \overline{d}) = (\overline{a} \times \overline{b}) \times m$ $= (\overline{a} \cdot m)\overline{b} - (\overline{b} \cdot m)\overline{a}$ $= (\overline{a} \cdot (\overline{c} \times \overline{d}))\overline{b} - (\overline{b} \cdot (\overline{c} \times \overline{d}))\overline{a}$ $= [\overline{a} \ \overline{c} \ \overline{d}]\overline{b} - [\overline{b} \ \overline{c} \ \overline{d}]\overline{a}$

Again, Let $\overline{a} \times \overline{b} = n$, then

$$(\overline{a} \times \overline{b}) \times (\overline{c} \times \overline{d}) = n \times (\overline{c} \times \overline{d})$$
$$= (n \cdot \overline{d})\overline{c} - (n \cdot \overline{c})\overline{d}$$
$$= ((\overline{a} \times \overline{b}) \cdot \overline{d})\overline{c} - ((\overline{a} \times \overline{b})\overline{c})\overline{d}$$
$$= [\overline{a} \ \overline{b} \ \overline{d}]\overline{c} - [\overline{a} \ \overline{b} \ \overline{c}]\overline{d}$$

56. The angle in semi circle is a right angle

Proof: Let APB be a semi circle with centre at O.

$$OA = OB = OP \text{ also } OB = -OA$$

$$\overrightarrow{AP.BP} = (\overrightarrow{OP} - \overrightarrow{OA}).(\overrightarrow{OP} - \overrightarrow{OA})$$

$$= (\overrightarrow{OP} - \overrightarrow{OA}).(\overrightarrow{OP} + \overrightarrow{OA}) \qquad \because \overrightarrow{OB} = -\overrightarrow{OA}$$

$$= (\overrightarrow{OP})^2 - (\overrightarrow{OA})^2 \qquad \left\{ \because (\vec{a} + \vec{b}0.(\vec{a} - \vec{b}) = (\vec{a})^2 - (\vec{b})^2 \right\}$$

$$= \left| \overrightarrow{OP} \right|^2 - \left| \overrightarrow{OA} \right|^2 = OP^2 - OP^2 = 0 \qquad \left\{ \because OA = OP \right\}$$

$$\overrightarrow{AP.BP} = 0 \qquad \therefore \overrightarrow{AP} \perp r \overrightarrow{PB} \text{ Hence } \angle APB = 90^0$$

Hence angle in semi –cricle is 90°

57. For any two vectors \vec{a} and \vec{b} prove that $(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2$

59. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are four vectors then $(\vec{a} \times \vec{b}).(\vec{c} \times \vec{d}) = \begin{vmatrix} \vec{a}.\vec{c} & \vec{a}.\vec{d} \\ \vec{b}.\vec{c} & \vec{b}.\vec{d} \end{vmatrix}$

Proof: $(\vec{a} \times \vec{b}).(\vec{c} \times \vec{d}) = \{(\vec{a} \times \vec{b}) \times \vec{c}\}.\vec{d} \in \{(\vec{a} \times \vec{b}) \times \vec{c}\}.\vec{d}\}$

$$= \begin{vmatrix} \vec{a} \cdot \vec{c} & \vec{a} \cdot \vec{d} \\ \vec{a} \cdot \vec{c} & \vec{a} \cdot \vec{d} \\ \vec{b} \cdot \vec{c} & \vec{b} \cdot \vec{d} \end{vmatrix}$$

60. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are four vectors then $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a} \vec{b} \vec{d}] \vec{c} - [\vec{a} \vec{b} \vec{c}] \vec{d}$ $= [\vec{a} \vec{c} \vec{d}] \vec{b} - [\vec{b} \vec{c} \vec{d}] \vec{a}$ Proof :- $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = (\vec{a} \times \vec{b} \cdot \vec{d}) \vec{c} - (\vec{a} \times \vec{b} \cdot \vec{c}) \vec{d} = [\vec{a} \vec{b} \vec{d}] \vec{c} - [\vec{a} \vec{b} \vec{c}] \vec{d}$ $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = (\vec{c} \times \vec{d} \cdot \vec{a}] \vec{b} - (\vec{c} \times \vec{d} \cdot \vec{b}] \vec{a}$ $= [\vec{a} \vec{c} \vec{d}] \vec{b} - (\vec{b} \vec{c} \vec{d}] \vec{a}$

LAQ'S

61. a, b, c and d are the position vectors of four coplanar points such that

(a - d).(b - c) = (b - d).(c - a) = 0 show that the point 'd' represents the orthocenter of the triangle with a, b and c as its vertices.

Sol.

Let O be the origin and

 $\overline{OA} = \overline{a}, \overline{OB} = \overline{b}, \overline{OC} = \overline{c}, \overline{OD} = \overline{d}$

Given that $(\overline{a} - \overline{d}) \cdot (\overline{b} - \overline{c}) = 0$

 $\Rightarrow (\overline{OA} - \overline{OD}) \cdot (\overline{OB} - \overline{OC}) = 0$

$$\Rightarrow \overline{\text{DA}} \cdot \overline{\text{CB}} = 0$$

 $\Rightarrow \overline{\text{DA}}$ perpendicular to $\overline{\text{CB}}$

D is an altitudes of $\triangle ABC$

Consider $(\overline{b} - \overline{d}) \cdot (\overline{c} - \overline{a}) = 0$

$$(\overline{OB} - \overline{OD}) \cdot (\overline{OC} - \overline{OA}) = 0$$

 $\overline{\text{DB}} \cdot \overline{\text{AC}} = 0$

 $\Rightarrow \overline{\text{DB}}$ perpendicular to $\overline{\text{AC}}$

 $\Rightarrow \overline{\text{DB}}$ is also an altitude of $\triangle \text{ABC}$

The altitudes \overline{DA} , \overline{DB} intersect at D.

 \Rightarrow D is the orthocenter of \triangle ABC.

62. Let $\overline{a} = 4\overline{i} + 5\overline{j} - \overline{k}$, $\overline{b} = \overline{i} - 4\overline{j} + 5\overline{k}$ and $\overline{c} = 3\overline{i} + \overline{j} - \overline{k}$. Find the vector which is perpendicular to both \overline{a} and \overline{b} whose magnitude is twenty one times the magnitude of \overline{c} .

Sol. Given that $\overline{a} = 4\overline{i} + 5\overline{j} - \overline{k}$, $\overline{b} = \overline{i} - 4\overline{j} + 5\overline{k}$ and $\overline{c} = 3\overline{i} + \overline{j} - \overline{k}$

$$|\overline{\mathbf{c}}| = \sqrt{9+1+1} = \sqrt{11}$$

The unit vector perpendicular to both \overline{a} and \overline{b} is $=\frac{\overline{a}\times\overline{b}}{|\overline{a}\times\overline{b}|}$

Now
$$\overline{\mathbf{a}} \times \overline{\mathbf{b}} = \begin{vmatrix} \overline{\mathbf{i}} & \overline{\mathbf{j}} & \overline{\mathbf{k}} \\ 4 & 5 & -1 \\ 1 & -4 & 5 \end{vmatrix}$$
$$= \overline{\mathbf{i}} (25 - 4) - \overline{\mathbf{j}} (20 + 1) + \overline{\mathbf{k}} (-16 - 5)$$
$$= 21\overline{\mathbf{i}} - 21\overline{\mathbf{j}} - 21\overline{\mathbf{k}}$$
$$= 21(\overline{\mathbf{i}} - \overline{\mathbf{j}} - \overline{\mathbf{k}})$$
$$|\overline{\mathbf{a}} \times \overline{\mathbf{b}}| = 21\sqrt{1 + 1 + 1} = 21\sqrt{3}$$

The vector perpendicular both \overline{a} and \overline{b} and having the magnitude 21 times

magnitude of \overline{c} is

$$=\pm \frac{21|\overline{c}|(\overline{a}\times\overline{b})}{|\overline{a}\times\overline{b}|}$$
$$=\pm \frac{21\sqrt{11}\times21(\overline{i}-\overline{j}-\overline{k})}{21\sqrt{3}}$$
$$=\frac{\pm21\sqrt{11}(\overline{i}-\overline{j}-\overline{k})}{\sqrt{3}}$$
$$=\frac{\pm7\cdot3\sqrt{11}(\overline{i}-\overline{j}-\overline{k})}{\sqrt{3}}$$
$$=\pm7\sqrt{3}\sqrt{11}(\overline{i}-\overline{j}-\overline{k})$$
$$=\pm7\sqrt{33}(\overline{i}-\overline{j}-\overline{k})$$

63. G is the centroid $\triangle ABC$ and a, b, c are the lengths of the sides BC, CA and AB respectively. Prove that $a^2 + b^2 + c^2 = 3(OA^2 + OB^2 + OC^2) - 9(OG)^2$ where O is any point.

Sol.

Given that BC = a, CA = b, AB = c

Let O be the origin

$$\overline{OA} + \overline{OB} + \overline{OC} = 3\overline{OG}$$

$$a^{2} = \overline{BC}^{2} = (\overline{OC} - \overline{OB})^{2}$$

$$= \overline{OC}^{2} + \overline{OB}^{2} - 2\overline{OC} \cdot \overline{OB}$$

$$b^{2} = \overline{CA}^{2} = (\overline{OA} - \overline{OC})^{2}$$

$$= \overline{OA}^{2} + \overline{OC}^{2} - 2\overline{OA} \cdot \overline{OC}$$

$$c^{2} = \overline{AB}^{2} = (\overline{OB} - \overline{OA})^{2}$$

$$= \overline{OB}^{2} + \overline{OA}^{2} - 2\overline{OB} \cdot \overline{OA}$$

Consider

$$a^{2} + b^{2} + c^{2} = 2\left[\overline{OA}^{2} + \overline{OB}^{2} + \overline{OC}^{2}\right] - 2\left[\overline{OA} \cdot \overline{OB} + \overline{OB} \cdot \overline{OC} + \overline{OC} \cdot \overline{OA}\right]...(1)$$

We have $\overline{OA} + \overline{OB} + \overline{OC} = 3\overline{OG}$

Squaring on both sides

$$\overline{OA}^{2} + \overline{OB}^{2} + \overline{OC}^{2} + 2\left[\overline{OA} \cdot \overline{OB} + \overline{OB} \cdot \overline{OC} + \overline{OC} \cdot \overline{OA}\right] = 9\overline{OG}^{2}$$
$$\Rightarrow -2(\overline{OA} \cdot \overline{OB} + \overline{OB} \cdot \overline{OC} + \overline{OC} \cdot \overline{OA})$$
$$= \overline{OA}^{2} + \overline{OB}^{2} + \overline{OC}^{2} - 9\overline{OG}^{2} \qquad ...(2)$$

Substituting in eq.(1), we get

$$a^{2} + b^{2} + c^{2} = 2\left[\overline{OA}^{2} + \overline{OB}^{2} + \overline{OC}^{2}\right] + \left[\overline{OA}^{2} + \overline{OB}^{2} + \overline{OC}^{2}\right] - 9\overline{OG}^{2}$$
$$a^{2} + b^{2} + c^{2} = 3\left[\overline{OA}^{2} + \overline{OB}^{2} + \overline{OC}^{2}\right] - 9\overline{OG}^{2}$$

64. A line makes angles $\theta_1,\,\theta_2,\,\theta_3$ and θ_4 with the diagonals of a cube. Show that

$$\cos^2\theta_1 + \cos^2\theta_2 + \cos^2\theta_3 + \cos^2\theta_4 = \frac{4}{3}.$$

Sol.

Let OAB'C, BC'PA' be a unit cube.

