Product of vectors

SCALAR PRODUCT

Definitions and Key Points :

Def: Let \vec{a}, \vec{b} be two vectors dot product (or) scalar product (or) direct product (or) inner product denoted by $\vec{a} \cdot \vec{b}$. Which is defined as $|\vec{a}||\vec{b}| \cos \theta$ where $\theta=(\vec{a}, \vec{b})$.

* The product $\vec{a} \cdot \vec{b}$ is zero when $|\vec{a}|=0$ (or) $|\vec{b}|=0$ (or) $\theta=90^{\circ}$.
* Sign of the scalar product : Let \vec{a}, \vec{b} are two non-zero vectors
(i) If θ is acute then $\vec{a} \cdot \vec{b}>0$ (i.e $0<\theta<90^{\circ}$).
(ii) If θ is obtuse then $\vec{a} \cdot \vec{b}<0$ (i.e $90^{\circ}<\theta<180^{\circ}$).
(iii) If $\theta=90^{\circ}$ then $\vec{a} \cdot \vec{b}=o$.
(iv) If $\theta=0^{0}$ then $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}|$.
(v) If $\theta=180^{\circ}$ then $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}|$.

Note:-

(1) The dot product of two vectors is always scalar.
(2) $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$ i.e dot product of two vectors is commutative.
(3) If $\vec{a} \cdot \vec{b}$ are two vectors then $\vec{a} \cdot(-\vec{b})=(-\vec{a}) \cdot \vec{b}=-(\vec{a} \cdot \vec{b})$.
(4) $(-\vec{a}) \cdot(-\vec{b})=\vec{a} \cdot \vec{b}$.
(5) If $1, m$ are two scalars and $\vec{a} \cdot \vec{b}$ are two vectors then $(l \vec{a}) \cdot(m \vec{b})=\operatorname{lm}(\vec{a} \cdot \vec{b})$.
(6) If \vec{a} and \vec{b} are two vectors then $\vec{a} \cdot \vec{b}= \pm|\vec{a}||\vec{b}|$.
(7) If \vec{a} is a vector then $\vec{a} \cdot \vec{a}=|\vec{a}|^{2}$.
(8) If \vec{a} is a vector $\vec{a} \cdot \vec{a}$ is denoted by $(\vec{a})^{2}$ hence $(\vec{a})^{2}=|\vec{a}|^{2}$.

* Component and orthogonal projection

Def: Let $\vec{a}=\overrightarrow{O A} \quad \vec{b}=\overrightarrow{O B}$ be two non zero vectors let the plane passing through B and perpendicular to \vec{a} intersect $\overrightarrow{O A} \ln \mathrm{M}$.
(i) If (\vec{a}, \vec{b}) is acute then OM is called component of \vec{b} on \vec{a}.
(ii) If (\vec{a}, \vec{b}) is obtuse then $-(\mathrm{OM})$ is called the component of \vec{b} on \vec{a}.
(iii) The vector $\overrightarrow{O M}$ is called component vector of \vec{b} on \vec{a}.

Def: Let $\vec{a}=\overrightarrow{O A} ; \vec{b}=\overrightarrow{P Q}$ be two vectors let the planes passing through P, Q and perpendicular to \vec{a} intersect $\overrightarrow{O A}$ in L, M respectively then $\overrightarrow{L M}$ is called orthogonal projection of \vec{b} on \vec{a}

Note : i) The orthogonal projection of a vector \vec{b} on \vec{a} is equal fb component vector of \vec{b} on \vec{a}.
ii) Component of a vector \vec{b} on \vec{a} is also called projection of \vec{b} on \vec{a}
iii) If $\mathrm{A}<\mathrm{B}, \mathrm{C}, \mathrm{D}$ are four points in the space then the component of $\overrightarrow{A B}$ on $\overrightarrow{C D}$ is same as the projection of $\overrightarrow{A B}$ on the ray $\overrightarrow{C D}$.

* If \vec{a}, \vec{b} be two vectors $(\vec{a} \neq \vec{o})$ then
i) The component of \vec{b} on \vec{a} is $\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|}$
iii) The orthogonal projection of \vec{b} on \vec{a} is $\frac{(\vec{b} \cdot \vec{a}) \vec{a}}{|\vec{a}|^{2}}$.
* If $\vec{i}, \vec{j}, \vec{k}$ form a right handed system of Ortho normal triad then
i) $\vec{i} \cdot \vec{j}=\vec{j} \cdot \vec{j}=\vec{k} \cdot \vec{k}=1$
ii) $\vec{i} \cdot \vec{j}=\vec{j} \cdot \vec{i}=0 ; \vec{j} \cdot \vec{k}=\vec{k} \cdot \vec{j}=0 ; \vec{k} \cdot \vec{i}=\vec{i} \cdot \vec{k}=0$
* If $\vec{a}=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k} ; \vec{b}=b_{1} \vec{i}+b_{2} \vec{j}+b_{3} \vec{k}$ then $\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$.
* If $\vec{a}, \vec{b}, \vec{c}$ are three vectors then
i) $(\vec{a}+\vec{b})^{2}=(\vec{a})^{2}+(\vec{b})^{2}+2 \vec{a} \cdot \vec{b}$
ii) $(\vec{a}-\vec{b})^{2}=(\vec{a})^{2}+(\vec{b})^{2}-2 \vec{a} \cdot \vec{b}$
iii) $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=(\vec{a})^{2}-(\vec{b})^{2}$
iv) $(\vec{a}+\vec{b})^{2}=(\vec{a}-\vec{b})^{2}=2\left\{(\vec{a})^{2}+(\vec{b})^{2}\right\}$
v) $(\vec{a}+\vec{b})^{2}-(\vec{a}-\vec{b})^{2}=4 \vec{a} \cdot \vec{b}$
vi) $(\vec{a}+\vec{b}+\vec{c})^{2}=(\vec{a})^{2}+(\vec{b})^{2}+(\vec{c})^{2}+2 \vec{a} \cdot \vec{b}+2 \vec{b} \cdot \vec{c}+2 \vec{c} \cdot \vec{a}$.
* If \vec{r} is vector then $\vec{r}=(\vec{r} \cdot \vec{i}) i+(\vec{r}+\vec{j}) \vec{j}+(\vec{r} \cdot \vec{k}) \vec{k}$.

Angle between the planes :- The angle between the planes is defined as the angle between the normals to the planes drawn from any point in the space.

SPHERE * The vector equation of a sphere with centre C having position vector \vec{c} and radius a is $(\vec{r}-\vec{c})^{2}=a^{2}$ i.e. $\vec{r}^{2}-2 \vec{r} \cdot \vec{c}+c^{2}=a^{2}$

* The vector equation of a sphere with $A(\vec{a})$ and $B(\vec{b})$ as the end points of a diameter is $(\vec{r}-\vec{a}) \cdot(\vec{r}-\vec{b})=0($ or $)(\vec{r})^{2}-\vec{r} \cdot(\vec{a}+\vec{b})+\vec{a} \cdot \vec{b}=0$

Work done by a force :- If a force \vec{F} acting on a particle displaces it from a position A to the position B then work done W by this force \vec{F} is $\vec{F} \cdot \overrightarrow{A B}$

* The vector equation of the plane which is at a distance of p from the origin along the unit vector \vec{n} is $\vec{r} \cdot \vec{n}=p$.
* The vector equation of the plane passing through the origin and perpendicular to the vector m is $\mathbf{r} . \mathrm{m}=\mathbf{0}$
* The Cartesian equation of the plane which is at a distance of p from the origin along the unit vector $\mathbf{n}=\mathbf{l i}+\mathbf{m} \mathbf{j}+\mathbf{n k}$ of the plane is $\mathbf{n}=\mathbf{l} x+\mathbf{m} y+\mathbf{n} z$
* The vector equation of the plane passing through the point a having position vector \vec{a} and perpendicular to the vector \vec{m} is $(\vec{r}-\vec{a}) \cdot \vec{m}=0$.
* The vector equation of the plane passing through the point a having position vector \vec{a} and parallel to the plane $\mathbf{r} \cdot \mathbf{m}=\mathbf{q}$ is $(\vec{r}-\vec{a}) \cdot \vec{m}=0$.

CROSS(VECTOR) PRODUCT OF VECTORS

* Let \vec{a}, \vec{b} be two vectors. The cross product or vector product or skew product of vectors \vec{a}, \vec{b} is denoted by $\vec{a} \times \vec{b}$ and is defined as follows
i) If $\vec{a}=0$ or $\vec{b}=0$ or \vec{a}, \vec{b} are parallel then $\vec{a} \times \vec{b}=0$
ii) If $\vec{a} \neq 0, \vec{b} \neq 0, \vec{a}, \vec{b}$ are not parallel then $\vec{a} \times \vec{b}=|\vec{a}||\vec{b}|(\sin \theta) \vec{n}$ where \vec{n} is a unit vector perpendicular to \vec{a} and \vec{b} so that $\vec{a}, \vec{b}, \vec{n}$ form a right handed system.

Note :- i) $\vec{a} \times \vec{b}$ is a vector
ii) If \vec{a}, \vec{b} are not parallel then $\vec{a} \times \vec{b}$ is perpendicular to both \vec{a} and \vec{b}
iii) If \vec{a}, \vec{b} are not parallel then $\vec{a}, \vec{b}, \vec{a} \times \vec{b}$ form a right handed system .
iv) If \vec{a}, \vec{b} are not parallel then $|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin (\vec{a}, \vec{b})$ and hence $|\vec{a} \times \vec{b}| \leq|\vec{a}||\vec{b}|$
v) For any vector $\vec{a} \vec{a} \times \vec{b}=\vec{o}$
2. If \vec{a}, \vec{b} are two vectors $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$ this is called "anti commutative law"
3. If \vec{a}, \vec{b} are two vectors then $\vec{a} \times(-\vec{b})=(-\vec{a}) \times \vec{b}=-(\vec{a} \times \vec{b})$
4. If \vec{a}, \vec{b} are two vectors then $(-\vec{a}) \times(-\vec{b})=\vec{a} \times \vec{b}$
5. If \vec{a}, \vec{b} are two vectors $1, \mathrm{~m}$ are two scalars then $(\vec{a}) \times(m \vec{b})=\operatorname{lm}(\vec{a} \times \vec{b})$
6. If $\vec{a}, \vec{b}, \vec{c}$ are three vectos, then
i) $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$
ii) $(\vec{b}+\vec{c}) \times \vec{a}=\vec{b} \times \vec{a}+\vec{c} \times \vec{a}$
7. If $\vec{l}, \vec{l}, \vec{k}$ from a right handed system of orthonormal triad then
i) $\vec{l} \times \vec{l}=\vec{j} \times \vec{j}=\vec{k} \times \vec{k}=\vec{o}$
ii) $\vec{i} \times \vec{j}=\vec{k}=-\vec{j} \times \vec{l} ; \vec{j} \times \vec{k}=\vec{l}=-\vec{k} \times \vec{j} ; \vec{k} \times \vec{l}=\vec{j}=-\vec{l} \times \vec{k}$

* If $\vec{a}=a_{1} \vec{l}+a_{2} \vec{j}+a_{3} \vec{k}, \vec{b}=b_{1} \vec{l}+b_{2} \vec{j}+b_{3} \vec{k}$ then $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\vec{l} & \vec{j} & \vec{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$.
* If $\vec{a}=a_{1} \vec{l}+a_{2} \vec{m}+a_{3} \vec{n}, \vec{b}=b_{1} \vec{l}+b_{2} \vec{m}+b_{3} \vec{n}$ where $\vec{l}, \vec{m}, \vec{n}$ form a right system of non coplanar vectors then $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\vec{m} \times \vec{n} & \vec{n} \times \vec{l} & \vec{l} \times \vec{m} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$
* If \vec{a}, \vec{b} are two vectors then $(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}=a^{2} b^{2}$.