Let $\overline{OA} = \overline{i}, \overline{OB} = \overline{j}$ and $\overline{OC} = \overline{k}$

 \overline{OP} , AA', BB', CC' be its diagonals.

Let $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$ be a unit vector along a line L.

Which makes angles θ_1 , θ_2 , θ_3 and θ_4 with $\overrightarrow{AA'}$, $\overrightarrow{BB'}$, $\overrightarrow{CC'}$ and \overrightarrow{OP} .

$$\Rightarrow |\overline{r}| = \sqrt{x^{2} + y^{2} + z^{2}} = 1$$

We have $\overline{OB'} = \overline{OA} - \overline{OC} = \overline{i} + \overline{k}$
 $\overline{OP} = \overline{OB'} - \overline{B'P} = \overline{i} + \overline{k} + \overline{j} [\because \overline{B'O} = \overline{OB} = \overline{j}]$
 $= \overline{i} + \overline{j} + \overline{k}$
 $\overline{AA'} = \overline{OA'} - \overline{OA} = \overline{j} + \overline{k} - \overline{i} = -\overline{i} + \overline{j} + \overline{k}$
 $\overline{BB'} = \overline{OB'} - \overline{OB} = \overline{i} + \overline{k} - \overline{j} = \overline{i} - \overline{j} + \overline{k}$
 $\overline{CC'} = \overline{OC'} - \overline{OC} = \overline{i} + \overline{j} - \overline{k}$
Let $(\overline{r}, \overline{OP}) = \theta_{1}$
 $\cos \theta_{1} = \frac{\overline{r} \cdot \overline{OP}}{|\overline{r}|| \overline{OP}|} = \frac{(x\overline{i} + y\overline{j} + z\overline{k}) \cdot (\overline{i} + \overline{j} + \overline{k})}{1 \cdot \sqrt{1 + 1 + 1}}$
 $= \frac{x + y + z}{\sqrt{3}}$...(1)

Similarly $(\overline{\mathbf{r}}, \mathbf{A}\mathbf{A'}) = \mathbf{\theta}_2$

$$\Rightarrow \cos \theta_2 = \frac{\overline{r} \cdot \overline{AA'}}{|\overline{r}||\overline{AA'}|} = \frac{(x\overline{i} + y\overline{j} + z\overline{k}) \cdot (-\overline{i} + \overline{j} + \overline{k})}{1 \cdot \sqrt{1 + 1 + 1}}$$
$$= \frac{-x + y + z}{\sqrt{3}} \qquad \dots (2)$$

$$(\overline{\mathbf{r}}, \mathbf{B}\mathbf{B}') = \theta_{3}$$

$$\Rightarrow \cos \theta_{3} = \frac{\overline{\mathbf{r}} \cdot \overline{\mathbf{B}\mathbf{B}'}}{|\overline{\mathbf{r}}||\overline{\mathbf{B}\mathbf{B}'}|}$$

$$= \frac{(x\overline{\mathbf{i}} + y\overline{\mathbf{j}} + z\overline{\mathbf{k}}) \cdot (\overline{\mathbf{i}} - \overline{\mathbf{j}} + \overline{\mathbf{k}})}{1 \cdot \sqrt{1 + 1 + 1}}$$

$$= \frac{x - y + z}{\sqrt{3}} \qquad \dots (3)$$

$$(\overline{\mathbf{r}}, \overline{\mathbf{CC}'}) = \theta_{4}$$

$$\Rightarrow \cos \theta_{3} = \frac{\overline{\mathbf{r}} \cdot \overline{\mathbf{CC}'}}{|\overline{\mathbf{r}}||\overline{\mathbf{CC}'}|}$$

$$=\frac{(x\overline{i}+y\overline{j}+z\overline{k})\cdot(\overline{i}+\overline{j}-\overline{k})}{1\cdot\sqrt{1+1+1}}$$
$$=\frac{x+y-z}{\sqrt{3}} \qquad \dots (4)$$

$$\therefore \cos^{2} \theta_{1} + \cos^{2} \theta_{2} + \cos^{2} \theta_{3} + \cos^{2} \theta_{4}$$

$$= \left(\frac{x + y + z}{\sqrt{3}}\right)^{2} + \left(\frac{-x + y + z}{\sqrt{3}}\right)^{2} + \left(\frac{x - y + z}{\sqrt{3}}\right)^{2} + \left(\frac{x + y - z}{\sqrt{3}}\right)^{2}$$

$$(x + y + z)^{2} + (-x + y + z)^{2} = \frac{(x + y + z)^{2} + (x - y + z)^{2} + (x + y - z)^{2}}{3}$$

$$= \frac{2(x + y)^{2} + 2z^{2} + 2(x - y)^{2} + 2z^{2}}{3} = \frac{2\left[(x + y)^{2} + (x - y)^{2}\right] + 4z^{2}}{3}$$

$$= \frac{2\left[2x^{2} + 2y^{2}\right] + 4z^{2}}{3}$$

$$= \frac{4x^{2} + 4y^{2} + 4z^{2}}{3} = \frac{4}{3}\left[x^{2} + y^{2} + z^{2}\right] = \frac{4}{3}(1) = \frac{4}{3}$$

65. If $\overline{a} + \overline{b} + \overline{c} = 0$ then prove that $\overline{a} \times \overline{b} = \overline{b} \times \overline{c} = \overline{c} \times \overline{a}$.

Sol. Given $\overline{a} + \overline{b} + \overline{c} = 0$

$$\overline{a} + \overline{b} = -\overline{c}$$

$$(\overline{a} + \overline{b}) \times \overline{b} = -\overline{c} \times \overline{b}$$

$$\overline{a} \times \overline{b} + \overline{b} \times \overline{b} = \overline{b} \times \overline{c}$$

$$\overline{a} \times \overline{b} + 0 = \overline{b} \times \overline{c}$$

$$\overline{a} \times \overline{b} = \overline{b} \times \overline{c} \qquad \dots (1)$$

Given $\overline{a} + \overline{b} + \overline{c} = 0$ $\overline{a} + \overline{b} = -\overline{c}$ $(\overline{a} + \overline{b}) \times \overline{a} = -\overline{c} \times \overline{a}$ $\overline{a} \times \overline{a} + \overline{b} \times \overline{a} = -\overline{c} \times \overline{a}$ $0 - \overline{a} \times \overline{b} = -\overline{c} \times \overline{a}$ $\overline{a} \times \overline{b} = \overline{c} \times \overline{a}$...(2)

From (1) and (2)

$$\overline{a} \times \overline{b} = \overline{b} \times \overline{c} = \overline{c} \times \overline{a}$$

- 66. Let \overline{a} and \overline{b} be vectors, satisfying $|\overline{a}| = |\overline{b}| = 5$ and $(\overline{a}, \overline{b}) = 45^{\circ}$. Find the area of the triangle have $\overline{a} 2\overline{b}$ and $3\overline{a} + 2\overline{b}$ as two of its sides.
- **Sol.** Given \overline{a} and \overline{b} are two vectors.

 $|\overline{a}| = |\overline{b}| = 5$ and $(\overline{a}, \overline{b}) = 45^{\circ}$

 $\overline{c} = \overline{a} - 2\overline{b}$ and $\overline{d} = 3\overline{a} + 2\overline{b}$

The area of Δ le having \overline{c} and \overline{d} as adjacent sides is $\frac{|\overline{c} \times \overline{d}|}{2}$

$$|\overline{c} \times \overline{d}| = |(\overline{a} - 2\overline{b}) \times (3\overline{a} + 2\overline{b})|$$

= $|3(\overline{a} \times \overline{a}) + 2(\overline{a} \times \overline{b}) - 6(\overline{b} \times \overline{a}) - 4(\overline{b} \times \overline{b})|$
= $|3(0) + 2(\overline{a} \times \overline{b}) + 6(\overline{a} \times \overline{b}) - 4(0)|$
= $|8(\overline{a} \times \overline{b})|$
= $8|\overline{a} \times \overline{b}|$
= $8|\overline{a} \times \overline{b}|$
= $8|\overline{a} \times \overline{b}|$
= $8|\overline{a} \times \overline{b}|$
= $8\cdot 5\cdot 5\sin 45^{\circ}$
= $200 \cdot \frac{1}{\sqrt{2}} = 100\sqrt{2}$
 $\therefore \operatorname{Area} = \frac{|\overline{c} \times \overline{d}|}{2} = \frac{100\sqrt{2}}{2} = 50\sqrt{2} \operatorname{sq.units.}$

67. Find a unit vector perpendicular to the plane determined by the points

P(1, -1, 2), Q(2, 0, -1) and R(0, 2, 1).

Sol. Let O be the origin and

$$\overline{OP} = \overline{i} - \overline{j} + 2\overline{k}, \overline{OQ} = 2\overline{i} - \overline{k}, \overline{OR} = 2\overline{j} + \overline{k}$$

$$\overline{PQ} = \overline{OQ} - \overline{OP} = \overline{i} - 2\overline{k}$$

$$\overline{PR} = \overline{OR} - \overline{OP} = -\overline{i} + 3\overline{j} - \overline{k}$$

$$\overline{PQ} \times \overline{PR} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & 0 & -2 \\ -1 & 3 & -1 \end{vmatrix}$$

$$= \overline{i}(0+6) - \overline{j}(-1-2) + \overline{k}(3-0)$$

$$\overline{PQ} \times \overline{PR} = 6\overline{i} + 3\overline{j} + 3\overline{k}$$

$$|\overline{PQ} \times \overline{PR}| = 3\sqrt{4+1+1} = 3\sqrt{6}$$

: The unit vector perpendicular to the plane passing through

P, Q and R is
$$=\pm \frac{\overline{PQ} \times \overline{PR}}{|\overline{PQ} \times \overline{PR}|}$$

 $=\pm \frac{3(2\overline{i} + \overline{j} + \overline{k})}{3\sqrt{6}} = \pm \frac{2\overline{i} + \overline{j} + \overline{k}}{\sqrt{6}}$

68. If $\overline{a}, \overline{b}$ and \overline{c} represent the vertices A, B and C respectively of $\triangle ABC$, then

prove that $|(\overline{a} \times \overline{b}) + (\overline{b} + \overline{c}) + (\overline{c} \times \overline{a})|$ is twice the area of $\triangle ABC$.

Sol.

Let O be the origin,

 $\overline{OA} = \overline{a}, \overline{OB} = \overline{b}, \overline{OC} = \overline{c}$

Area of
$$\triangle ABC$$
 is $\Delta = \frac{1}{2} |(\overline{AB} \times \overline{AC})|$

$$= \frac{1}{2} |(\overline{OB} - \overline{OA}) \times (\overline{OC} - \overline{OA})|$$
$$= \frac{1}{2} |(\overline{b} - \overline{a}) \times (\overline{c} - \overline{a})|$$
$$= \frac{1}{2} |\overline{b} \times \overline{c} - \overline{b} \times \overline{a} - \overline{a} \times \overline{c} + \overline{a} \times \overline{a}|$$
$$= \frac{1}{2} |\overline{b} \times \overline{c} + \overline{a} \times \overline{b} + \overline{c} \times \overline{a} + \overline{0}|$$
$$= \frac{1}{2} |\overline{b} \times \overline{c} + \overline{a} \times \overline{b} + \overline{c} \times \overline{a}|$$

 $2\Delta = \left|\overline{a} \times \overline{b} + \overline{b} \times \overline{c} + \overline{c} \times \overline{a}\right|$. Hence proved.

69. If $\overline{a} = 4\overline{i} - 2\overline{j} + 3\overline{k}$, $\overline{b} = 2\overline{i} + 8\overline{k}$ and $\overline{c} = \overline{i} + \overline{j} + \overline{k}$ then $\overline{a} \times \overline{b}, \overline{a} \times \overline{c}$ and $\overline{a} \times (\overline{b} + \overline{c})$.

Verify whether the cross product is distributive over vector addition.

Sol. Given

$$\overline{\mathbf{a}} = 4\overline{\mathbf{i}} - 2\overline{\mathbf{j}} + 3\overline{\mathbf{k}}, \ \overline{\mathbf{b}} = 2\overline{\mathbf{i}} + 8\overline{\mathbf{k}}, \ \overline{\mathbf{c}} = \overline{\mathbf{i}} + \overline{\mathbf{j}} + \overline{\mathbf{k}}$$

$$\overline{\mathbf{a}} \times \overline{\mathbf{b}} = \begin{vmatrix} \overline{\mathbf{i}} & \overline{\mathbf{j}} & \overline{\mathbf{k}} \\ 7 & -2 & 3 \\ 2 & 0 & 8 \end{vmatrix}$$

$$= \overline{\mathbf{i}} (-16 - 0) - \overline{\mathbf{j}} (56 - 6) + \overline{\mathbf{k}} (0 + 4)$$

$$\overline{\mathbf{a}} \times \overline{\mathbf{b}} = -16\overline{\mathbf{i}} - 50\overline{\mathbf{j}} + 4\overline{\mathbf{k}}$$

$$\overline{\mathbf{a}} \times \overline{\mathbf{c}} = \begin{vmatrix} \overline{\mathbf{i}} & \overline{\mathbf{j}} & \overline{\mathbf{k}} \\ 7 & -2 & 3 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= \overline{\mathbf{i}} (-2 - 3) - \overline{\mathbf{j}} (7 - 3) + \overline{\mathbf{k}} (7 + 2)$$

$$\overline{\mathbf{a}} \times \overline{\mathbf{c}} = -4\overline{\mathbf{i}} - 4\overline{\mathbf{j}} + 9\overline{\mathbf{k}}$$

$$\overline{\mathbf{a}} \times (\overline{\mathbf{b}} + \overline{\mathbf{c}}) = \begin{vmatrix} \overline{\mathbf{i}} & \overline{\mathbf{j}} & \overline{\mathbf{k}} \\ 7 & -2 & 3 \\ 3 & 1 & 9 \end{vmatrix}$$

$$= \overline{\mathbf{i}} (-18 - 3) - \overline{\mathbf{j}} (63 - 9) + \overline{\mathbf{k}} (7 + 6)$$

$$\therefore \overline{\mathbf{a}} \times (\overline{\mathbf{b}} + \overline{\mathbf{c}}) = -21\overline{\mathbf{i}} - 54\overline{\mathbf{j}} + 13\overline{\mathbf{k}}$$

$$\overline{\mathbf{a}} \times \overline{\mathbf{b}} + \overline{\mathbf{a}} \times \overline{\mathbf{c}} = -21\overline{\mathbf{i}} - 54\overline{\mathbf{j}} + 13\overline{\mathbf{k}}$$

70. If $\overline{a} = \overline{i} + \overline{j} + \overline{k}$, $\overline{c} = \overline{j} - \overline{k}$, then find vector b such that $\overline{a} \times \overline{b} = \overline{c}$ and $\overline{a} \cdot \overline{b} = 3$. Sol.

$$\vec{c} \rightarrow \vec{c} \rightarrow \vec{c}$$
Let $\vec{b} = x\vec{i} + y\vec{j} + z\vec{k}$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix} = \vec{i} (z - y) - \vec{j} (z - x) + \vec{k} (y - x) = \vec{c} (given)$$

$$\vec{a} \times \vec{b} = \vec{c}$$

$$\Rightarrow \vec{i} (z - y) - \vec{j} (z - x) + \vec{k} (y - x) = \vec{j} - \vec{k}$$

$$z - y = 0 \qquad ...(1)$$

$$x - z = 1 \qquad ...(2)$$

$$y - x = -1 \Rightarrow x - y = 1 \qquad ...(3)$$

$$\vec{a} \cdot \vec{b} = 3$$

$$(\vec{i} + \vec{j} + \vec{k}) \cdot (x\vec{i} + y\vec{j} + z\vec{k}) = 3$$

$$x + y + z = 3 \qquad ...(4)$$
Put $y = z \text{ in } (4)$

$$x + z + z = 3$$

$$x + 2z = 3 \qquad ...(5)$$
From (2) and (5)

$$x + 2y = 3$$

$$x - z = 1$$

$$3z = 2 \Rightarrow z = \frac{2}{3} \Rightarrow y = \frac{2}{3}$$
Now, we have

$$x + y + z = 3$$

$$x + \frac{2}{3} + \frac{2}{3} = 3$$

$$x + \frac{4}{3} = 3$$

$$x = 3 - \frac{4}{3} = \frac{5}{3}$$

$$\therefore \overline{b} = \frac{5}{3}\overline{i} + \frac{2}{3}\overline{j} + \frac{2}{3}\overline{k} = \frac{1}{3}\left[5\overline{i} + 2\overline{j} + 2\overline{k}\right]$$

71. $\overline{a}, \overline{b}, \overline{c}$ are three vectors of equal magnitudes and each of them is inclined at an angle of 60° to the others. If $|\overline{a} + \overline{b} + \overline{c}| = \sqrt{6}$, then find $|\overline{a}|$.

Sol.
$$|\overline{a} + \overline{b} + \overline{c}| = \sqrt{6}$$

 $\Rightarrow |\overline{a} + \overline{b} + \overline{c}|^2 = 6$
 $\Rightarrow \overline{a}^2 + \overline{b}^2 + \overline{c}^2 + 2\overline{a}\overline{b} + 2\overline{b}\overline{c} + 2\overline{c}\overline{a} = 6$
Let $|\overline{a}| = |\overline{b}| = |\overline{c}| = a$
 $\Rightarrow a^2 + a^2 + a^2 + 2a^2 \cos(\overline{a}, \overline{b}) + 2a^2 \cos(\overline{b}, \overline{c}) + 2a^2 \cos(\overline{c}, \overline{a}) = 6$
 $\Rightarrow 3a^2 + 2a^2 \cos 60^\circ + 2a^2 \cos 60^\circ + 2a^2 \cos 60^\circ = 6$
 $\Rightarrow 3a^2 + 6a^2 \cos 60^\circ = 6$
 $\Rightarrow 3a^2 + 6a^2 \times \frac{1}{2} = 6$
 $\Rightarrow 3a^2 + 3a^2 = 6$
 $\Rightarrow 6a^2 = 6$
 $\Rightarrow a^2 = 1 \Rightarrow a = 1 \Rightarrow |\overline{a}| = 1$

72. $\overline{a} = 3\overline{i} - \overline{j} + 2\overline{k}$, $\overline{b} = -\overline{i} + 3\overline{j} + 2\overline{k}$, $\overline{c} = 4\overline{i} + 5\overline{j} - 2\overline{k}$ and $\overline{d} = \overline{i} + 3\overline{j} + 5\overline{k}$, then compute the

following.

i)
$$(\overline{a} \times \overline{b}) \times (\overline{c} \times \overline{d})$$

ii) $(\overline{a} \times \overline{b}) \cdot \overline{c} - (\overline{a} \times \overline{d}) \cdot \overline{b}$
Sol. i) $\overline{a} \times \overline{b} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 3 & -1 & 2 \\ -1 & 3 & 2 \end{vmatrix}$
 $= \overline{i}(-2-6) - \overline{j}(6+2) + \overline{k}(9-1)$
 $\overline{a} \times \overline{b} = -8\overline{i} - 8\overline{j} + 8\overline{k}$

$$\vec{c} \times \vec{d} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 4 & 5 & -2 \\ 1 & 3 & 5 \end{vmatrix}$$

= $\vec{i}(25+6) - \vec{j}(20+2) + \vec{k}(12-5)$
= $31\vec{i} - 22\vec{j} + 7\vec{k}$
 $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -8 & -8 & 8 \\ 31 & -22 & 7 \end{vmatrix}$
= $\vec{i}(-56+176) - \vec{j}(-56-248) + \vec{k}(176+248)$
 $\therefore (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = 120\vec{i} + 304\vec{j} + 424\vec{k}$
ii) $(\vec{a} \times \vec{b}) \cdot \vec{c} = (-8\vec{i} - 8\vec{j} + 8\vec{k}) \cdot (3\vec{i} - \vec{j} + 2\vec{k})$
= $-24+8+16$
 $(\vec{a} \times \vec{b}) \cdot \vec{c} = 0$
 $\vec{a} \times \vec{d} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & -1 & 2 \\ 1 & 3 & 5 \end{vmatrix}$
= $\vec{i}(-5-6) - \vec{j}(15-2) + \vec{k}(9+1)$
= $-11\vec{i} - 13\vec{j} + 10\vec{k}$
 $(\vec{a} \times \vec{d}) \cdot \vec{b}(-11\vec{l} - 13\vec{j} + 10\vec{k}) \cdot (-\vec{i} + 3\vec{j} + 2\vec{k})$
= $11-39+20 = -8$
 $\therefore (\vec{a} \times \vec{b}) \cdot \vec{c} - (\vec{a} \times \vec{d}) \cdot \vec{b} = 0 - (-8)$
= $0+8=8$

73. If $\overline{a}, \overline{b}$ and \overline{c} are mutually perpendicular unit vectors then find the value of

 $\left[\overline{a}\ \overline{b}\ \overline{c}\right]^2.$

Sol. Case (i) : Let $\overline{a}, \overline{b}, \overline{c}$ form a right hand system

$$\Rightarrow \overline{\mathbf{b}} \times \overline{\mathbf{c}} = \overline{\mathbf{a}}$$
$$\Rightarrow \left[\overline{\mathbf{a}} \ \overline{\mathbf{b}} \ \overline{\mathbf{c}}\right] = \overline{\mathbf{a}} \cdot (\overline{\mathbf{b}} \times \overline{\mathbf{c}}) = \overline{\mathbf{a}} \cdot \overline{\mathbf{a}} = |\overline{\mathbf{a}}|^2 = 1$$
$$\therefore \left[\overline{\mathbf{a}} \ \overline{\mathbf{b}} \ \overline{\mathbf{c}}\right]^2 = 1$$

Case (ii) : Let $\overline{a}, \overline{b}, \overline{c}$ form a left hand system

$$\Rightarrow (\overline{\mathbf{b}} \times \overline{\mathbf{c}}) = -\overline{\mathbf{a}}$$
$$\Rightarrow \left[\overline{\mathbf{a}} \ \overline{\mathbf{b}} \ \overline{\mathbf{c}}\right] = \overline{\mathbf{a}} \cdot (\overline{\mathbf{b}} \times \overline{\mathbf{c}})$$
$$= -(\overline{\mathbf{a}} \cdot \overline{\mathbf{a}}) = -|\overline{\mathbf{a}}|^2 = -1$$
$$\therefore \left[\overline{\mathbf{a}} \ \overline{\mathbf{b}} \ \overline{\mathbf{c}}\right]^2 = 1$$

- \therefore In both cases we have $\left[\overline{a} \ \overline{b} \ \overline{c}\right]^2 = 1$.
- 74. If $\overline{a}, \overline{b}$ and \overline{c} are non-zero vectors and a is perpendicular to both b and c. If

$$|\overline{a}|=2, |\overline{b}|=3, |\overline{c}|=4$$
 and $(\overline{b}, \overline{c})=\frac{2\pi}{3}$, then find $\left[[\overline{a} \ \overline{b} \ \overline{c}]\right]$.