* VECTOR AREA :-

If A is the area of the region bounded by a plane curve and \vec{n} is the unit vector perpendicular to the plane of the curve such that the direction of curve drawn can be considered anti clock wise then $A \vec{n}$ is called vector area of the plane region bounded by the curve.

* The vector area of triangle ABC is $\frac{1}{2} \overrightarrow{A B} \times \overrightarrow{A C}=\frac{1}{2} \overrightarrow{B C} \times \overrightarrow{B A}=\frac{1}{2} \overrightarrow{C A} \times \overrightarrow{C B}$
* If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of the vertices of a triangle then the vector area of the triangle is $\frac{1}{2}(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})$
* If ABCD is a parallelogram and $\overrightarrow{A B}=\vec{a}, \overrightarrow{B C}=\vec{b}$ then the vector area of ABCD is $\vec{a} \times \vec{b}$.
* If ABCD is a parallelogram and $\overrightarrow{A C}=\vec{a}, \overrightarrow{B C}=\vec{b}$ then vector area of parallelogram ABCD is $\frac{1}{2}(\vec{a} \times \vec{b})$
* The vector equation of a line passing through the point A with position vector \vec{a} and perpendicular to the vectors $\vec{b} \times \vec{c}$ is $\vec{r}=\vec{a}+t(\vec{b} \times \vec{c})$.
* The vector equation of a line passing through the point A with position vector \vec{a} and perpendicular to the vectors $\vec{b} \times \vec{c}$ is $\vec{r}=\vec{a}+t(\vec{b} \times \vec{c})$.

SCALAR TRIPLE PRODUCT

* If $\vec{a}, \vec{b}, \vec{c}$ are the three vectors, then the real numbers $(\vec{a} \times \vec{b}) \cdot \vec{c}$ is called scalar triple product denoted by $[\vec{a} \vec{b} \vec{c}]$. This is read as 'box' $\vec{a}, \vec{b}, \vec{c}$

2. If V is the volume of the parallelepiped with coterminous edges $\vec{a}, \vec{b}, \vec{c}$ then $V=\left\lvert\,\left[\begin{array}{ll}\vec{a} & \vec{b} \\ c\end{array}\right]\right.$
3. If $\vec{a}, \vec{b}, \vec{c}$ form the right handed system of vectors then $V=[\vec{a} \vec{b} \vec{c}]$
4. If $\vec{a}, \vec{b}, \vec{c}$ form left handed system of vectors then $-V=[\vec{a}, \vec{b}, \vec{c}]$

Note: i) The scalar triple product is independent of the position of dot and cross.
i.e. $\vec{a} \times \vec{b} . \vec{c}=\vec{a} . \vec{b} \times \vec{c}$
ii) The value of the scalar triple product is unaltered so long as the cyclic order remains unchanged

$$
[\vec{a} \vec{b} \vec{c} \vec{c}]=[\vec{b} \vec{c} \vec{a} \vec{a}]=[\vec{c} \vec{a} \vec{b}]
$$

iii) The value of a scalar triple product is zero if two of its vectors are equal

$$
[\vec{a} \vec{a} \vec{b}]=0[\vec{b} \vec{b} \vec{c}]=0
$$

iv) If $\vec{a}, \vec{b}, \vec{c}$ are coplanar then $[\overrightarrow{a b c}]=0$
v) If $\vec{a}, \vec{b}, \vec{c}$ form right handed system then $[\vec{a} \vec{b} \vec{c}]>0$
vi) If $\vec{a}, \vec{b}, \vec{c}$ form left handed system then $[\vec{a} \vec{b} \vec{c}]<0$
vii)The value of the triple product changes its sign when two vectors are interchanged

$$
[\vec{a} \vec{b} \vec{c}]=-[\vec{a} \vec{c} \vec{b}]
$$

viii) If $1, \mathrm{~m}, \mathrm{n}$ are three scalars $\vec{a}, \vec{b}, \vec{c}$ are three vectors then $[\vec{a} m \vec{b} n \vec{c}]=\operatorname{lmn}[\vec{a} \vec{b} \vec{c}]$

* Three non zero non parallel vectors $\vec{a} \vec{b} \vec{c}$ nare coplanar iff $[\vec{a} \vec{b} \vec{c}]=0$
* If $\vec{a}=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}, \vec{b}=b_{1} \vec{i}+b_{2} \vec{j}+b_{3} \vec{k}, \vec{c}=c_{1} \vec{i}+c_{2} \vec{j}+c_{3} \vec{k}$ then $[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
* If $\vec{a}=a_{1} \vec{l}+a_{2} \vec{m}+a_{3} \vec{n}, \vec{b}=b_{1} \vec{l}+b_{2} \vec{m}+b_{3} \vec{n}, \vec{c}=c_{1} \vec{l}+c_{2} \vec{m}+c_{3} \vec{n}$ where $\vec{l}, \vec{m}, \vec{n}$ form a right handed system of non coplanar vectors, then $[\overrightarrow{a b} \vec{c}]=\left|\begin{array}{ccc}\vec{m} \times \vec{n} & \vec{n} \times \vec{l} & \vec{l} \times \vec{m} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
* The vectors equation of plane passing through the points A, B with position vectors \vec{a}, \vec{b} and parallel to the vector \vec{c} is $[\vec{r}-\vec{a} \vec{b}-\vec{a} \vec{c}]=0$ (or) $[\vec{r} \vec{b} \vec{c}+[\vec{r} \vec{c} \vec{a}]=[\vec{a} \vec{b} \vec{c}]$
* The vector equation of the plane passing through the point A with position vector \vec{a} and parallel to \vec{b}, \vec{c} is $[\vec{r}-\vec{a} \vec{b} \vec{c}]=0$ i.e. $[\vec{r} \vec{b} \vec{c}]=[\vec{a} \vec{b} \vec{c}]$
Skew lines :- Two lines are said to be skew lines if there exist no plane passing through them i.e. the lines lie on two difference planes
Def:- l_{1} and l_{2} are two skew lines. If P is a point on l_{1} and Q is a point on l_{2} such that $\overrightarrow{P Q} \perp^{r} l_{1}$ and $\overrightarrow{P Q} \perp^{r} l_{2}$ then PQ is called shortest distance and $\overrightarrow{P Q}$ is called shortest distance line between the lines l_{1} and l_{2}.

The shortest distance between the skew lines $\vec{r}=\vec{a}+t \vec{b}$ and $\vec{r}=\vec{c}+t \vec{d}$ is $\frac{|[\vec{a}-\vec{c} \vec{b} \vec{d}]|}{|\vec{b} \times \vec{d}|}$

VECTOR TRIPLE PRODUCT

Cross Product of Three vectors : For any three vectors \bar{a}, \bar{b} and \bar{c} then cross product or vector product of these vectors are given as $\bar{a} \times(\bar{b} \times \bar{c}),(\bar{a} \times \bar{b}) \times \bar{c}$ or $(\bar{b} \times \bar{c}) \times \bar{a}$ etc.
i. $\bar{a} \times(\bar{b} \times \bar{c})$ is vector quantity and $|\bar{a} \times(\bar{b} \times \bar{c})|=|(\bar{b} \times \bar{c}) \times \bar{a}|$
ii. In general $\bar{a} \times(\bar{b} \times \bar{c}) \neq(\bar{a} \times \bar{b}) \times . \bar{c}$
iii. $\bar{a} \times(\bar{b} \times \bar{c})=(\bar{a} \times \bar{b}) \times \bar{c}$ if \bar{a} and \bar{c} are collinear
iv. $\bar{a} \times(\bar{b} \times \bar{c})=-(\bar{b} \times \bar{c}) \times \bar{a}$
v. $(\bar{a} \times \bar{b}) \times \bar{c}=-\bar{c} \times(\bar{a} \times \bar{b})=$
$(\bar{a} \cdot \bar{c}) \bar{b}-(\bar{a} \cdot \bar{b}) \bar{c}=\bar{a} \times(\bar{b} \times \bar{c})$
vi. If \bar{a}, \bar{b} and \bar{c} are non zero vectors and $\bar{a} \times(\bar{b} \times \bar{c})=\overline{\mathrm{O}}$ then \bar{b} and \bar{c} are parallel (or collinear) vectors.
vii. If \bar{a}, \bar{b} and \bar{c} are non zero and non parallel vectors then $\bar{a} \times(\bar{b} \times \bar{c}), \quad \bar{b} \times(\bar{c} \times$ $\bar{a})$ and $\bar{c} \times(\bar{a} \times \bar{b})$ are non collinear vectors.
viii. If \bar{a}, \bar{b} and \bar{c} are any three vectors then $\bar{a}(\bar{b} \times \bar{c})+\bar{b} \times(\bar{c} \times \bar{a})+\bar{c} \times(\bar{a} \times \bar{b})=$ $\overline{\mathrm{O}}$
ix. If \bar{a}, \bar{b} and \bar{c} are any three vectors then $\bar{a}(\bar{b} \times \bar{c})+\bar{b} \times(\bar{c} \times \bar{a})+\bar{c} \times(\bar{a} \times \bar{b})$ are coplanar. [since sum of these vectors is zero]
x. $\bar{a}(\bar{b} \times \bar{c})$ is vector lies in the plane of \bar{b} and \bar{c} or parallel to the plane of \bar{b} and \bar{c}.