Sol. If \overline{a} is perpendicular to \overline{b} and \overline{c} .

$$\Rightarrow \overline{a} \text{ is parallel to } \overline{b} \times \overline{c}$$

$$\Rightarrow \left[\overline{a}, \overline{b} \times \overline{c}\right] = 0$$

$$\Rightarrow \overline{b} \times \overline{c} = |\overline{b}|| \overline{c} |\sin(\overline{b}, \overline{c}) \hat{a}$$

$$\Rightarrow |\overline{b} \times \overline{c}| = 3 \times 4 \sin \frac{2\pi}{3} \hat{a}$$

$$\Rightarrow |\overline{b} \times \overline{c}| = 12 \sin 120.1 = 12 \times \frac{\sqrt{3}}{2} = 6\sqrt{3}$$

$$\therefore \left[|\overline{a} \ \overline{b} \ \overline{c}|\right] = |\overline{a} \cdot (\overline{b} \times \overline{c})| = |\overline{a}|| \overline{b} \times \overline{c} |\cos(\overline{a} \ \overline{b} \ \overline{c})|$$

$$= (2 \cdot 6\sqrt{3}) \cos 0 = 12\sqrt{3}$$

$$\therefore |\overline{a} \cdot \overline{b} \times \overline{c}| = (2 \cdot 6\sqrt{3}) = 12\sqrt{3}$$

- **75.** If $\begin{bmatrix} \overline{b} & \overline{c} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{c} & \overline{a} & \overline{d} \end{bmatrix} + \begin{bmatrix} \overline{a} & \overline{b} & \overline{d} \end{bmatrix} = \begin{bmatrix} \overline{a} & \overline{b} & \overline{c} \end{bmatrix}$ then show that $\overline{a}, \overline{b}, \overline{c}, \overline{d}$ are coplanar.
- Sol. Let O be the origin, then

 $\overline{OA} = \overline{a}, \overline{OB} = \overline{b}, \overline{OC} = \overline{c}, \overline{OD} = \overline{d}$ are position vectors.

Then $\overline{AB} = \overline{b} - \overline{a}$, $\overline{AC} = \overline{c} - \overline{a}$ and $\overline{AD} = \overline{d} - \overline{a}$

The vectors \overline{AB} , \overline{AC} , \overline{AD} are coplanar.

$$\therefore \left[\overline{AB} \ \overline{AC} \ \overline{AD} \right] = 0$$

$$\Rightarrow \left[\overline{b} - \overline{a} \quad \overline{c} - \overline{a} \quad \overline{d} - \overline{a} \right] = 0$$

$$\Rightarrow \left(\overline{b} - \overline{a} \right) \times \left(\overline{c} - \overline{a} \right) \cdot \left(\overline{d} - \overline{a} \right) = 0$$

$$\Rightarrow \left(\overline{b} \times \overline{c} - \overline{b} \times \overline{a} - \overline{a} \times \overline{c} + \overline{a} \times \overline{a} \right) \cdot \left(\overline{d} - \overline{a} \right) = 0$$

$$\Rightarrow \left(\overline{b} \times \overline{c} + \overline{a} \times \overline{b} + \overline{c} \times \overline{a} \right) \cdot \left(\overline{d} - \overline{a} \right) = 0$$

$$(\because \overline{a} \times \overline{a} = 0)$$

$$\Rightarrow \left(\overline{b} \times \overline{c} \right) \cdot \overline{d} + \left(\overline{a} \times \overline{b} \right) \cdot \overline{d} + \left(\overline{c} \times \overline{a} \right) \cdot \overline{d} - \left(\overline{b} \times \overline{c} \right) \cdot \overline{a} - \left(\overline{a} \times \overline{b} \right) \cdot \overline{a} - \left(\overline{c} \times \overline{a} \right) \cdot \overline{a} = 0$$

$$\Rightarrow \left(\overline{b} \times \overline{c} \right) \cdot \overline{d} + \left(\overline{a} \times \overline{b} \right) \cdot \overline{d} + \left(\overline{c} \times \overline{a} \right) \cdot \overline{d} - \left(\overline{b} \times \overline{c} \right) \cdot \overline{a} = 0$$

$$\Rightarrow \left(\overline{b} \times \overline{c} \right) \cdot \overline{d} + \left(\overline{a} \times \overline{b} \right) \cdot \overline{d} + \left(\overline{c} \times \overline{a} \right) \cdot \overline{d} - \left(\overline{b} \times \overline{c} \right) \cdot \overline{a} = 0$$

$$\Rightarrow \left(\overline{b} \times \overline{c} \right) \cdot \overline{d} + \left(\overline{a} \times \overline{b} \right) \cdot \overline{d} + \left(\overline{c} \times \overline{a} \right) \cdot \overline{d} - \left(\overline{b} \times \overline{c} \right) \cdot \overline{a} = 0$$

$$\Rightarrow \left[\overline{b} \quad \overline{c} \quad \overline{d} \right] + \left[\overline{a} \quad \overline{b} \quad \overline{d} \right] + \left[\overline{c} \quad \overline{a} \quad \overline{d} \right] = \left[\overline{a} \quad \overline{b} \quad \overline{c} \right]$$

- 76. If $\overline{a}, \overline{b}, \overline{c}$ non-coplanar vectors then prove that the four points with position vectors $2\overline{a}+3\overline{b}-\overline{c}, \overline{a}-2\overline{b}+3\overline{c}, 3\overline{a}+4\overline{b}-2\overline{c}$ and $\overline{a}-6\overline{b}+6\overline{c}$ are coplanar.
- Sol. Let A, B, C, D be the position vectors of given vectors.

Then
$$\overline{OA} = 2\overline{a} + 3\overline{b} - \overline{c}, \overline{OB} = \overline{a} - 2\overline{b} + 3\overline{c}$$

 $\overline{OC} = 3\overline{a} + 4\overline{b} - 2\overline{c}, \overline{OD} = \overline{a} - 6\overline{b} + 6\overline{c}$
 $\overline{AB} = \overline{OB} - \overline{OA} = -\overline{a} - 5\overline{b} + 4\overline{c}$
 $\overline{AC} = \overline{OC} - \overline{OA} = \overline{a} + \overline{b} - \overline{c}$
 $\overline{AD} = \overline{OD} - \overline{OA} = -\overline{a} - 9\overline{b} + 7\overline{c}$
Let $\overline{AB} = x\overline{AC} + y\overline{AD}$ where x, y are scalars.
 $-\overline{a} - 5\overline{b} + 4\overline{c} = x(\overline{a} + \overline{b} - \overline{c}) + y(-\overline{a} - 9\overline{b} + 7\overline{c})$
 $-\overline{a} - 5\overline{b} + 4\overline{c} = (x - y)\overline{a} + (x - 9y)\overline{b} + (-x + 7y)\overline{c}$

Comparing $\overline{a}, \overline{b}, \overline{c}$ coefficients on both sides

$$x - y = -1$$
 ...(1)
 $x - 9y = -5$...(2)
 $-x + 7y = 4$...(3)
(1) - (2) $\Rightarrow 8y = 4 \Rightarrow y = \frac{1}{2}$
From (1) : $x = -\frac{1}{2}$

$$\Rightarrow \frac{1}{2} + \frac{7}{2} = 4 \Rightarrow \frac{8}{2} = 4 \Rightarrow 4 = 4$$

- : Given vectors are coplanar.
- 77. Show that the equation of the plane passing through the points with

position vectors $3\overline{i} - 5\overline{j} - \overline{k}$, $-\overline{i} + 5\overline{j} + 7\overline{k}$ and parallel to the vector $3\overline{i} - \overline{j} + 7\overline{k}$ is

 $3\mathbf{x} + 2\mathbf{y} - \mathbf{z} = \mathbf{0}.$

Sol. Let
$$\overline{OA} = 3\overline{i} - 5\overline{j} - \overline{k}$$
, $\overline{OB} = -\overline{i} + 5\overline{j} + 7\overline{k}$

$$\overline{\text{OC}} = 3\overline{i} - \overline{j} + 7\overline{k}$$

Let $P(x\overline{i} + y\overline{j} + z\overline{k})$ be any point on the plane with position vector.

Such that
$$\overline{OP} = x\overline{i} + y\overline{j} + z\overline{k}$$

 $\overline{AP} = \overline{OP} - \overline{OA} = x\overline{i} + y\overline{j} + z\overline{k} - 3\overline{i} + 5\overline{j} + \overline{k}$
 $= (x-3)\overline{i} + (y+5)\overline{j} + (z+1)\overline{k}$
 $\overline{AB} = \overline{OB} - \overline{OA} = -\overline{i} + 5\overline{j} + 7\overline{k} - 3\overline{i} + 5\overline{j} + \overline{k}$. The vector equation of the plane passing
 $= -4\overline{i} + 10\overline{j} + 8\overline{k}$
 $\overline{C} = 3\overline{i} - \overline{j} + 7\overline{k}$

through A, B and parallel to \overline{C} is :

$$\begin{bmatrix} \overline{AP} \ \overline{AB} \ \overline{C} \end{bmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} x-3 & y+5 & z+1 \\ -4 & 10 & 8 \\ 3 & -1 & 7 \end{vmatrix} = 0$$

$$\Rightarrow (x-3)[70+8] - (y+5)[-28-24] + (z+1)[4-30] = 0$$

$$\Rightarrow (x-3)78 + (y+5)52 + (z+1)(-26) = 0$$

$$\Rightarrow 26[(x+1)3 + (y+5)2 + (z+1)(-1)] = 0$$

$$\Rightarrow 3x - 9 + 2y + 10 - z - 1 = 0$$

$$\Rightarrow 3x + 2y - z = 0$$

- 78. Find the vector equation of the plane passing through the intersection of planes $\overline{r} \cdot (2\overline{i} + 2\overline{j} 3\overline{k}) = 7$, $\overline{r} \cdot (2\overline{i} + 5\overline{j} + 3\overline{k}) = 9$ and through the point (2, 1, 3).
- Sol. Cartesian form the given planes is

2x + 2y - 3z = 7 ...(1) and 2x + 5y + 3z = 9 ...(2)

Equation of the required plane will be in the form

$$(2x + 2y - 3z - 7) + \lambda(2x + 5y + 3z - 9) = 0$$

Since it is passing through the point (2,1,3)

$$[2(2) + 2(1) - 3(3) - 7] + \lambda[2(2) + 5(1) + 3(3) - 9] = 0$$

$$(4+2-9-7) + \lambda(4+5+9-9) = 0$$

 $-10 + 9\lambda = 0$

$$9\lambda = 10 \Rightarrow \lambda = \frac{10}{9}$$

Required plane is :

$$(2x + 2y - 3z - 7) + \frac{10}{9}(2x + 5y + 3z - 9) = 0$$

$$18x + 18y - 27z - 63 + 20x + 50y + 30z - 90 = 0$$

$$38x + 68y + 3z - 153 = 0$$

Its vector form is

$$\overline{r} \cdot (38\overline{i} + 68\overline{j} + 3\overline{k}) = 153.$$

79. Find the shortest distance between the lines $\overline{r} = 6\overline{i} + 2\overline{j} + 2\overline{k} + \lambda(\overline{i} - 2\overline{j} + 2\overline{k})$ and

$$\overline{\mathbf{r}} = -4\overline{\mathbf{i}} - \overline{\mathbf{k}} + \mu(3\overline{\mathbf{i}} - 2\overline{\mathbf{j}} - 2\overline{\mathbf{k}})$$
.