PRODUCT OF FOUR VECTORS

* Dot product of four vectors : The dot product of four vectors $\bar{a}, \bar{b}, \bar{c}$ and \bar{d} is given as $(\bar{a} \times \bar{b}) \cdot(\bar{c} \times \bar{d})=(\bar{a} \cdot \bar{c})(\bar{b} \cdot \bar{d})-(\bar{a} \cdot \bar{d})(\bar{b} \cdot \bar{c})=\left|\begin{array}{ll}\bar{a} \cdot \bar{c} & \bar{a} \cdot \bar{d} \\ \bar{b} \cdot \bar{c} & \bar{b} \cdot \bar{d}\end{array}\right|$
* Cross product of four vectors: If $\bar{a}, \bar{b}, \bar{c}$ and \bar{d} are any four vectors then ($\bar{a} \times \bar{b}$) $\times(\bar{c} \times \bar{d})=$
$[\bar{a} \bar{c} \bar{d}] \bar{b}-[\bar{b} \bar{c} \bar{d}] \bar{a}$
$=[\bar{a} \bar{b} \bar{d}] \bar{c}-\left[\begin{array}{l}\bar{a} \\ \bar{b} \\ \bar{c}\end{array}\right] \bar{d}$
* $\quad\left[\begin{array}{llll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]\left[\begin{array}{lll}\bar{l} & \bar{m} & \bar{n}\end{array}\right]=\left|\begin{array}{ccc}\bar{a} \cdot \bar{l} & \bar{b} \cdot \bar{l} & \bar{c} \cdot \bar{l} \\ \bar{a} \cdot \bar{m} & \bar{b} \cdot \bar{m} & \bar{c} \cdot \bar{m} \\ \bar{a} \cdot \bar{n} & \bar{b} \cdot \bar{n} & \bar{c} \cdot \bar{n}\end{array}\right|$
* The vectorial equation of the plane passing through the point \bar{a} and parallel to the vectors $\overline{\mathrm{b}}, \overline{\mathrm{c}}$ is $[\overline{\mathrm{r}} \overline{\mathrm{b}} \overline{\mathrm{c}}]=[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$.
* The vectorial equation of the plane passing through the points $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and parallel to the vector \bar{c} is $[\overline{\mathrm{r}} \overline{\mathrm{b}}]+[\overline{\mathrm{r}} \overline{\mathrm{a}}]=[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$.
* The vectorial equation of the plane passing through the points $\bar{a}, \bar{b}, \bar{c}$ is $[\overline{\mathrm{r}} \overline{\mathrm{c}} \overline{\mathrm{c}}]+[\overline{\mathrm{r}} \overline{\mathrm{c}} \overline{\mathrm{a}}]+[\overline{\mathrm{r}} \overline{\mathrm{b}}]=[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$.
* If the points with the position vectors $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}, \overline{\mathrm{d}}$ are coplanar, then the condition is $[\overline{\mathrm{a}} \overline{\mathrm{b}}]+[\overline{\mathrm{b}} \overline{\mathrm{c}} \overline{\mathrm{d}}]+[\overline{\mathrm{c}} \overline{\mathrm{a}} \overline{\mathrm{d}}]=[\overline{\mathrm{a}} \overline{\mathrm{c}} \overline{\mathrm{c}}]$
* Length of the perpendicular from the origin to the plane passing through the points $\bar{a}, \bar{b}, \bar{c}$ is $\frac{|[\bar{a} \bar{b} \bar{c}]|}{|\bar{b} \times \bar{c}+\bar{c} \times \bar{a}+\bar{a} \times \bar{b}|}$.
* Length of the perpendicular from the point \bar{c} on to the line joining the points $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ is $\frac{|(\overline{\mathrm{a}}-\overline{\mathrm{c}}) \times(\overline{\mathrm{c}}-\overline{\mathrm{b}})|}{|\overline{\mathrm{a}}-\overline{\mathrm{b}}|}$.
* $\quad \mathrm{P}, \mathrm{Q}, \mathrm{R}$ are non collinear points. Then distance of P to the plane OQR is $\left|\frac{\overline{\mathrm{OP}} \cdot(\overline{\mathrm{OQ}} \times \overline{\mathrm{OR}})}{|\overline{\mathrm{OQ}} \times \overline{\mathrm{OR}}|}\right|$
* Perpendicular distance from $P(\bar{\alpha})$ to the plane passing through $A(\bar{a})$ and parallel to the vectors \bar{b} and \bar{c} is $\left|\frac{\left[\left.\begin{array}{ll}\bar{\alpha}-\bar{a} & \bar{b} \\ \bar{c}\end{array} \right\rvert\,\right.}{|\bar{b} x \bar{c}|}\right|$
* Length of the perpendicular from the point \bar{c} to the line $\overline{\mathrm{r}}=\overline{\mathrm{a}}+\mathrm{t} \overline{\mathrm{b}}$ is $\frac{|(\bar{c}-\bar{a}) \times \bar{b}|}{|\bar{b}|}$.

PROBLEMS

VSAQ'S

1. Find the angle between the vectors $\bar{i}+2 \bar{j}+3 \bar{k}$ and $3 \bar{i}-\bar{j}+2 \bar{k}$.

Sol. Let $\overline{\mathrm{a}}=\overline{\mathrm{i}}+2 \overline{\mathrm{j}}+3 \overline{\mathrm{k}}$ and $\overline{\mathrm{b}}=3 \overline{\mathrm{i}}-\overline{\mathrm{j}}+2 \overline{\mathrm{k}}$
Let θ be the angle between the vectors.
Then $\cos \theta=\frac{\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}}{|\overline{\mathrm{a}}||\overline{\mathrm{b}}|}$

$$
\begin{aligned}
\cos \theta & =\frac{(\overline{\mathrm{i}}+2 \overline{\mathrm{j}}+3 \overline{\mathrm{k}}) \cdot(3 \overline{\mathrm{i}}-\overline{\mathrm{j}}+2 \overline{\mathrm{k}})}{\sqrt{\overline{\mathrm{i}}+2 \overline{\mathrm{j}}+3 \overline{\mathrm{k}}} \sqrt{3 \overline{\mathrm{i}}-\overline{\mathrm{j}}+2 \overline{\mathrm{k}}}} \\
& =\frac{3-2+6}{\sqrt{14} \sqrt{14}}=\frac{7}{14}=\frac{1}{2} \\
\cos \theta & =\frac{1}{2} \Rightarrow \cos \theta=\cos 60^{\circ} \\
\therefore \theta & =60^{\circ}
\end{aligned}
$$

2. If the vectors $2 \bar{i}+\lambda \bar{j}-\bar{k}$ and $4 \bar{i}-2 \bar{j}+2 \bar{k}$ are perpendicular to each other, then find λ.

Sol. Let $\bar{a}=2 \bar{i}+\lambda \bar{j}-\bar{k}$ and $\bar{b}=4 \bar{i}-2 \bar{j}+2 \bar{k}$
By hypothesis, \bar{a}, \bar{b} are perpendicular then $\bar{a} \cdot \bar{b}=0$

$$
\begin{aligned}
& \Rightarrow(2 \overline{\mathrm{i}}+\lambda \overline{\mathrm{j}}-\overline{\mathrm{k}}) \cdot(4 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}+2 \overline{\mathrm{k}})=0 \\
& \Rightarrow 8-2 \lambda-2=0 \\
& \Rightarrow 6-2 \lambda=0 \\
& \Rightarrow \lambda=3
\end{aligned}
$$

3. $\bar{a}=2 \bar{i}-\bar{j}+\bar{k}, \bar{b}=\bar{i}-3 \bar{j}-5 \bar{k}$. Find the vector \mathbf{c} such that \bar{a}, \bar{b} and \bar{c} form the sides of triangle.

Sol.

We know that $\overline{\mathrm{AB}}+\overline{\mathrm{BC}}+\overline{\mathrm{CA}}=0$
$\overline{\mathrm{c}}+\overline{\mathrm{a}}+\overline{\mathrm{b}}=0$
$\overline{\mathrm{c}}=-\overline{\mathrm{a}}-\overline{\mathrm{b}}$
$\overline{\mathrm{c}}=-2 \overline{\mathrm{i}}+\overline{\mathrm{j}}-\overline{\mathrm{k}}-\overline{\mathrm{i}}+3 \overline{\mathrm{j}}+5 \overline{\mathrm{k}}$
$\overline{\mathrm{c}}=-3 \overline{\mathrm{i}}+4 \overline{\mathrm{j}}+4 \overline{\mathrm{k}}$
4. Find the angle between the planes $\overline{\mathrm{r}} \cdot(2 \overline{\mathrm{i}}-\overline{\mathrm{j}}+2 \overline{\mathrm{k}})=3$ and $\overline{\mathrm{r}} \cdot(3 \overline{\mathrm{i}}+6 \overline{\mathrm{j}}+\overline{\mathrm{k}})=4$.

Sol. Given $\overline{\mathrm{r}} \cdot(2 \overline{\mathrm{i}}-\overline{\mathrm{j}}+2 \overline{\mathrm{k}})=3$

$$
\bar{r} \cdot(3 \bar{i}+6 \overline{\mathrm{j}}+\overline{\mathrm{k}})=4
$$

Given equation $\overline{\mathrm{r}} \cdot \overline{\mathrm{n}}_{1}=\mathrm{p}, \overline{\mathrm{r}} \cdot \overline{\mathrm{n}}_{2}=\mathrm{q}$
Let θ be the angle between the planes.
Then $\cos \theta=\frac{\overline{\mathrm{n}}_{1} \cdot \overline{\mathrm{n}}_{2}}{\left|\overline{\mathrm{n}}_{1}\right|\left|\overline{\mathrm{n}}_{2}\right|}$

$$
\begin{aligned}
& =\frac{(2 \overline{\mathrm{i}}-\overline{\mathrm{j}}+2 \overline{\mathrm{k}}) \cdot(3 \overline{\mathrm{i}}+6 \overline{\mathrm{j}}+\overline{\mathrm{k}})}{\sqrt{2 \overline{\mathrm{i}}-\overline{\mathrm{j}}+2 \overline{\mathrm{k}}} \sqrt{3 \overline{\mathrm{i}}+6 \overline{\mathrm{j}}+\overline{\mathrm{k}}}} \\
& =\frac{6-6+2}{\sqrt{9} \sqrt{46}}=\frac{2}{3 \sqrt{46}}
\end{aligned}
$$

$\cos \theta=\frac{2}{3 \sqrt{46}}$
$\therefore \theta=\cos ^{-1}\left(\frac{2}{3 \sqrt{46}}\right)$
5. Let $\overline{\mathrm{e}}_{1}$ and $\overline{\mathrm{e}}_{2}$ be unit vectors containing angle θ. If $\frac{1}{2}\left|\overline{\mathrm{e}}_{1}-\overline{\mathrm{e}}_{2}\right|=\sin \lambda \theta$, then find λ.

Sol. $\quad \frac{1}{2}\left|\overline{\mathrm{e}}_{1}-\overline{\mathrm{e}}_{2}\right|=\sin \lambda \theta$
Squaring on both sides

$$
\begin{aligned}
& \Rightarrow \frac{1}{4}\left(\overline{\mathrm{e}}_{1}-\overline{\mathrm{e}}_{2}\right)^{2}=\sin ^{2} \lambda \theta \\
& \Rightarrow \frac{1}{4}\left[\left(\overline{\mathrm{e}}_{1}\right)^{2}+\left(\overline{\mathrm{e}}_{2}\right)^{2}-2 \overline{\mathrm{e}}_{1} \overline{\mathrm{e}}_{2}\right]=\sin ^{2} \lambda \theta \\
& \Rightarrow \frac{1}{4}\left[\overline{\mathrm{e}}_{1}^{2}+\overline{\mathrm{e}}_{2}^{2}-2\left|\overline{\mathrm{e}}_{1} \| \overline{\mathrm{e}}_{2}\right| \cos \theta\right]=\sin ^{2} \lambda \theta \\
& \Rightarrow \frac{1}{4}[1+1-2 \cos \theta]=\sin ^{2} \lambda \theta \\
& \Rightarrow \frac{1}{4}[2-2 \cos \theta]=\sin ^{2} \lambda \theta \\
& \Rightarrow \frac{2}{4}[1-\cos \theta]=\sin ^{2} \lambda \theta \\
& \Rightarrow \frac{1}{2}[1-\cos \theta]=\sin ^{2} \lambda \theta \\
& \Rightarrow \frac{1}{2}\left[2 \sin \frac{\theta}{2}\right]=\sin ^{2} \lambda \theta \\
& \Rightarrow \sin ^{2} \frac{\theta}{2}=\sin ^{2} \lambda \theta \\
& \Rightarrow \frac{\theta}{2}=\lambda \theta \Rightarrow \lambda=\frac{1}{2}
\end{aligned}
$$

6. Find the equation of the plane through the point $(3,-2,1)$ and perpendicular to the vector $(4,7,-4)$.

Sol. Let $\overline{\mathrm{a}}=3 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}+\overline{\mathrm{k}}, \overline{\mathrm{b}}=4 \overline{\mathrm{i}}-7 \overline{\mathrm{j}}-4 \overline{\mathrm{k}}$

Equation of the required plane will be in the form $\overline{\mathrm{r}} \cdot \overline{\mathrm{b}}=\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$

$$
\begin{aligned}
& \overline{\mathrm{r}} \cdot(4 \overline{\mathrm{i}}+7 \overline{\mathrm{j}}-4 \overline{\mathrm{k}})= \\
& \quad(3 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}+\overline{\mathrm{k}}) \cdot(4 \overline{\mathrm{i}}+7 \overline{\mathrm{j}}-4 \overline{\mathrm{k}}) \\
& \Rightarrow \overline{\mathrm{r}} \cdot(4 \overline{\mathrm{i}}+7 \overline{\mathrm{j}}-4 \overline{\mathrm{k}})=12-14-4 \\
& \Rightarrow \overline{\mathrm{r}} \cdot(4 \overline{\mathrm{i}}+7 \overline{\mathrm{j}}-4 \overline{\mathrm{k}})=-6
\end{aligned}
$$

7. If $|\overline{\mathrm{p}}|=2,|\overline{\mathrm{q}}|=3$ and $(\overline{\mathrm{p}}, \overline{\mathrm{q}})=\frac{\pi}{6}$, then find $|\overline{\mathrm{p}} \times \overline{\mathrm{q}}|^{2}$.

Sol. Given $|\overline{\mathrm{p}}|=2,|\overline{\mathrm{q}}|=3$ and $(\overline{\mathrm{p}}, \overline{\mathrm{q}})=\frac{\pi}{6}$

$$
\begin{aligned}
& |\overline{\mathrm{p}} \times \overline{\mathrm{q}}|^{2}=[|\overline{\mathrm{p}} \| \overline{\mathrm{q}}| \sin (\overline{\mathrm{p}}, \overline{\mathrm{q}})]^{2} \\
& \quad=\left[2 \cdot 3 \sin \frac{\pi}{6}\right]^{2}=\left[2 \cdot 3 \cdot \frac{1}{2}\right]^{2} \\
& |\overline{\mathrm{p}} \times \overline{\mathrm{q}}|^{2}=[3]^{2}=9 \\
& \Rightarrow|\overline{\mathrm{p}} \times \overline{\mathrm{q}}|^{2}=9
\end{aligned}
$$

8. If $\bar{a}=2 \bar{i}-3 \bar{j}+\bar{k}$ and $\bar{b}=\bar{i}+4 \bar{j}-2 \bar{k}$, then find $(\bar{a}+\bar{b}) \times(\bar{a}-\bar{b})$.

Sol. $\overline{\mathrm{a}}+\overline{\mathrm{b}}=3 \overline{\mathrm{i}}+\overline{\mathrm{j}}-\overline{\mathrm{k}}, \overline{\mathrm{a}}-\overline{\mathrm{b}}=\overline{\mathrm{i}}-7 \overline{\mathrm{j}}+3 \overline{\mathrm{k}}$

$$
\begin{aligned}
& (\overline{\mathrm{a}}+\overline{\mathrm{b}}) \times(\overline{\mathrm{a}}-\overline{\mathrm{b}})=\left|\begin{array}{ccc}
\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\
3 & 1 & -1 \\
1 & -7 & 3
\end{array}\right| \\
& =\overline{\mathrm{i}}(3-7)-\overline{\mathrm{j}}(9+1)+\overline{\mathrm{k}}(-21-1) \\
& (\overline{\mathrm{a}}+\overline{\mathrm{b}}) \times(\overline{\mathrm{a}}-\overline{\mathrm{b}})=-4 \overline{\mathrm{i}}-10 \overline{\mathrm{j}}-22 \overline{\mathrm{k}}
\end{aligned}
$$

9. If $4 \overline{\mathrm{i}}+\frac{2 \mathrm{p}}{3} \overline{\mathrm{j}}+\mathrm{p} \overline{\mathrm{k}}$ is parallel to the vector $\overline{\mathrm{i}}+2 \overline{\mathrm{j}}+3 \overline{\mathrm{k}}$, find \mathbf{p}.

Sol. Let $\overline{\mathrm{a}}=4 \overline{\mathrm{i}}+\frac{2 \mathrm{p}}{3} \overline{\mathrm{j}}+\mathrm{p} \overline{\mathrm{k}}, \overline{\mathrm{b}}=\overline{\mathrm{i}}+2 \overline{\mathrm{j}}+3 \overline{\mathrm{k}}$
From hyp. \bar{a} is parallel to \bar{b} then $\bar{a}=\lambda \bar{b}, \lambda$ is a scalar.

$$
\Rightarrow 4 \overline{\mathrm{i}}+\frac{2 \mathrm{p}}{3} \overline{\mathrm{j}}+\mathrm{p} \overline{\mathrm{k}}=\lambda[\overline{\mathrm{i}}+2 \overline{\mathrm{j}}+3 \overline{\mathrm{k}}]
$$

Comparing $\overline{\mathrm{i}}, \overline{\mathrm{j}}, \overline{\mathrm{k}}$ on both sides
$4=\lambda \Rightarrow \lambda=4$

$$
\frac{2 \mathrm{p}}{3}=2 \lambda \Rightarrow \mathrm{p}=3 \lambda \Rightarrow \mathrm{p}=12
$$

10. Compute $\bar{a} \times(\bar{b}+\bar{c})+\bar{b} \times(\bar{c}+\bar{a})+\bar{c} \times(\bar{a}+\bar{b})$.

Sol. $\bar{a} \times(\bar{b}+\bar{c})+\bar{b} \times(\bar{c}+\bar{a})+\bar{c} \times(\bar{a}+\bar{b})$

$$
\begin{aligned}
& =\bar{a} \times \bar{b}+\bar{a} \times \bar{c})+\bar{b} \times \bar{c}+\bar{b} \times \bar{a})+\bar{c} \times \bar{a}+\bar{c} \times \bar{b} \\
& =\bar{a} \times \bar{b}-\bar{c} \times \bar{a}-\bar{c} \times \bar{b}-\bar{a} \times \bar{b}+\bar{c} \times \bar{a}+\bar{c} \times \bar{b}=0
\end{aligned}
$$

11. Compute $2 \overline{\mathrm{j}} \times(3 \overline{\mathrm{i}}-4 \overline{\mathrm{k}})+(\overline{\mathrm{i}}+2 \overline{\mathrm{j}}) \times \overline{\mathrm{k}}$.

Sol. $\quad 2 \overline{\mathrm{j}} \times(3 \overline{\mathrm{i}}-4 \overline{\mathrm{k}})+(\overline{\mathrm{i}}+2 \overline{\mathrm{j}}) \times \overline{\mathrm{k}}$

$$
\begin{aligned}
& =6(\overline{\mathrm{j}} \times \overline{\mathrm{i}})-8(\overline{\mathrm{j}} \times \overline{\mathrm{k}})+(\overline{\mathrm{i}} \times \overline{\mathrm{k}})+2(\overline{\mathrm{j}} \times \overline{\mathrm{k}}) \\
& =-6 \overline{\mathrm{k}}-8 \overline{\mathrm{i}}-\overline{\mathrm{j}}+2 \overline{\mathrm{i}} \\
& =-6 \overline{\mathrm{i}}-\overline{\mathrm{j}}-6 \overline{\mathrm{k}}
\end{aligned}
$$

12. Find unit vector perpendicular to both $\bar{i}+\bar{j}+\bar{k}$ and $2 \bar{i}+\bar{j}+3 \bar{k}$.

Sol. Let $\bar{a}=\bar{i}+\bar{j}+\bar{k}$ and $\bar{b}=2 \bar{i}+\bar{j}+3 \bar{k}$

$$
\begin{aligned}
\overline{\mathrm{a}} \times \overline{\mathrm{b}} & =\left|\begin{array}{lll}
\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\
1 & 1 & 1 \\
2 & 1 & 3
\end{array}\right| \\
& =\overline{\mathrm{i}}(3-1)-\overline{\mathrm{j}}(3-2)+\overline{\mathrm{k}}(1-2) \\
& =2 \overline{\mathrm{i}}-\overline{\mathrm{j}}-\overline{\mathrm{k}} \\
|\overline{\mathrm{a}} \times \overline{\mathrm{b}}| & =\sqrt{6}
\end{aligned}
$$

Unit vector perpendicular to

$$
\overline{\mathrm{a}} \text { and } \overline{\mathrm{b}}= \pm \frac{\overline{\mathrm{a}} \times \overline{\mathrm{b}}}{|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|}= \pm \frac{2 \overline{\mathrm{i}}-\overline{\mathrm{j}}-\overline{\mathrm{k}}}{\sqrt{6}}
$$

13. If θ is the angle between the vectors $\bar{i}+\bar{j}$ and $\bar{j}+\bar{k}$, then find $\sin \theta$.

Sol. Let $\bar{a}=\bar{i}+\bar{j}$ and $\bar{b}=\bar{j}+\bar{k}$

$$
\begin{aligned}
& \overline{\mathrm{a}} \times \overline{\mathrm{b}}=\left|\begin{array}{ccc}
\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right| \\
& \\
& =\overline{\mathrm{i}}(1-0)-\overline{\mathrm{j}}(1-0)+\overline{\mathrm{k}}(1-0) \\
& \overline{\mathrm{a}} \times \overline{\mathrm{b}}
\end{aligned}=\overline{\mathrm{i}}-\overline{\mathrm{j}}+\overline{\mathrm{k}} .
$$

14. Find the area of the parallelogram having $\overline{\mathrm{a}}=2 \overline{\mathrm{j}}-\overline{\mathrm{k}}$ and $\overline{\mathrm{b}}=-\overline{\mathrm{i}}+\overline{\mathrm{k}}$ as adjacent sides.