Sol. Given lines are

$$\overline{\mathbf{r}} = 6\overline{\mathbf{i}} + 2\overline{\mathbf{j}} + 2\overline{\mathbf{k}} + \lambda(\overline{\mathbf{i}} - 2\overline{\mathbf{j}} + 2\overline{\mathbf{k}})$$

$$\overline{\mathbf{r}} = -4\overline{\mathbf{i}} - \overline{\mathbf{k}} + \mu(3\overline{\mathbf{i}} - 2\overline{\mathbf{j}} - 2\overline{\mathbf{k}})$$
Let $\overline{\mathbf{a}} = 6\overline{\mathbf{i}} + 2\overline{\mathbf{j}} + 2\overline{\mathbf{k}}, \overline{\mathbf{b}} = \overline{\mathbf{i}} - 2\overline{\mathbf{j}} + 2\overline{\mathbf{k}}$

$$\overline{\mathbf{c}} = -4\overline{\mathbf{i}} - \overline{\mathbf{k}}, \overline{\mathbf{d}} = 3\overline{\mathbf{i}} - 2\overline{\mathbf{j}} - 2\overline{\mathbf{k}}$$

Shortest distance between the given lines is

$$\frac{\left|\left[\overline{a}-\overline{c}\ \overline{b}\ \overline{d}\right]\right|}{\left|\overline{b}\times\overline{d}\right|}$$

$$\overline{a}-\overline{c}=10\overline{i}+2\overline{j}+3\overline{k}$$

$$\left|\left[\overline{a}-\overline{c}\ \overline{b}\ \overline{d}\right]\right| = \begin{vmatrix}10 & 2 & 3\\ 1 & -2 & 2\\ 3 & -2 & -2\end{vmatrix}$$

$$=10(4+4)-2(-2-6)+3(-2+6)$$

$$=80+16+12=108$$

$$\left[\overline{b}\times\overline{d}\right] = \begin{vmatrix}\overline{i}\ \overline{j}\ \overline{k}\\ 1 & -2 & 2\\ 3 & -2 & -2\end{vmatrix}$$

$$=\overline{i}(4+4)-\overline{j}(-2-6)+\overline{k}(-2+6)$$

$$=8\overline{i}+8\overline{j}+4\overline{k}$$

$$\left|\overline{b}\times\overline{d}\right| = \sqrt{64+64+16} = \sqrt{144} = 12$$

$$\therefore \text{ Distance} = \frac{108}{12} = 9 \text{ units.}$$

80. If $\overline{a}, \overline{b}, \overline{c}$ are the position vectors of the points A, B and C respectively. Then prove that the vector $\overline{a} \times \overline{b} + \overline{b} \times \overline{c} + \overline{c} \times \overline{a}$ is perpendicular to the plane of ΔABC .

Sol. We have

$$\overline{AB} = \overline{b} - \overline{a}, \overline{BC} = \overline{c} - \overline{b} \text{ and } \overline{CA} = \overline{a} - \overline{c}$$
Let $\overline{r} = \overline{a} \times \overline{b} + \overline{b} \times \overline{c} + \overline{c} \times \overline{a}$
then $\overline{r} \cdot \overline{AB} = \overline{r} \cdot (\overline{b} - \overline{a})$

$$= (\overline{a} \times \overline{b} + \overline{b} \times \overline{c} + \overline{c} \times \overline{a}) \cdot (\overline{b} - \overline{a})$$

$$= \overline{a} \times \overline{b} \cdot \overline{b} - \overline{a} \times \overline{b} \cdot \overline{a} + \overline{b} \times \overline{c} \cdot \overline{b} - \overline{b} \times \overline{c} \cdot \overline{a} + \overline{c} \times \overline{a} \cdot \overline{b} - \overline{c} \times \overline{a} \cdot \overline{a}$$

$$= [\overline{a} \quad \overline{b} \quad \overline{b}] - [\overline{a} \quad \overline{b} \quad \overline{a}] + [\overline{b} \quad \overline{c} \quad \overline{b}] - [\overline{b} \quad \overline{c} \quad \overline{a}] + [\overline{c} \quad \overline{a} \quad \overline{b}] - [\overline{c} \quad \overline{a} \quad \overline{a}]$$

$$= -[\overline{b} \quad \overline{c} \quad \overline{a}] + [\overline{c} \quad \overline{a} \quad \overline{b}] (\because [\overline{a}\overline{b}\overline{b}] = 0)$$

$$= 0 (\because [\overline{c} \quad \overline{a} \quad \overline{b}] = [\overline{b} \quad \overline{c} \quad \overline{a}])$$

Thus \overline{r} is perpendicular to \overline{AB}

(:: neither of them is zero vector)

Similarly we can show that $\overline{r} \cdot \overline{BC} = 0$ and hence \overline{r} is also perpendicular to \overline{BC} . Since \overline{r} is perpendicular to two lines in the plane $\triangle ABC$, it is perpendicular to the plane $\triangle ABC$.

81. Show that
$$(\overline{a} \times (\overline{b} \times \overline{c})) \times \overline{c} = (\overline{a} \cdot \overline{c})(\overline{b} \times \overline{c})$$
 & $(\overline{a} \times \overline{b}) \cdot (\overline{a} \times \overline{c}) + (\overline{a} \cdot \overline{b})(\overline{a} \cdot \overline{c}) = (\overline{a} \cdot \overline{a})(\overline{b} \cdot \overline{c})$.

Sol.
$$[\overline{a} \times (\overline{b} \times \overline{c})] \times \overline{c} = [(\overline{a} \cdot \overline{c})\overline{b} - (\overline{a} \cdot \overline{b})\overline{c}] \times \overline{c}$$

 $= (\overline{a} \cdot \overline{c})(\overline{b} \times \overline{c}) = (\overline{a} \cdot \overline{b})(\overline{c} \times \overline{c})$ $= (\overline{a} \cdot \overline{c})(\overline{b} \times \overline{c}) - (\overline{a} \cdot \overline{b})(0)$

 $[\overline{a} \times (\overline{b} \times \overline{c})] \times \overline{c} = (\overline{a} \cdot \overline{c})(\overline{b} \times \overline{c})$ $(\overline{a} \times \overline{b}) \cdot (\overline{a} \times \overline{c}) + (\overline{a} \cdot \overline{b})(\overline{a} \cdot \overline{c}) = (\overline{a} \cdot \overline{b})(\overline{b} \cdot \overline{c})$

$$(\overline{a} \times \overline{b}) \cdot (\overline{a} \times \overline{c}) = \begin{vmatrix} \overline{a} \cdot \overline{a} & \overline{a} \cdot \overline{c} \\ \overline{b} \cdot \overline{a} & \overline{b} \cdot \overline{c} \end{vmatrix} = (\overline{a} \cdot \overline{a})(\overline{b} \cdot \overline{c}) - (\overline{a} \cdot \overline{c})(\overline{b} \cdot \overline{a})$$

L.H.S. = $(\overline{a} \times \overline{b}) \cdot (\overline{a} \times \overline{c}) + (\overline{a} \cdot \overline{b})(\overline{a} \cdot \overline{c})$ = $(\overline{a} \cdot \overline{a})(\overline{b} \cdot \overline{c}) - (\overline{a} \cdot \overline{c})(\overline{b} \cdot \overline{a}) + (\overline{a} \cdot \overline{b})(\overline{a} \cdot \overline{c})$ = $(\overline{a} \cdot \overline{a})(\overline{b} \cdot \overline{c}) = R.H.S.$

82. If A = (1, -2, -1), B = (4, 0, -3), C = (1, 2, -1) and D = (2, -4, -5) find the shortest distance between AB and CD.

Sol. Let O be the origin

Let $\overline{OA} = \overline{i} - 2\overline{j} - \overline{k}, \overline{OB} = 4\overline{i} - 3\overline{k}$

 $\overline{\text{OC}} = \overline{i} + 2\overline{j} - \overline{k}, \overline{\text{OD}} = 2\overline{i} - 4\overline{j} - 5\overline{k}$

The vector equation of a line passing through A, B is

$$\overline{\mathbf{r}} = (1-t)\overline{\mathbf{a}} + t\overline{\mathbf{b}}, t \in \mathbb{R}$$

$$= \overline{\mathbf{a}} + t(\overline{\mathbf{b}} - \overline{\mathbf{a}})$$

$$= \overline{\mathbf{i}} - 2\overline{\mathbf{j}} - \overline{\mathbf{k}} + t(4\overline{\mathbf{i}} - 3\overline{\mathbf{k}} - \overline{\mathbf{i}} + 2\overline{\mathbf{j}} + \overline{\mathbf{k}})$$

$$= \overline{\mathbf{i}} - 2\overline{\mathbf{j}} - \overline{\mathbf{k}} + t(3\overline{\mathbf{i}} + 2\overline{\mathbf{j}} - 2\overline{\mathbf{k}})$$

$$= \overline{\mathbf{a}} + t\overline{\mathbf{b}}$$
where $\overline{\mathbf{a}} = \overline{\mathbf{i}} - 2\overline{\mathbf{j}} - \overline{\mathbf{k}}, \overline{\mathbf{b}} = 3\overline{\mathbf{i}} + 2\overline{\mathbf{j}} - 2\overline{\mathbf{k}}$

The vector equation of a line passing through C, D is

$$\overline{\mathbf{r}} = (1-s)\overline{\mathbf{c}} + s\overline{\mathbf{d}}, s \in \mathbb{R}$$

$$\overline{\mathbf{r}} = \overline{\mathbf{c}} + s(\overline{\mathbf{d}} - \overline{\mathbf{c}})$$

$$= \overline{\mathbf{i}} + 2\overline{\mathbf{i}} - \overline{\mathbf{k}} + s[2\overline{\mathbf{i}} - 4\overline{\mathbf{j}} - 5\overline{\mathbf{k}} - \overline{\mathbf{i}} - 2\overline{\mathbf{j}} + \overline{\mathbf{k}}]$$

$$= \overline{\mathbf{i}} + 2\overline{\mathbf{j}} - \overline{\mathbf{k}} + s[\overline{\mathbf{i}} - 6\overline{\mathbf{j}} - 4\overline{\mathbf{k}}]$$

$$= \overline{\mathbf{c}} + s\overline{\mathbf{d}}$$
where $\overline{\mathbf{c}} = \overline{\mathbf{i}} + 2\overline{\mathbf{j}} - \overline{\mathbf{k}}, \overline{\mathbf{d}} = \overline{\mathbf{i}} - 6\overline{\mathbf{j}} - 4\overline{\mathbf{k}}$

$$\overline{\mathbf{b}} \times \overline{\mathbf{d}} = \begin{vmatrix} \overline{\mathbf{i}} & \overline{\mathbf{j}} & \overline{\mathbf{k}} \\ \mathbf{3} & 2 & -2 \\ \mathbf{i} & -6 & -4 \end{vmatrix}$$

$$= \overline{\mathbf{i}}[-8 - 12] - \overline{\mathbf{j}}[-12 + 2] + \overline{\mathbf{k}}[-18 - 2]$$

$$= -20\overline{\mathbf{i}} + 10\overline{\mathbf{j}} - 20\overline{\mathbf{k}} = 10[-2\overline{\mathbf{i}} + \overline{\mathbf{j}} - 2\overline{\mathbf{k}}]$$

$$|\overline{\mathbf{b}} \times \overline{\mathbf{d}}| = 10\sqrt{4 + 1 + 4} = 10 \cdot 3 = 30$$

$$\overline{\mathbf{a}} - \overline{\mathbf{c}} = \overline{\mathbf{i}} - 2\overline{\mathbf{j}} - \overline{\mathbf{k}} - \overline{\mathbf{i}} - 2\overline{\mathbf{j}} + \overline{\mathbf{k}} = -4\overline{\mathbf{j}}$$

$$|\overline{\mathbf{b}} \times \overline{\mathbf{d}}| = 10\sqrt{4 + 1 + 4} = 10 \cdot 3 = 30$$

$$\overline{\mathbf{a}} - \overline{\mathbf{c}} = \overline{\mathbf{i}} - 2\overline{\mathbf{j}} - \overline{\mathbf{k}} - \overline{\mathbf{i}} - 2\overline{\mathbf{j}} + \overline{\mathbf{k}} = -4\overline{\mathbf{j}}$$

$$|\overline{\mathbf{b}} \times \overline{\mathbf{d}}| = \frac{(\overline{\mathbf{a}} - \overline{\mathbf{c}}) \cdot (\overline{\mathbf{b}} \times \overline{\mathbf{d}})}{|\overline{\mathbf{b}} \times \overline{\mathbf{d}}|}$$

$$= \frac{-4\overline{\mathbf{j}} \cdot 10[-2\overline{\mathbf{i}} + \overline{\mathbf{j}} - 2\overline{\mathbf{k}}]}{30} = \frac{10[4]}{30} = \frac{40}{30} = \frac{4}{3}$$

$$\therefore$$
 The shortest distance between the lines = 4/3.