Sol. Given $\bar{a}=2 \overline{\mathrm{j}}-\overline{\mathrm{k}}$ and $\overline{\mathrm{b}}=-\overline{\mathrm{i}}+\overline{\mathrm{k}}$
\therefore Area of parallelogram $=|\bar{a} \times \bar{b}|$

$$
=\left|\begin{array}{ccc}
\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\
0 & 2 & -1 \\
-1 & 0 & 1
\end{array}\right|=|2 \overline{\mathrm{i}}-\overline{\mathrm{j}}+2 \overline{\mathrm{k}}|=\sqrt{9}=3
$$

15. Find the area of the parallelogram whose diagonals are

 $3 \bar{i}+\bar{j}-2 \bar{k}$ and $\bar{i}-3 \bar{j}+4 \bar{k}$.Sol. Given $\overline{\mathrm{AC}}=3 \overline{\mathrm{i}}+\overline{\mathrm{j}}-2 \overline{\mathrm{k}}, \overline{\mathrm{BD}}=\overline{\mathrm{i}}-3 \overline{\mathrm{j}}+4 \overline{\mathrm{k}}$
Area of parallelogram $=\frac{1}{2}|\overline{\mathrm{AC}} \times \overline{\mathrm{BD}}|$

$$
\begin{aligned}
& =\frac{1}{2}\left|\begin{array}{ccc}
\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\
3 & 1 & -2 \\
1 & -3 & 4
\end{array}\right| \\
& =\left|\frac{1}{2}[\overline{\mathrm{i}}(4-6)-\overline{\mathrm{j}}(12+2)+\overline{\mathrm{k}}(-9-1)]\right| \\
& =\left|\frac{1}{2}[-2 \overline{\mathrm{i}}-14 \overline{\mathrm{j}}-10 \overline{\mathrm{k}}]\right|
\end{aligned}
$$

$=|-\overline{\mathrm{i}}-7 \overline{\mathrm{j}}-5 \overline{\mathrm{k}}|$
$=\sqrt{1+49+25}=\sqrt{75}$
\therefore Area of parallelogram $=5 \sqrt{3}$ sq.units.
16. Find the area of the triangle having $3 \overline{\mathrm{i}}+4 \overline{\mathrm{j}}$ and $-5 \overline{\mathrm{i}}+7 \overline{\mathrm{j}}$ as two of its sides.

Sol.

Given $\overline{\mathrm{AB}}=3 \overline{\mathrm{i}}+4 \overline{\mathrm{j}}, \overline{\mathrm{BC}}-5 \overline{\mathrm{i}}+7 \overline{\mathrm{j}}$
We know that,
$\overline{\mathrm{AB}}+\overline{\mathrm{BC}}+\overline{\mathrm{CA}}=0$
$\overline{\mathrm{CA}}=-\overline{\mathrm{AB}}-\overline{\mathrm{BC}}=-3 \overline{\mathrm{i}}-4 \overline{\mathrm{j}}+5 \overline{\mathrm{i}}-7 \overline{\mathrm{j}}$
$\overline{\mathrm{CA}}=2 \overline{\mathrm{i}}-11 \overline{\mathrm{j}}$
\therefore Area of $\triangle \mathrm{ABC}=\frac{1}{2}|\overline{\mathrm{AB}} \times \overline{\mathrm{AC}}|$
$=\frac{1}{2}\left|\begin{array}{ccc}\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\ 3 & 4 & 0 \\ 2 & -11 & 0\end{array}\right|=\frac{1}{2}[\overline{\mathrm{k}}(-33-8)]$
$=\left|\frac{-41 \overline{\mathrm{k}}}{2}\right|=\frac{41}{2}$

17. Find unit vector perpendicular to the plane determined by the vectors

 $\bar{a}=4 \overline{\mathrm{i}}+3 \overline{\mathrm{j}}-\overline{\mathrm{k}}$ and $\overline{\mathrm{b}}=2 \overline{\mathrm{i}}-6 \overline{\mathrm{j}}-3 \overline{\mathrm{k}}$.Sol. Given $\bar{a}=4 \bar{i}+3 \overline{\mathrm{j}}-\overline{\mathrm{k}}, \overline{\mathrm{b}}=2 \overline{\mathrm{i}}-6 \overline{\mathrm{j}}-3 \overline{\mathrm{k}}$

$$
\begin{aligned}
& \overline{\mathrm{a}} \times \overline{\mathrm{b}}=\left|\begin{array}{ccc}
\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\
4 & 3 & -1 \\
2 & -6 & -3
\end{array}\right| \\
& =\overline{\mathrm{i}}(-9-6)-\overline{\mathrm{j}}(-12+2)+\overline{\mathrm{k}}(-24-6) \\
& =-15 \overline{\mathrm{i}}+10 \overline{\mathrm{j}}-30 \overline{\mathrm{k}}=5(-3 \overline{\mathrm{i}}+2 \overline{\mathrm{j}}-6 \overline{\mathrm{k}})
\end{aligned}
$$

$|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|=5 \sqrt{9+4+36}=5 \times 7=35$
\therefore Unit vector perpendicular to both
$\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}= \pm \frac{\overline{\mathrm{a}} \times \overline{\mathrm{b}}}{|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|}= \pm \frac{-15 \overline{\mathrm{i}}+10 \overline{\mathrm{j}}-30 \overline{\mathrm{k}}}{35}$
18. If $|\bar{a}|=13,|\bar{b}|=5$ and $\bar{a} \cdot \bar{b}=60$, then find $|\bar{a} \times \bar{b}|$.

Sol. Given $|\bar{a}|=13,|\bar{b}|=5$ and $\bar{a} \cdot \bar{b}=60$
We know that

$$
\begin{aligned}
& |\overline{\mathrm{a}} \times \overline{\mathrm{b}}|^{2}=|\overline{\mathrm{a}}|^{2}|\overline{\mathrm{~b}}|^{2}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{~b}})^{2} \\
& \quad=169 \cdot 25-3600 \\
& \quad=25(169-144)=625 \\
& |\overline{\mathrm{a}} \times \overline{\mathrm{b}}|^{2}=625 \\
& \therefore|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|=25
\end{aligned}
$$

19. If $\bar{a}=\bar{i}-2 \bar{j}-3 \bar{k}, \bar{b}-2 \bar{i}+\bar{j}-\bar{k}, \bar{c}=\bar{i}+3 \bar{j}-2 \bar{k}$ then compute $\bar{a} \cdot(\bar{b} \times \bar{c})$.

Sol. Given $\bar{a}=\bar{i}-2 \bar{j}-3 \bar{k}, \bar{b}-2 \bar{i}+\bar{j}-\bar{k}, \bar{c}=\bar{i}+3 \bar{j}-2 \bar{k}$

$$
\begin{aligned}
& \overline{\mathrm{b}} \times \overline{\mathrm{c}}=\left|\begin{array}{ccc}
\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\
2 & 1 & -1 \\
1 & 3 & -2
\end{array}\right|=\overline{\mathrm{i}}+3 \overline{\mathrm{j}}+5 \overline{\mathrm{k}} \\
& \overline{\mathrm{a}} \cdot(\overline{\mathrm{~b}} \times \overline{\mathrm{c}})=(\overline{\mathrm{i}}-2 \overline{\mathrm{j}}-3 \overline{\mathrm{k}}) \cdot(\overline{\mathrm{i}}+3 \overline{\mathrm{j}}+5 \overline{\mathrm{k}}) \\
& \quad=1-6-15=-20 \\
& \therefore \overline{\mathrm{a}} \cdot(\overline{\mathrm{~b}} \times \overline{\mathrm{c}})=-20
\end{aligned}
$$

20. Simplify $(\bar{i}-2 \bar{j}+3 \bar{k}) \times(2 \bar{i}+\bar{j}-\bar{k}) \cdot(\bar{j}+\bar{k})$.

Sol. $\quad(\bar{i}-2 \bar{j}+3 \bar{k}) \times(2 \bar{i}+\bar{j}-\bar{k}) \cdot(\bar{j}+\bar{k})$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
1 & -2 & 3 \\
2 & 1 & -1 \\
0 & 1 & 1
\end{array}\right| \\
& =1(1+1)+2(2-0)+3(2-0) \\
& =2+4+6=12
\end{aligned}
$$

21. Find the volume of parallelepiped having co-terminous edges $\bar{i}+\bar{j}+\bar{k}, \bar{i}-\bar{j}$

 and $\overline{\mathrm{i}}+2 \overline{\mathrm{j}}-\overline{\mathrm{k}}$.Sol. Let $\overline{\mathrm{a}}=\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}}, \overline{\mathrm{b}}=\overline{\mathrm{i}}-\overline{\mathrm{j}}, \overline{\mathrm{c}}=\overline{\mathrm{i}}+2 \overline{\mathrm{j}}-\overline{\mathrm{k}}$
Volume of parallelepiped $=\left[\begin{array}{lll}\overline{\mathrm{a}} & \overline{\mathrm{b}} & \overline{\mathrm{c}}\end{array}\right]$
$=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 2 & -1\end{array}\right|$
$=1(1-0)-1(-1-0)+1(2+1)$
$=1+1+3=5$ Cubic units
22. Compute $\left[\begin{array}{lll}\bar{i}-\bar{j} & \bar{j}-\bar{k} & \bar{k}-\bar{i}\end{array}\right]$.

Sol. $\left[\begin{array}{lll}\overline{\mathrm{i}}-\overline{\mathrm{j}} & \overline{\mathrm{j}}-\overline{\mathrm{k}} & \overline{\mathrm{k}}-\overline{\mathrm{i}}\end{array}\right]=\left|\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1\end{array}\right|$

$$
\begin{aligned}
& =1(1-0)+1(0-1)+0(0+1) \\
& =1-1=0
\end{aligned}
$$

23. For non-coplanar vectors \bar{a}, \bar{b} and \bar{c} determine the value of p in order that $\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}, \overline{\mathrm{a}}+\mathrm{p} \overline{\mathrm{b}}+2 \overline{\mathrm{c}}$ and $-\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}$ are coplanar.

Sol. Let

$$
\overline{\mathrm{A}}=\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}, \overline{\mathrm{~B}}=\overline{\mathrm{a}}+\mathrm{p} \overline{\mathrm{~b}}+2 \overline{\mathrm{c}}, \overline{\mathrm{C}}=-\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}
$$

From hyp. Given vectors are coplanar.

$$
\begin{aligned}
& \text { Then }\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathrm{p} & 2 \\
-1 & 1 & 1
\end{array}\right|\left[\begin{array}{lll}
\overline{\mathrm{a}} & \overline{\mathrm{~b}} & \overline{\mathrm{c}}]=0 \\
\Rightarrow & {[1(\mathrm{p}-2)-1(1+2)+1(1+\mathrm{p})][\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]=0} \\
\Rightarrow & {[\mathrm{p}-2-3+1+\mathrm{p}][\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]=0} \\
& \quad\left[\because \left[\begin{array}{l}
\overline{\mathrm{a}} \mathrm{~b} \overline{\mathrm{c}}] \neq 0
\end{array}\right.\right. \\
\Rightarrow 2 \mathrm{p}-4=0 \\
\quad[\because \overline{\mathrm{a}}, \overline{\mathrm{~b}}, \overline{\mathrm{c}} \text { are non-coplanar vectors }] \\
\Rightarrow 2 \mathrm{p}=4 \\
\therefore \mathrm{p}=2
\end{array}\right. \\
&
\end{aligned}
$$

24. Find the volume of tetrahedron having the edges $\bar{i}+\bar{j}+\bar{k}, \bar{i}-\bar{j}$ and

 $\overline{\mathrm{i}}+2 \overline{\mathrm{j}}+\overline{\mathrm{k}}$.Sol. Let $\bar{a}=\bar{i}+\bar{j}+\bar{k}, \bar{b}=\bar{i}-\bar{j}, \bar{c}=\bar{i}+2 \bar{j}+\bar{k}$
\therefore Volume of the tetrahedraon
$=\frac{1}{6}\left[\begin{array}{lll}\overline{\mathrm{a}} & \overline{\mathrm{b}} & \overline{\mathrm{c}}\end{array}\right]$
$=\frac{1}{6}\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 2 & 1\end{array}\right|$
$=\frac{1}{6}[1(-1-0)-1(1-0)+1(2+1)]$
$=\frac{1}{6}[-1-1+3]$
$=\frac{1}{6}[1]=\frac{1}{6}$ cubic units
25. Let \bar{a}, \bar{b} and \bar{c} be non-coplanar vectors and $\alpha=\bar{a}+2 \bar{b}+3 \bar{c}, \beta=2 \bar{a}+\bar{b}-2 \bar{c}$ and $\gamma=3 \bar{a}-7 \bar{c}$ then find $\left[\begin{array}{lll}\alpha & \beta & \gamma\end{array}\right]$.

Sol. $\quad\left[\begin{array}{lll}\alpha & \beta & \gamma\end{array}\right]=\left|\begin{array}{ccc}1 & 2 & 3 \\ 2 & 1 & -2 \\ 3 & 0 & -7\end{array}\right|\left[\begin{array}{lll}\overline{\mathrm{a}} & \bar{b} & \bar{c}\end{array}\right]$

$$
\begin{aligned}
& =[1(-7-0)-2(-14+6)+3(0-3)][\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}] \\
& =[-7+16-9][\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}] \\
& =0[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]=0
\end{aligned}
$$

26. Prove that $\bar{a} \times[\bar{a} \times(\bar{a} \times \bar{b})]=(\bar{a} \cdot \bar{a})(\bar{b} \times \bar{a})$.

Sol. $\quad \bar{a} \times[\bar{a} \times(\bar{a} \times \bar{b})]=\bar{a} \times[(\bar{a} \cdot \bar{b}) \bar{a}-(\bar{a} \cdot \bar{a}) \bar{b}]$

$$
\begin{aligned}
& =(\overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}) \overline{\mathrm{a}} \times \overline{\mathrm{a}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{a}}) \overline{\mathrm{a}} \times \overline{\mathrm{b}}(\because \overline{\mathrm{~b}} \times \overline{\mathrm{a}}=-\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \\
& =(\overline{\mathrm{a}} \cdot \overline{\mathrm{~b}})(0)+(\overline{\mathrm{a}} \cdot \overline{\mathrm{a}})(\overline{\mathrm{b}} \times \overline{\mathrm{a}}) \\
& \overline{\mathrm{a}} \times[\overline{\mathrm{a}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{b}})]=(\overline{\mathrm{a}} \cdot \overline{\mathrm{a}})(\overline{\mathrm{b}} \times \overline{\mathrm{a}})
\end{aligned}
$$

27. If $\bar{a}, \bar{b}, \bar{c}$ and \bar{d} are coplanar vectors then show that $(\bar{a} \times \bar{b}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})=0$.

Sol. If $\bar{a}, \bar{b}, \bar{c}$ are coplanar $\Leftrightarrow[\bar{a} \bar{b} \bar{c}]=0$

$$
\begin{aligned}
& (\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})=[(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{d}}] \cdot \overline{\mathrm{c}}-[(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{c}}] \overline{\mathrm{d}} \\
& \quad=[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{~d}}] \overline{\mathrm{c}}-[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}] \overline{\mathrm{d}} \\
& \quad=\overline{0} \cdot \overline{\mathrm{c}}-\overline{\mathrm{o}} \cdot \overline{\mathrm{~d}} \quad[\because \quad \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \text { are coplanar }] \\
& \therefore(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})=\overline{0}
\end{aligned}
$$

28. Show that $[(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{a}} \times \overline{\mathrm{c}})] \cdot \overline{\mathrm{d}}=(\overline{\mathrm{a}} \cdot \overline{\mathrm{d}})[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$.

Sol. $[(\bar{a} \times \bar{b}) \times(\bar{a} \times \bar{c})] \cdot \bar{d}$

$$
\begin{aligned}
& =[(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{c}}] \overline{\mathrm{a}}-[(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{a}} \overline{\mathrm{c}}] \cdot \overline{\mathrm{d}} \\
& =[[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}] \overline{\mathrm{a}}-[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{a}}] \overline{\mathrm{c}}] \cdot \overline{\mathrm{d}} \\
& =[[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}] \overline{\mathrm{a}}-0 \cdot \overline{\mathrm{c}}] \cdot \overline{\mathrm{d}} \\
& =[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}] \cdot \overline{\mathrm{a}} \cdot \overline{\mathrm{~d}} \quad(\because \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}=\overline{\mathrm{b}} \cdot \overline{\mathrm{a}}) \\
& \therefore[(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{a}} \times \overline{\mathrm{c}})] \cdot \overline{\mathrm{d}}=(\overline{\mathrm{a}} \cdot \overline{\mathrm{~d}})[\overline{\mathrm{a}} \overline{\mathrm{c}}]
\end{aligned}
$$

29. Show that $\bar{a} \cdot[(\bar{b}+\bar{c}) \times[\bar{a}+\bar{b}+\bar{c}]]=0$.

Sol. L.H.S $=\overline{\mathrm{a}} \cdot[(\overline{\mathrm{b}}+\overline{\mathrm{c}}) \times[\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}]]$

$$
\begin{aligned}
& =\overline{\mathrm{a}} \cdot[\overline{\mathrm{~b}} \times \overline{\mathrm{a}}+\overline{\mathrm{b}} \times \overline{\mathrm{b}}+\overline{\mathrm{b}} \times \overline{\mathrm{c}}+\overline{\mathrm{c}} \times \overline{\mathrm{a}}+\overline{\mathrm{c}} \times \overline{\mathrm{b}}+\overline{\mathrm{c}} \times \overline{\mathrm{c}}] \\
& =\overline{\mathrm{a}} \cdot[\overline{\mathrm{~b}} \times \overline{\mathrm{a}}+0-\overline{\mathrm{c}} \times \overline{\mathrm{b}}+\overline{\mathrm{c}} \times \overline{\mathrm{a}}+\overline{\mathrm{c}} \times \overline{\mathrm{b}}+0] \\
& =\overline{\mathrm{a}} \cdot[\overline{\mathrm{~b}} \times \overline{\mathrm{a}}+\overline{\mathrm{c}} \times \overline{\mathrm{a}}] \\
& =\overline{\mathrm{a}} \cdot(\overline{\mathrm{~b}} \times \overline{\mathrm{a}})+\overline{\mathrm{a}} \cdot(\overline{\mathrm{c}} \times \overline{\mathrm{a}}) \\
& =[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{a}}]+[\overline{\mathrm{a}} \overline{\mathrm{c}} \overline{\mathrm{a}}] \\
& =0+0=0=\text { R.H.S. }
\end{aligned}
$$

30. If \bar{a}, \bar{b} and \bar{c} are unit vectors then find $\left[\begin{array}{lll}2 \bar{a}-\bar{b} & 2 \bar{b}-\bar{c} & 2 \bar{c}-\bar{a}\end{array}\right]$.