 \therefore The shortest distance between the lines = 4/3.

83. If
$$\overline{a} = 2\overline{i} + \overline{j} - 3\overline{k}$$
, $\overline{b} = \overline{i} - 2\overline{j} + \overline{k}$, $\overline{c} = -\overline{i} + \overline{j} - 4\overline{k}$ and $\overline{d} = \overline{i} + \overline{j} + \overline{k}$ then compute $|(\overline{a} \times \overline{b}) \times (\overline{c} \times \overline{d})|$.

Sol.
$$\overline{a} \times \overline{b} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2 & 1 & -3 \\ 1 & -2 & 1 \end{vmatrix}$$

 $= \overline{i}(1-6) - \overline{j}(2+3) + \overline{k}(-4-1)$
 $\overline{a} \times \overline{b} = -5\overline{i} - 5\overline{j} - 5\overline{k}$
 $\overline{c} \times \overline{d} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ -1 & 1 & -4 \\ 1 & 1 & 1 \end{vmatrix} = \overline{i}(1+4) - \overline{j}(-1+4) + \overline{k}(-1-1)$

$$\overline{\mathbf{c}} \times \mathbf{d} = 5\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}$$

$$(\overline{\mathbf{a}} \times \overline{\mathbf{b}}) \times (\overline{\mathbf{c}} \times \overline{\mathbf{d}}) = \begin{vmatrix} \overline{\mathbf{i}} & \overline{\mathbf{j}} & \overline{\mathbf{k}} \\ -5 & -5 & -5 \\ 5 & -3 & -2 \end{vmatrix} = \overline{\mathbf{i}} (10 - 15) - \overline{\mathbf{j}} (10 + 25) + \overline{\mathbf{k}} (15 + 25)$$

$$= -5\overline{\mathbf{i}} - 35\overline{\mathbf{j}} + 40\overline{\mathbf{k}}$$

$$(\overline{\mathbf{a}} \times \overline{\mathbf{b}}) \times (\overline{\mathbf{c}} \times \overline{\mathbf{d}}) = +5\left[-\overline{\mathbf{i}} - 7\overline{\mathbf{j}} + 8\overline{\mathbf{k}}\right]$$

$$|(\overline{\mathbf{a}} \times \overline{\mathbf{b}}) \times (\overline{\mathbf{c}} \times \overline{\mathbf{d}})| = +5\sqrt{1 + 49 + 64}$$

$$\therefore |(\overline{\mathbf{a}} \times \overline{\mathbf{b}}) \times (\overline{\mathbf{c}} \times \overline{\mathbf{d}})| = +5\sqrt{114}$$

84. If $\overline{A} = (1 \ \overline{a} \ \overline{a}^2)$, $\overline{B} = (1 \ \overline{b} \ \overline{b}^2)$ and $\overline{c} = (1 \ \overline{c} \ \overline{c}^2)$ are non-coplanar vectors and

 $\begin{vmatrix} \overline{a} & \overline{a}^2 & 1 + \overline{a}^3 \\ \overline{b} & \overline{b}^2 & 1 + \overline{b}^3 \\ \overline{c} & \overline{c}^2 & 1 + \overline{c}^3 \end{vmatrix} = 0$ then show that $(\overline{a} \ \overline{b} \ \overline{c} + 1) = 0$.

Sol. Given $\begin{vmatrix} \overline{a} & \overline{a}^2 & 1 + \overline{a}^3 \\ \overline{b} & \overline{b}^2 & 1 + \overline{b}^3 \\ \overline{c} & \overline{c}^2 & 1 + \overline{c}^3 \end{vmatrix} = 0$

 $\begin{vmatrix} \overline{a} & \overline{a}^2 & 1 \\ \overline{b} & \overline{b}^2 & 1 \\ \overline{c} & \overline{c}^2 & 1 \end{vmatrix} + \begin{vmatrix} \overline{a} & \overline{a}^2 & \overline{a}^3 \\ \overline{b} & \overline{b}^2 & \overline{b}^3 \\ \overline{c} & \overline{c}^2 & \overline{c}^3 \end{vmatrix} = 0$ \overline{a} \overline{a}^2 1 $1 \overline{a} \overline{a}^2$ $\Rightarrow \begin{vmatrix} \overline{\mathbf{b}} & \overline{\mathbf{b}}^2 & 1 \\ \overline{\mathbf{c}} & \overline{\mathbf{c}}^2 & 1 \end{vmatrix} + \overline{\mathbf{a}} \, \overline{\mathbf{b}} \, \overline{\mathbf{c}} \begin{vmatrix} 1 & \overline{\mathbf{b}} & \overline{\mathbf{b}}^2 \\ 1 & \overline{\mathbf{c}} & \overline{\mathbf{c}}^2 \end{vmatrix} = 0$ $\begin{array}{c|c} \overline{a}^2 & 1 \\ \overline{b}^2 & 1 \\ \overline{c}^2 & 1 \end{array} + \overline{a} \, \overline{b} \, \overline{c} \left| \begin{matrix} \overline{a} & 1 & \overline{a}^2 \\ \overline{b} & 1 & \overline{b}^2 \\ \overline{c} & 1 & \overline{c}^2 \end{matrix} \right| = 0$ a $\Rightarrow |\overline{b}|$ (-) $\left| \overline{c} \quad 1 \quad \overline{c}^2 \right|$ \overline{c} $\Rightarrow \begin{vmatrix} \overline{a} & \overline{a}^2 & 1 \\ \overline{b} & \overline{b}^2 & 1 \\ \overline{c} & \overline{c}^2 & 1 \end{vmatrix} + \overline{a} \overline{b} \overline{c} \begin{vmatrix} \overline{a} & \overline{a}^2 & 1 \\ \overline{b} & \overline{b}^2 & 1 \\ \overline{c} & \overline{c}^2 & 1 \end{vmatrix} = 0$ \overline{a}^2 1 \overline{a} $\Rightarrow \left| \overline{\mathbf{b}} \quad \overline{\mathbf{b}}^2 \quad 1 \right| (1 + \overline{\mathbf{a}} \, \overline{\mathbf{b}} \, \overline{\mathbf{c}}) = 0$ \overline{c}^2 1 $\overline{a} \overline{b} \overline{c} + 1 = 0$

 $(\because \overline{a} \ \overline{b} \ \overline{c} \ \text{are non-coplanar vectors})$ $\Rightarrow \overline{a}, \overline{b}, \overline{c} = -1$

85. If $\overline{a}, \overline{b}, \overline{c}$ are non-zero vectors $|(\overline{a} \times \overline{b})\overline{c}| = |\overline{a}||\overline{b}||\overline{c}| \Leftrightarrow \overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{c} = \overline{c} \cdot \overline{a} = 0$.

Sol. Given $\overline{a} \neq 0, \overline{b} \neq 0$ and $\overline{c} \neq 0$

 $|\overline{\mathbf{a}} \times \overline{\mathbf{b}} \cdot \overline{\mathbf{c}}| = |\overline{\mathbf{a}}| |\overline{\mathbf{b}}| |\overline{\mathbf{c}}|$ $\Rightarrow |\overline{\mathbf{a}} \times \overline{\mathbf{b}}| |\overline{\mathbf{c}}| \cos((\overline{\mathbf{a}} \times \overline{\mathbf{b}}) \cdot \overline{\mathbf{c}}) = |\overline{\mathbf{a}}| |\overline{\mathbf{b}}| |\overline{\mathbf{c}}|$ $\Rightarrow |\overline{\mathbf{a}}| |\overline{\mathbf{b}}| \sin(\overline{\mathbf{a}}, \overline{\mathbf{b}}) \cdot \cos(\overline{\mathbf{a}} \times \overline{\mathbf{b}} \cdot \overline{\mathbf{c}}) = |\overline{\mathbf{a}}| |\overline{\mathbf{b}}|$ $\Rightarrow \sin(\overline{\mathbf{a}}, \overline{\mathbf{b}}) \cdot \cos(\overline{\mathbf{a}} \times \overline{\mathbf{b}} \cdot \overline{\mathbf{c}}) = 1$ $\Rightarrow \sin(\overline{\mathbf{a}}, \overline{\mathbf{b}}) = 1 \text{ and } \cos(\overline{\mathbf{a}} \times \overline{\mathbf{b}} \cdot \overline{\mathbf{c}}) = 1$ $\Rightarrow \overline{\mathbf{a}} \cdot \overline{\mathbf{b}} = 90^{\circ} \text{ and } \overline{\mathbf{a}} \times \overline{\mathbf{b}} \cdot \overline{\mathbf{c}} = 0$ $\Rightarrow \overline{\mathbf{a}} \cdot \overline{\mathbf{b}} = 90^{\circ} \text{ and } \overline{\mathbf{a}} \times \overline{\mathbf{b}} \text{ parallel to } \overline{\mathbf{c}}$ $\overline{\mathbf{a}} \cdot \overline{\mathbf{b}} = 90^{\circ} \text{ and } \overline{\mathbf{a}}, \overline{\mathbf{b}} \text{ are perpendicular to } \overline{\mathbf{c}}$ $\Rightarrow \overline{\mathbf{a}} \cdot \overline{\mathbf{b}} = 0^{\circ} \text{ and } \overline{\mathbf{a}} \cdot \overline{\mathbf{c}} = \overline{\mathbf{b}} \cdot \overline{\mathbf{c}} = 0$ $\Rightarrow \overline{\mathbf{a}} \cdot \overline{\mathbf{b}} = \overline{\mathbf{b}} \cdot \overline{\mathbf{c}} = \overline{\mathbf{c}} \cdot \overline{\mathbf{a}} = 0$

86. If $|\overline{a}|=1, |\overline{b}|=1, |\overline{c}|=2$ and $\overline{a} \times (\overline{a} \times \overline{c}) + \overline{b} = 0$, then find the angle between \overline{a} and \overline{c} .