Sol. $\left[\begin{array}{llll}2 \bar{a}-\bar{b} & 2 \bar{b}-\bar{c} & 2 \bar{c}-\bar{a}\end{array}\right]$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
2 & -1 & 0 \\
0 & 2 & -1 \\
-1 & 0 & 2
\end{array}\right|\left[\begin{array}{lll}
\overline{\mathrm{a}} & \overline{\mathrm{~b}} & \overline{\mathrm{c}}
\end{array}\right] \\
& =[2(4-0)+1(0-1)+0(0-2)]\left[\begin{array}{lll}
\overline{\mathrm{a}} & \overline{\mathrm{~b}} & \overline{\mathrm{c}}
\end{array}\right] \\
& =[2 \times 4-1](0) \\
& =[8-1](0) \\
& =[7](0)=0
\end{aligned}
$$

31. Show that $(\bar{a}+\bar{b}) \cdot(\bar{b}+\bar{c}) \times(\bar{c}+\bar{a})=2[\bar{a} \bar{b} \bar{c}]$.

Sol. We know that $\bar{a} \cdot(\bar{b} \times \bar{c})=(\bar{a} \bar{b} \bar{c})$

$$
\begin{aligned}
& (\bar{a}+\bar{b}) \cdot(\bar{b}+\bar{c}) \times(\overline{\mathrm{c}}+\overline{\mathrm{a}})=\left|\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right|\left[\begin{array}{ll}
\overline{\mathrm{a}} & \overline{\mathrm{~b}} \\
\bar{c}
\end{array}\right] \\
& =[1(1-0)-1(0-1)+0(0-1)]\left[\begin{array}{lll}
\overline{\mathrm{a}} & \overline{\mathrm{~b}} & \bar{c}]=(1+1)\left[\begin{array}{lll}
\overline{\mathrm{a}} & \overline{\mathrm{~b}} & \bar{c}]
\end{array}\right. \\
=2\left[\begin{array}{lll}
\overline{\mathrm{a}} & \overline{\mathrm{~b}} & \bar{c}
\end{array}\right]
\end{array}\right.
\end{aligned}
$$

32. Find the equation of the plane passing through (a, b, c) and parallel to the plane $\overline{\mathrm{r}} \cdot(\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}})=2$.
Sol. Cartesian form of the given plane is

$$
x+y+z=2
$$

Equation of the required plane will be in the form $\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{k}$
Since it is passing through ($\mathrm{a}, \mathrm{b}, \mathrm{c}$)
$a+b+c=k$
Required plane is

$$
x+y+z=a+b+c
$$

Its vector form is: $\overline{\mathrm{r}} \cdot(\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}})=\mathrm{a}+\mathrm{b}+\mathrm{c}$.
33. Let \bar{a} and \bar{b} be non-zero, non collinear vectors. If $|\bar{a}+\bar{b}|=|\bar{a}-\bar{b}|$, then find the angle between \bar{a} and \bar{b}.

Sol. $|\bar{a}+\bar{b}|=|\bar{a}-\bar{b}|$

$$
\begin{aligned}
& \Rightarrow|\bar{a}+\bar{b}|^{2}=|\bar{a}-\bar{b}|^{2} \\
& \Rightarrow(\bar{a}+\bar{b})(\bar{a}+\bar{b})=(\bar{a}-\bar{b})(\bar{a}-\bar{b}) \\
& \Rightarrow \bar{a}^{2}+2 \bar{a} \bar{b}+\bar{b}^{2}=\bar{a}^{2}-2 \bar{a} \bar{b}+\bar{b}^{2} \\
& \Rightarrow 4 \overline{\mathrm{a}}=0 \Rightarrow \bar{a} \cdot \bar{b}=0
\end{aligned}
$$

Angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ is 90°.
34. Let \bar{a}, \bar{b} and \bar{c} be unit vectors such that \bar{b} is not parallel to \bar{c} and $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\frac{1}{2} \overline{\mathrm{~b}}$. Find the angles made $y \overline{\mathrm{a}}$ with each of $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$.

Sol. $\frac{1}{2} \bar{b}=\bar{a} \times(\bar{b} \times \bar{c})=(\bar{a} \cdot \bar{c}) \bar{b}-(\bar{a} \cdot \bar{b}) \bar{c}$
Such \bar{b} and \bar{c} are non-coplanar vectors, equating corresponding coefficients on both sides, $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=\frac{1}{2}$ and $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=0$.
$\therefore \overline{\mathrm{a}}$ makes angle $\pi / 3$ with $\overline{\mathrm{c}}$ and is perpendicular to $\overline{\mathrm{b}}$.
35. For any four vectors $\bar{a}, \bar{b}, \bar{c}$ and \bar{d}, prove that $(\bar{b} \times \bar{c}) \cdot(\bar{a} \times \bar{d})+(\bar{c} \times \bar{a}) \cdot(\bar{b} \times \bar{d})+$ $(\bar{a} \times \bar{b}) \cdot(\bar{c} \times \bar{d})=0$.

Sol. L.H.S. =
$=\left|\begin{array}{ll}\overline{\mathrm{b}} \cdot \overline{\mathrm{a}} & \overline{\mathrm{b}} \cdot \overline{\mathrm{d}} \\ \overline{\mathrm{c}} \cdot \overline{\mathrm{a}} & \overline{\mathrm{c}} \cdot \overline{\mathrm{d}}\end{array}\right|+\left|\begin{array}{ll}\overline{\mathrm{c}} \cdot \overline{\mathrm{b}} & \overline{\mathrm{c}} \cdot \overline{\mathrm{d}} \\ \overline{\mathrm{a}} \cdot \overline{\mathrm{b}} & \overline{\mathrm{a}} \cdot \overline{\mathrm{d}}\end{array}\right|+\left|\begin{array}{ll}\overline{\mathrm{a}} \cdot \overline{\mathrm{c}} & \overline{\mathrm{a}} \cdot \overline{\mathrm{d}} \\ \overline{\mathrm{b}} \cdot \overline{\mathrm{c}} & \overline{\mathrm{b}} \cdot \overline{\mathrm{d}}\end{array}\right|$
$=(\bar{b} \cdot \bar{a})(\bar{c} \cdot \bar{d})-(\bar{b} \cdot \bar{d})(\bar{c} \cdot \bar{a})+(\bar{c} \cdot \bar{b})(\bar{a} \cdot \bar{d})-(\bar{a} \cdot \bar{b})(\bar{c} \cdot \bar{d})+(\bar{a} \cdot \bar{c})(\bar{b} \cdot \bar{d})-(\bar{a} \cdot \bar{d})(\bar{b} \cdot \bar{c})=0$
36. Find the distance of a point $(2,5,-3)$ from the plane $\bar{r} \cdot(6 \bar{i}-3 \overline{\mathrm{j}}+2 \overline{\mathrm{k}})=4$.

Sol. Here $\bar{a}=2 \bar{i}+5 \overline{\mathrm{j}}-3 \overline{\mathrm{k}}, \mathrm{N}=6 \overline{\mathrm{i}}-3 \overline{\mathrm{j}}+2 \overline{\mathrm{k}}$, and $\mathrm{d}=4$.
\therefore The distance of the point $(2,5,-3)$ from the given plane is
$\frac{|(2 \overline{\mathrm{i}}+5 \overline{\mathrm{j}}-3 \overline{\mathrm{k}})(6 \overline{\mathrm{i}}-3 \overline{\mathrm{j}}+2 \overline{\mathrm{k}})-4|}{|6 \overline{\mathrm{i}}-3 \overline{\mathrm{j}}+2 \overline{\mathrm{k}}|}$
$=\frac{|12-15-6-4|}{\sqrt{36+9+4}}=\frac{13}{7}$
37. Find the angle between the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 x+2 y-11 z=3$.

Sol. Let ϕ be the angle between the given line and the normal to the plane.
Converting the given equations into vector form, we have

$$
\overline{\mathrm{r}}=(-\overline{\mathrm{i}}+3 \overline{\mathrm{k}})+\lambda(2 \overline{\mathrm{i}}+3 \overline{\mathrm{j}}+6 \overline{\mathrm{k}})
$$

and $\overline{\mathrm{r}} \cdot(10 \overline{\mathrm{i}}+2 \overline{\mathrm{j}}-11 \overline{\mathrm{k}})=3$
Here,

$$
\begin{aligned}
& \mathrm{b}=2 \overline{\mathrm{i}}+3 \overline{\mathrm{j}}+6 \overline{\mathrm{k}} \text { and } \mathrm{n}=10 \overline{\mathrm{i}}+2 \overline{\mathrm{j}}-11 \overline{\mathrm{k}} \\
& \begin{aligned}
\sin \phi & =\frac{(2 \overline{\mathrm{i}}+3 \overline{\mathrm{j}}+6 \overline{\mathrm{k}}) \cdot(10 \overline{\mathrm{i}}+2 \overline{\mathrm{j}}-11 \overline{\mathrm{k}})}{\sqrt{2^{2}+3^{2}+6^{2}} \sqrt{10^{2}+2^{2}+11^{2}}} \\
& =\left|\frac{-40}{7 \times 15}\right|=\frac{8}{21} \\
\Rightarrow \phi & =\sin ^{-1}\left(\frac{8}{21}\right)
\end{aligned}
\end{aligned}
$$

38. If $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}$ and $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\overline{\mathrm{a}} \times \overline{\mathrm{c}}, \mathrm{a} \neq 0$ then show that $\overline{\mathrm{b}}=\overline{\mathrm{c}}$.

Sol. Given that,

$$
\begin{align*}
& \bar{a} \cdot \bar{b}=\bar{a} \cdot \bar{c} \Rightarrow \bar{a}(\bar{b}-\bar{c})=0 \tag{1}\\
& \bar{a} \times \bar{b}=\bar{a} \times \bar{c} \Rightarrow \bar{a} \times(\bar{b}-\bar{c})=0 . \tag{2}
\end{align*}
$$

From (1) and (2) it is evident that, the vector $(\bar{b}-\bar{c})$ cannot be both perpendicular to \bar{a} and parallel to $\overline{\mathrm{a}}$.

Unless it is zero
$\therefore \overline{\mathrm{b}}-\overline{\mathrm{c}}=0(\overline{\mathrm{a}} \neq 0)$
$\therefore \overline{\mathrm{b}}=\overline{\mathrm{c}}$

SAQ'S

39. If $|\bar{a}|=2,|\bar{b}|=3$ and $|\bar{c}|=4$ and each of $\bar{a}, \bar{b}, \bar{c}$ is perpendicular to the sum of the other two vectors, then find the magnitude of $\bar{a}+\bar{b}+\bar{c}$.