Sol. Given that $|\overline{a}| = 1$, $|\overline{b}| = 1$, $|\overline{c}| = 2$

Let $(\overline{a}, \overline{c}) = \theta$

Consider $\overline{a} \cdot \overline{c} = |\overline{a}| |\overline{c}| \cos \theta$

 $=(1)(2)\cos\theta$

```
= 2\cos\theta \qquad \dots (1)
```

Consider $\overline{a} \times (\overline{a} \times \overline{c}) + \overline{b} = 0$

 $(\overline{a} \cdot \overline{c})\overline{a} - (\overline{a} \cdot \overline{a})\overline{c} + \overline{b} = \overline{0}$

 $(2\cos\theta)\overline{a} - (1)\overline{c} + \overline{b} = 0$...(2)

 $(2\cos\theta)\overline{a} - \overline{c} = -\overline{b}$

Squaring on both sides

```
[(2\cos\theta)\overline{a} - \overline{c}]^2 = (-\overline{b})^2

\Rightarrow (4\cos^2\theta)(\overline{a})^2 + (\overline{c})^2 - 4\cos\theta(\overline{a}\cdot\overline{c}) = \overline{b}^2

\Rightarrow 4\cos^2\theta(1) + (2)^2 - 4\cos\theta(2\cos\theta) = 1

\Rightarrow 4\cos^2\theta + 4 - 8\cos^2\theta = 1

\Rightarrow 4 - 4\cos^2\theta = 1

\Rightarrow 4\cos^2\theta = 3
```

$$\Rightarrow \cos^2 \theta = \frac{3}{4} \Rightarrow \cos \theta = \pm \frac{\sqrt{3}}{2}$$

Case I :

If
$$\cos \theta = \frac{\sqrt{3}}{2} \Rightarrow \theta = \frac{\pi}{6}$$

 $\Rightarrow (\overline{a}, \overline{c}) = \frac{\pi}{6} = 30^{\circ}$

Case II :

If
$$\cos \theta = -\frac{\sqrt{3}}{2} \Rightarrow \theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6} = 150^{\circ}$$

 $\Rightarrow (\overline{a}, \overline{c}) = \frac{5\pi}{6} = 150^{\circ}$

87. Prove that the smaller angle θ between any tow diagonals of a cube is given by $\cos \theta = 1/3$.

- Sol. Without loss of generality we may assume that the cube is a unit cube.
 - \therefore Let $\overline{OA} = \overline{i}, \overline{OC} = \overline{j}$ and $\overline{OG} = \overline{k}$ be coterminus edges of the cube.

 \therefore Diagonal $\overline{OE} = \overline{i} + \overline{j} + \overline{k}$ and diagonal $\overline{BG} = -\overline{i} - \overline{j} + \overline{k}$.

Let θ be the smaller angle between the diagonals OE and BG.

Then
$$\cos \theta = \frac{|\overline{OE} \cdot \overline{BG}|}{|\overline{OE}||\overline{BG}|} = \frac{|-1-1+1|}{\sqrt{3\sqrt{3}}} = \frac{1}{3}$$

88. The altitudes of a triangle are concurrent

Proof: Let $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ and $\overrightarrow{OC} = \overrightarrow{c}$ be the position vectors of the vertices of a triangle ABC

Let the altitudes through A and B meet at p. let $\overrightarrow{OP} = \overrightarrow{r}$ now

 $\overrightarrow{AP}\perp^{r}\overrightarrow{BC} \Rightarrow \overrightarrow{AP}.\overrightarrow{BC} = 0$

$$(\vec{r} - \vec{a}).(\vec{c} - \vec{b}) = 0 \Rightarrow \vec{r}.(\vec{c} - \vec{b}) = \vec{a}.(\vec{c} - \vec{b}) \rightarrow (1)$$
Also $\vec{BP} \perp^r \vec{BC} \Rightarrow \vec{BP}.\vec{CA} = 0$

$$(\vec{r} - \vec{a}).(\vec{a} - \vec{c}) = 0 \Rightarrow \vec{r}.(\vec{a} - \vec{c}) = \vec{b}.(\vec{a} - \vec{c}) \rightarrow (2)$$

$$(1) + (2) \Rightarrow \vec{r}.(\vec{c} - \vec{b}) + \vec{r}(\vec{a} - \vec{c}) = \vec{a}.(\vec{c} - \vec{b}) + \vec{b}.(\vec{a} - \vec{c})$$

$$\vec{r}.(\vec{a} - \vec{b}) = \vec{c}.(\vec{b} - \vec{a})$$

$$\vec{r}.(\vec{b} - \vec{a}) - \vec{c}.(\vec{b} - \vec{a}) = 0$$

$$(\vec{r} - \vec{c}).(\vec{b} - \vec{a}) = 0$$

$$\vec{CP}.\vec{AB} = 0 \qquad \therefore \vec{CP} \perp^r \vec{AB}$$

$$\therefore$$
 Altitude through C also passes through

 \therefore Altitudes are concurrent

89. The perpendicular bisectors of sides of a triangle are concurrent.

Proof: Let A ,B, C be the vertices of a triangle with position vectors $\vec{a}, \vec{b}, \vec{c}$.

Let D, E, F be the mid points of BC, CA, AB respectively Let 'O' be point of intersection of perpendicular bisectors of BC and AC

$$\overrightarrow{OD} = \frac{\overrightarrow{b} + \overrightarrow{c}}{2} \qquad \overrightarrow{OE} = \frac{\overrightarrow{a} + \overrightarrow{c}}{2}$$
$$\overrightarrow{OD} \perp^{r} \overrightarrow{BC} \Rightarrow \overrightarrow{OD}.\overrightarrow{BC} = 0$$
$$\left(\frac{\overrightarrow{b} + \overrightarrow{c}}{2}\right).(\overrightarrow{c} - \overrightarrow{b}) = 0$$
$$(\overrightarrow{c})^{2} - (\overrightarrow{b})^{2} = 0 \rightarrow (1)$$
$$\overrightarrow{OE} = \frac{\overrightarrow{a} + \overrightarrow{c}}{2} \qquad \overrightarrow{AC} = \overrightarrow{c} - \overrightarrow{a}$$
$$\overrightarrow{OE} \perp^{r} \overrightarrow{CA} \Rightarrow \overrightarrow{OE}.\overrightarrow{CA} = 0$$
$$\left(\frac{\overrightarrow{a} + \overrightarrow{c}}{2}\right).(\overrightarrow{a} - \overrightarrow{c}) = 0$$
$$\Rightarrow (\overrightarrow{a})^{2} - (\overrightarrow{c})^{2} = 0 \rightarrow (2)$$

AOEBC

(1)+(2) we have $(\vec{a})^2 - (\vec{b})^2 = 0 \Rightarrow (\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 0$

$$\left(\frac{\vec{a}+\vec{b}}{2}\right).(\vec{a}-\vec{b})=0 \Rightarrow \overrightarrow{OF}.\overrightarrow{BA}=0$$

 $\overrightarrow{OF} \perp^r \overrightarrow{BA}$

 $\therefore \perp^r$ bisector of AB also passes through O

Hence perpendicular bisectors are concurrent.

90. The vector equation of plane passing through the points A, B, C having position vectors $\vec{a}, \vec{b}, \vec{c}$ is $[\vec{r} - \vec{a} \ \vec{b} - \vec{a} \ \vec{c} - \vec{a}] = 0$ (or) $\vec{r}.\{(\vec{b} \times \vec{c}) + (\vec{c} \times \vec{a}) + (\vec{a} \times \vec{b})\} = [\vec{a} \ \vec{b} \ \vec{c}]$

Sol: Let $\overrightarrow{OP} = \overrightarrow{r}$ be any point on the plane $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, $\overrightarrow{OC} = \overrightarrow{c}$ are the given points

 $\overrightarrow{AP}, \overrightarrow{AB}, \overrightarrow{AC}$ are coplanar

 $\begin{bmatrix} \overrightarrow{AP} \ \overrightarrow{AB} \ \overrightarrow{AC} \end{bmatrix} = 0$ $\begin{bmatrix} \overrightarrow{r} - \overrightarrow{a} & \overrightarrow{b} - \overrightarrow{a} & \overrightarrow{c} - \overrightarrow{a} \end{bmatrix} = 0$ $(\overrightarrow{r} - \overrightarrow{a}). (\overrightarrow{b} - \overrightarrow{a}) \times (\overrightarrow{c} - \overrightarrow{a}) = 0$ $(\overrightarrow{r} - \overrightarrow{a}). \{ \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b} \} = 0$ $\overrightarrow{r}. \{ \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b} \} - \overrightarrow{a}. \overrightarrow{b} \times \overrightarrow{c} - \overrightarrow{a}. \overrightarrow{c} \times \overrightarrow{a} - \overrightarrow{a}. \overrightarrow{a} \times \overrightarrow{b} = 0$ $\overrightarrow{r}. \{ \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b} \} = [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] \{ \therefore \overrightarrow{a}. \overrightarrow{c} \times \overrightarrow{a} = 0 \ \overrightarrow{a}. \overrightarrow{a} \times \overrightarrow{b} = 0 \}$

91. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors then

i)
$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$$
 ii) $(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{c} \cdot \vec{a})\vec{b} - (\vec{c} \cdot \vec{b})\vec{b}$

Proof : i) Let $\vec{a} = a_1\vec{l} + a_2\vec{j} + a_3\vec{k}$, $\vec{b} = b_1\vec{l} + b_2\vec{j} + b_3\vec{k}$, $\vec{c} = c_1\vec{l} + c_2\vec{j} + c_3\vec{k}$ be three

vectors
$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \vec{l} (a_2 b_3 - a_3 b_2) - \vec{j} (a_1 b_3 - a_3 b_1) + \vec{k} (a_1 b_2 - a_2 b_1)$$

$$(\vec{a} \times \vec{b}) \times \vec{c} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_2 b_3 - a_3 b_2 & a_3 b_1 - a_1 b_3 & a_1 b_2 - a_2 b_1 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

 $=\vec{l}\{c_3(a_3b_1-a_1b_3)-c_2(a_1b_2-a_2b_1)\}-\vec{j}\{c_3(a_2b_3-a_3b_2-c_1(a_1b_2-a_2b_1)\}+\vec{k}\{c_2(a_2b_3-a_3b_2)-c_1(a_3b_1-a_1b_3)\}$

$$(\vec{c}.\vec{a})\vec{b} - (\vec{c}.\vec{b})\vec{a} = (a_1c_1 + a_2c_2 + a_3c_3)\{b_1\vec{l} + b_2\vec{j} + b_3\vec{k}\}$$

$$(a_1b_1\vec{c}_1 + a_2b_1c_2 + a_3b_1c_3 - a_1b_1\vec{c}_2 - a_1b_3c_3)\vec{l} + (a_1b_2c_1 + a_2b_3c_2 + a_3b_3c_3 - a_2b_1c_1 - a_2b_2\vec{c}_2 - a_2b_3c_3)\vec{j}$$

$$+(a_1b_3c_1 + a_2b_3c_2 + a_3b_3c_3 - a_3b_1c_1 - a_3b_2c_2 - a_3b_3c_3)\vec{k}$$

 $\Rightarrow \{c_3(a_3b_1 - a_1b_3) - c_2(a_1b_2 - a_2b_1)\}\vec{l} + \vec{j}\{c_3(a_2b_3 - a_3b_2) - c_1(a_1b_2 - a_2b_1) + \vec{k}\{c_2(a_2b_3 - a_3b_2) - c_1(a_3b_1 - a_1b_3)\}$ Hence proved

Proof ii ; $\vec{b} \times \vec{c} = \begin{vmatrix} i & j & \vec{k} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$

$$\vec{i} = \vec{l}(b_2c_3 - b_3c_2) - \vec{j}(b_1c_3 - b_3c_1) + \vec{k}(b_1c_2 - b_2c_1)$$
$$\vec{a} \times (\vec{b} \times \vec{c}) = \begin{vmatrix} \vec{i} & \vec{j} & k \\ a_1 & a_2 & a_3 \\ b_2c_3 - b_3c_2 & b_3c_1 - b_1c_3 & b_1c_2 - b_2c_1 \end{vmatrix}$$

 $=\vec{l}\{a_{2}(b_{1}c_{2}-b_{2}c_{1})-a_{3}(b_{3}c_{1}-b_{1}c_{3})\}-\vec{j}\{a_{1}(b_{1}c_{2}-b_{2}c_{1})-a_{3}(b_{1}c_{2}-b_{2}c_{1})\}+\vec{k}\{a_{1}(b_{3}c_{1}-b_{1}c_{3})-a_{2}(b_{2}c_{3}-b_{3}c_{2})\}$

R.H.S. $(\vec{a}.\vec{c})\vec{b} - (\vec{a}.\vec{b})\vec{c}$

$$(a_{1}c_{1} + a_{2}c_{2} + a_{3}c_{3})\{b_{1}\vec{l} + b_{2}\vec{j} + b_{3}\vec{k}\} - (a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3})\{c_{1}\vec{l} + c_{2}\vec{j} + c_{3}\vec{k}\}$$

$$\Rightarrow \vec{l}\{a_{2}(b_{1}c_{2} - b_{2}c_{1}) - a_{3}(b_{3}c_{1} - b_{1}c_{3})\} - \vec{j}\{a_{1}cb_{1}c_{2} - b_{2}c_{1}) - a_{3}(b_{1}c_{2} - b_{2}c_{1})\} + \vec{k}\{a_{1}(b_{3}c_{1} - b_{1}c_{3}) - a_{2}(b_{2}c_{3} - b_{3}c_{2})\}$$

92. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are four vectors then $(\vec{a} \times \vec{b}).(\vec{c} \times \vec{d}) = \begin{vmatrix} \vec{a}.\vec{c} & \vec{a}.\vec{d} \\ \vec{b}.\vec{c} & \vec{b}.\vec{d} \end{vmatrix}$

Proof: $(\vec{a} \times \vec{b}).(\vec{c} \times \vec{d}) = \{(\vec{a} \times \vec{b}) \times \vec{c}\}.\vec{d}$ {: dot and cross are inter changeable }

$$\{(\vec{a}.\vec{c})\vec{b} - (\vec{b}.\vec{c})\vec{a}\}.\vec{d} = (\vec{a}.\vec{c})(\vec{b}.\vec{d}) - (\vec{b}.\vec{c})(\vec{a}.\vec{d}) = \begin{vmatrix} \vec{a}.\vec{c} & \vec{a}.\vec{d} \\ \vec{b}.\vec{c} & \vec{b}.\vec{d} \end{vmatrix}$$

93. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are four vectors then $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a} \vec{b} \vec{d}] \vec{c} - [\vec{a} \vec{b} \vec{c}] \vec{d} = [\vec{a} \vec{c} \vec{d}] \vec{b} - [\vec{b} \vec{c} \vec{d}] \vec{a}$ Proof :- $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = (\vec{a} \times \vec{b} \cdot \vec{d}) \vec{c} - (\vec{a} \times \vec{b} \cdot \vec{c}) \vec{d}$ $= [\vec{a} \vec{b} \vec{d}] \vec{c} - [\vec{a} \vec{b} \vec{c}] \vec{d}$ $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = (\vec{c} \times \vec{d} \cdot \vec{a}] \vec{b} - (\vec{c} \times \vec{d} \cdot \vec{b}] \vec{a}$ $= [\vec{a} \vec{c} \vec{d}] \vec{b} - (\vec{b} \vec{c} \vec{d}] \vec{a}$ 94. The vector area of a triangle ABC is $\frac{1}{2}\overrightarrow{AB} \times \overrightarrow{AC} = \frac{1}{2}\overrightarrow{BC} \times \overrightarrow{BA}$, $=\frac{1}{2}\overrightarrow{CA} \times \overrightarrow{CB}$

Sol: In a triangle \overrightarrow{ABC} , \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA} are the vectors represented by the sides AB, BC, CA

 $A = (\overrightarrow{AB}, \overrightarrow{AC}) \quad B = (\overrightarrow{BA}, \overrightarrow{BC}) \quad C = (\overrightarrow{CB}, \overrightarrow{CA})$

Let \vec{n} be the unit vector $\perp^r \vec{AB}, \vec{AC}$ and $\vec{AB}, \vec{AC}, \vec{n}$ form right handed system area of triangle ABC

В

$$\Delta = \frac{1}{2} AB.AC \sin A$$
$$\Delta = \frac{1}{2} |\overrightarrow{AB}| |\overrightarrow{AC}| \sin A$$
$$\Delta \overrightarrow{n} = \frac{1}{2} |\overrightarrow{AB}| |\overrightarrow{AC}| \overrightarrow{n} \sin A$$
$$\Delta \overrightarrow{n} = \frac{1}{2} |\overrightarrow{AB}| |\overrightarrow{AC}| \overrightarrow{n} \sin A$$
$$\Delta \overrightarrow{n} = \frac{1}{2} \overrightarrow{AB} \times \overrightarrow{AC}$$
$$\Delta \overrightarrow{n} = \frac{1}{2} \overrightarrow{BC} \times \overrightarrow{BA} = \frac{1}{2} \overrightarrow{CA} \times \overrightarrow{CB}$$

95. If $\vec{a}, \vec{b}, \vec{c}$ are the prove that of the vertices of the triangle ABC then vector

$$\mathbf{area} = \frac{1}{2} \{ \vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{a} \times \vec{b} \}$$

Sol: $\overrightarrow{OA} = \vec{a}$ $\overrightarrow{OB} = \vec{b}$ $\overrightarrow{OC} = \vec{c}$ be the given vertices
Vector area $= \frac{1}{2} \overrightarrow{AB} \times \overrightarrow{AC}$
 $= \frac{1}{2} \{ (\vec{b} - \vec{a}) \times (\vec{c} - \vec{a}) \}$
 $= \frac{1}{2} \{ \vec{b} \times \vec{c} - \vec{b} \times \vec{a} - \vec{a} \times \vec{c} + \vec{a} \times \vec{a} \}$
 $= \frac{1}{2} \{ \vec{b} \times \vec{c} + \vec{a} \times \vec{b} + \vec{c} \times \vec{a} \}$

96. In $\triangle ABC$ the length of the median through the vertex A is $\frac{1}{2}(2b^2 + 2c^2 - a^2)^{1/2}$

Proof: Let *D* be the mid point of the side *BC*. Take '*A*' as the origin. Let $\overline{AB} = \overline{\alpha}$ and $\overline{AC} = \beta$ so that $(\overline{\alpha}, \overline{\beta}) = \angle A$

Since
$$\overline{AD} = \frac{\overline{\alpha} + \overline{\beta}}{2}$$
, we have $4\overline{AD}^2 = \overline{\alpha}^2 + \overline{\beta}^2 + 2\overline{\alpha}.\overline{\beta} = \overline{AB}^2 + \overline{AC}^2 + 2\left|\overline{AB}\right| \left|\overline{AC}\right| \cos\left(\overline{AB}, \overline{AC}\right)$
$$= c^2 + b^2 + 2bc \cos A = c^2 + b^2 + (b^2 + c^2 - a^2) = 2b^2 + 2c^2 - a^2$$
$$\therefore AD = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$$

97. Theorem : If $\vec{a}, \vec{b}, \vec{c}$ are three vectors then

i) $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a}.\vec{c})\vec{b} - (\vec{a}.\vec{b})\vec{c}$ **ii)** $(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{c}.\vec{a})\vec{b} - (\vec{c}.\vec{b})\vec{b}$ **Proof** : **i)** Let $\vec{a} = a_1\vec{l} + a_2\vec{j} + a_3\vec{k}$, $\vec{b} = b_1\vec{l} + b_2\vec{j} + b_3\vec{k}$, $\vec{c} = c_1\vec{l} + c_2\vec{j} + c_3\vec{k}$ be three

$$\operatorname{vectors} \vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \vec{l} (a_2 b_3 - a_3 b_2) - \vec{j} (a_1 b_3 - a_3 b_1) + \vec{k} (a_1 b_2 - a_2 b_1)$$
$$(\vec{a} \times \vec{b}) \times \vec{c} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_2 b_3 - a_3 b_2 & a_3 b_1 - a_1 b_3 & a_1 b_2 - a_2 b_1 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
$$= \vec{l} \{c_3 (a_3 b_1 - a_1 b_3) - c_2 (a_1 b_2 - a_2 b_1)\} - \vec{j} \{c_3 (a_2 b_3 - a_3 b_2 - c_1 (a_1 b_2 - a_2 b_1)\} + \vec{k} \{c_2 (a_2 b_3 - a_3 b_2) - c_1 (a_3 b_1 - a_1 b_3)\}$$

$$\begin{aligned} (\vec{c}.\vec{a})\vec{b} - (\vec{c}.\vec{b})\vec{a} &= (a_1c_1 + a_2c_2 + a_3c_3)\{b_1\vec{l} + b_2\vec{j} + b_3\vec{k}\} \\ (a_1b_1\vec{c}_1 + a_2b_1c_2 + a_3b_1c_3 - a_1b_1\vec{c}_2 - a_1b_3c_3)\vec{l} + (a_1b_2c_1 + a_2b_3c_2 + a_3b_3c_3 - a_2b_1c_1 - a_2b_2\vec{c}_2 - a_2b_3c_3)\vec{j} \\ &+ (a_1b_3c_1 + a_2b_3c_2 + a_3b_3c_3 - a_3b_1c_1 - a_3b_2c_2 - a_3b_3c_3)\vec{k} \\ &\Rightarrow \{c_3(a_3b_1 - a_1b_3) - c_2(a_1b_2 - a_2b_1)\}\vec{l} + \vec{j}\{c_3(a_2b_3 - a_3b_2) - c_1(a_1b_2 - a_2b_1) + \vec{k}\{c_2(a_2b_3 - a_3b_2) - c_1(a_3b_1 - a_1b_3)\} \end{aligned}$$

Hence proved

Proof ii ;
$$\vec{b} \times \vec{c} = \begin{vmatrix} i & j & \vec{k} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$\begin{aligned} &= \vec{l}(b_2c_3 - b_3c_2) - \vec{j}(b_1c_3 - b_3c_1) + \vec{k}(b_1c_2 - b_2c_1) \\ &\vec{a} \times (\vec{b} \times \vec{c}) = \begin{vmatrix} \vec{i} & \vec{j} & k \\ a_1 & a_2 & a_3 \\ b_2c_3 - b_3c_2 & b_3c_1 - b_1c_3 & b_1c_2 - b_2c_1 \end{vmatrix} \\ &= \vec{l}\{a_2(b_1c_2 - b_2c_1) - a_3(b_3c_1 - b_1c_3)\} - \vec{j}\{a_1(b_1c_2 - b_2c_1) - a_3(b_1c_2 - b_2c_1)\} + \vec{k}\{a_1(b_3c_1 - b_1c_3) - a_2(b_2c_3 - b_3c_2)\} \end{aligned}$$

R.H.S.
$$(\vec{a}.\vec{c})\vec{b} - (\vec{a}.\vec{b})\vec{c}$$

R.H.S.
$$(\vec{a}.\vec{c})\vec{b} - (\vec{a}.\vec{b})\vec{c}$$

 $(a_1c_1 + a_2c_2 + a_3c_3)\{b_1\vec{l} + b_2\vec{j} + b_3\vec{k}\} - (a_1b_1 + a_2b_2 + a_3b_3)\{c_1\vec{l} + c_2\vec{j} + c_3\vec{k}\}$
 $\Rightarrow \vec{l} \{a_2(b_1c_2 - b_2c_1) - a_3(b_3c_1 - b_1c_3)\} - \vec{j} \{a_1cb_1c_2 - b_2c_1) - a_3(b_1c_2 - b_2c_1)\} + \vec{k} \{a_1(b_3c_1 - b_1c_3) - a_2(b_2c_3 - b_3c_2)\}$