Sol. $\bar{a} \perp(\bar{b}+\bar{c})$

$$
\begin{align*}
\Rightarrow & \overline{\mathrm{a}} \cdot(\overline{\mathrm{~b}}+\overline{\mathrm{c}})=0 \\
\Rightarrow & \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}+\overline{\mathrm{c}} \cdot \overline{\mathrm{a}}=0 \tag{1}\\
& \overline{\mathrm{~b}} \perp(\overline{\mathrm{c}}+\overline{\mathrm{a}}) \\
\Rightarrow & \overline{\mathrm{b}} \cdot(\overline{\mathrm{c}}+\overline{\mathrm{a}}) \\
\Rightarrow & \overline{\mathrm{b}} \cdot \overline{\mathrm{c}}+\overline{\mathrm{b}} \cdot \overline{\mathrm{a}}=0 \tag{2}\\
& \overline{\mathrm{c}} \perp(\overline{\mathrm{a}}+\overline{\mathrm{b}}) \\
\Rightarrow & \overline{\mathrm{c}} \cdot(\overline{\mathrm{a}}+\overline{\mathrm{b}})=0 \\
\Rightarrow & \overline{\mathrm{c}} \cdot \overline{\mathrm{a}}+\overline{\mathrm{c}} \cdot \overline{\mathrm{~b}}=0 \tag{3}
\end{align*}
$$

$(1)+(2)+(3) \Rightarrow$
$2[\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}+\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}+\overline{\mathrm{c}} \cdot \overline{\mathrm{a}}]=0$
$\Rightarrow \overline{\mathrm{a}} \cdot \overline{\mathrm{b}}+\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}+\overline{\mathrm{c}} \cdot \overline{\mathrm{a}}=0$

Consider

$$
\begin{aligned}
\mid \overline{\mathrm{a}} & +\overline{\mathrm{b}}+\left.\overline{\mathrm{c}}\right|^{2}=(\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}})^{2} \\
& =(\overline{\mathrm{a}})^{2}+(\overline{\mathrm{b}})^{2}+(\overline{\mathrm{c}})^{2}+2(\overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}+\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}+\overline{\mathrm{c}} \cdot \overline{\mathrm{a}}) \quad=2^{2}+3^{2}+4^{2} \\
& =|\overline{\mathrm{a}}|^{2}+|\overline{\mathrm{b}}|^{2}+|\overline{\mathrm{c}}|^{2}+0(\because \operatorname{from}(4)) \\
& =4+9+16=29 \\
\mid \overline{\mathrm{a}} & +\overline{\mathrm{b}}+\overline{\mathrm{c}} \mid=\sqrt{29}
\end{aligned}
$$

40. Let $\bar{a}=\bar{i}+\bar{j}+\bar{k}$ and $\bar{b}=2 \bar{i}+3 \bar{j}+\bar{k}$ find
i) The projection vector of \bar{b} on \bar{a} and its magnitude.
ii) The vector components of \bar{b} in the direction of \bar{a} and perpendicular to \bar{a}.

Sol. Given that $\bar{a}=\bar{i}+\bar{j}+\bar{k}, \bar{b}=2 \bar{i}+3 \bar{j}+\bar{k}$
i) Then projection of \bar{b} on $\bar{a}=\frac{\bar{a} \cdot \bar{b}}{|\bar{a}|^{2}} \cdot \bar{a}$

$$
\begin{aligned}
& =\frac{(\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}}) \cdot(2 \overline{\mathrm{i}}+3 \overline{\mathrm{j}}+3 \overline{\mathrm{k}})}{|\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}}|^{2}} \cdot|\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}}| \\
& =\frac{2+3+1}{(\sqrt{3})^{2} \cdot \overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}}} \\
& =\frac{6(\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}})}{3}=2(\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}})
\end{aligned}
$$

Magnitude $=\frac{|\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}|}{|\overline{\mathrm{a}}|}=\frac{|(\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}}) \cdot(2 \overline{\mathrm{i}}+3 \overline{\mathrm{j}}+\overline{\mathrm{k}})|}{|\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}}|}$
$=\frac{|2+3+1|}{|\sqrt{3}|}=\frac{6}{\sqrt{3}}=2 \sqrt{3}$ unit
ii) The component vector of \bar{b} in the direction of $\bar{a}=\frac{(\bar{a} \cdot \bar{b})}{|\bar{a}|^{2}} \cdot \bar{a}$ $=2(\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}})(\because$ from $10(\mathrm{i}))$

The vector component of \bar{b} perpen-dicular to \bar{a}.

$$
\begin{aligned}
& =\overline{\mathrm{b}}-\frac{(\overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}) \overline{\mathrm{a}}}{|\overline{\mathrm{a}}|^{2}}=(2 \overline{\mathrm{i}}+3 \overline{\mathrm{j}}+\overline{\mathrm{k}})-2(\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}}) \\
& =2 \overline{\mathrm{i}}+3 \overline{\mathrm{j}}+\overline{\mathrm{k}}-2 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}-2 \overline{\mathrm{k}}=\overline{\mathrm{j}}-\overline{\mathrm{k}}
\end{aligned}
$$

41. If $\bar{a}+\bar{b}+\bar{c}=0,|\bar{a}|=3,|\bar{b}|=5$ and $|\bar{c}|=7$ then find the angle between \bar{a} and \bar{b}.

Sol. Given $|\bar{a}|=3,|\bar{b}|=5,|\bar{c}|=7$ and

$$
\begin{aligned}
& \bar{a}+\bar{b}+\bar{c}=0 \\
& \bar{a}+\bar{b}=-\bar{c}
\end{aligned}
$$

Squaring on both sides

$$
\begin{aligned}
& \overline{\mathrm{a}}^{2}+\overline{\mathrm{b}}^{2}+2 \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}=\overline{\mathrm{c}}^{2} \\
& \Rightarrow|\overline{\mathrm{a}}|^{2}+|\overline{\mathrm{b}}|^{2}\left|2[|\overline{\mathrm{a}}||\overline{\mathrm{b}}| \cos (\overline{\mathrm{a}}, \overline{\mathrm{~b}})]=|\overline{\mathrm{c}}|^{2}\right. \\
& \Rightarrow 9+25+2[3.5 \cos (\overline{\mathrm{a}}, \overline{\mathrm{~b}})]=49 \\
& \Rightarrow 2[15 \cos (\overline{\mathrm{a}}, \overline{\mathrm{~b}})]=49-34 \\
& \Rightarrow \cos (\overline{\mathrm{a}}, \overline{\mathrm{~b}})=\frac{15}{30} \\
& \Rightarrow \cos (\overline{\mathrm{a}}, \overline{\mathrm{~b}})=\frac{1}{2}=\cos \frac{\pi}{3} \\
& \Rightarrow(\overline{\mathrm{a}}, \overline{\mathrm{~b}})=\frac{\pi}{3}
\end{aligned}
$$

\therefore Angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ is 60°.
42. Find the equation of the plane passing through the point $\bar{a}=2 \bar{i}+3 \overline{\mathrm{j}}-\overline{\mathrm{k}}$ and perpendicular to the vector $3 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}-2 \overline{\mathrm{k}}$ and the distance of this plane from the origin.

Sol. Let $\overline{\mathrm{a}}=2 \overline{\mathrm{i}}+3 \overline{\mathrm{j}}-\overline{\mathrm{k}}$ and $\overline{\mathrm{b}}=3 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}-2 \overline{\mathrm{k}}$
Equation of the required plane is

$$
\begin{aligned}
& \overline{\mathrm{r}} \cdot \overline{\mathrm{~b}}=\overline{\mathrm{a}} \cdot \overline{\mathrm{~b}} \\
& \overline{\mathrm{r}} \cdot(3 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}-2 \overline{\mathrm{k}})= \\
& \quad(2 \overline{\mathrm{i}}+3 \overline{\mathrm{j}}-\overline{\mathrm{k}}) \cdot(3 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}-2 \overline{\mathrm{k}}) \\
& \quad=6-6+2 \\
& \overline{\mathrm{r}} \cdot(3 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}-2 \overline{\mathrm{k}})=2
\end{aligned}
$$

Its Cartesian form is

$$
\begin{aligned}
& (x \overline{\mathrm{i}}+\mathrm{y} \overline{\mathrm{j}}+\mathrm{z} \overline{\mathrm{k}}) \cdot(3 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}-2 \overline{\mathrm{k}})=2 \\
& \Rightarrow 3 \mathrm{x}-2 \mathrm{y}-2 \mathrm{z}=2
\end{aligned}
$$

Perpendicular distance from the origin to the above plane is

$$
\frac{|\overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}|}{|\overline{\mathrm{b}}|}=\frac{2}{\sqrt{9+4+4}}=\frac{2}{\sqrt{17}}
$$

43. If $\bar{a}=2 \bar{i}+\bar{j}-\bar{k}, \bar{b}=-\bar{i}+2 \bar{j}-4 \bar{k}$ and $\bar{c}=\bar{i}+\bar{j}+\bar{k}$ then find $(\bar{a} \times \bar{b}) \cdot(\bar{b} \times \bar{c})$.

Sol. $\quad \overline{\mathrm{a}} \times \overline{\mathrm{b}}=\left|\begin{array}{ccc}\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\ 2 & 1 & -1 \\ -1 & 2 & -4\end{array}\right|$

$$
\begin{aligned}
& =\overline{\mathrm{i}}(-4+2)-\overline{\mathrm{j}}(-8-1)+\overline{\mathrm{k}}(4+1) \\
& =-2 \overline{\mathrm{i}}+9 \overline{\mathrm{j}}+5 \overline{\mathrm{k}} \\
\overline{\mathrm{~b}} \times \overline{\mathrm{c}} & =\left|\begin{array}{ccc}
\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\
-1 & 2 & -4 \\
1 & 1 & 1
\end{array}\right| \\
& =\overline{\mathrm{i}}(2+4)-\overline{\mathrm{j}}(-1+4)+\overline{\mathrm{k}}(-1-2) \\
& =6 \overline{\mathrm{i}}-3 \overline{\mathrm{j}}-3 \overline{\mathrm{k}}
\end{aligned}
$$

$$
(\bar{a} \times \bar{b}) \cdot(\bar{b} \times \bar{c})
$$

$$
\begin{aligned}
& =(-2 \overline{\mathrm{i}}+9 \overline{\mathrm{j}}+5 \overline{\mathrm{k}}) \cdot(6 \overline{\mathrm{i}}-3 \overline{\mathrm{j}}-3 \overline{\mathrm{k}}) \\
& =-12-27-15=-54
\end{aligned}
$$

44. If $\bar{a}, \bar{b}, \bar{c}$ are unit vectors such that \bar{a} is perpendicular to the plane of \bar{b}, \bar{c} and the angle between \bar{b} and \bar{c} is $\pi / 3$, then find $|\bar{a}+\bar{b}+\bar{c}|$.

Sol. \bar{a} perpendicular to plane contain \bar{b} and \bar{c}.

$$
\Rightarrow \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}=0, \overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=0
$$

Consider

$$
\begin{aligned}
& |\bar{a}+\bar{b}+\bar{c}|^{2}=(\bar{a}+\bar{b}+\bar{c})^{2} \\
& =\bar{a}^{2}+\bar{b}^{2}+\bar{c}^{2}+2 \bar{a} \bar{b}+2 \bar{b} \bar{c}+2 \bar{c} \bar{a} \\
& =|\bar{a}|^{2}+|\bar{b}|^{2}+|\bar{c}|^{2}+0 \\
& \\
& \quad+2|\bar{b}||\bar{c}| \cos (\bar{b}, \bar{c})+0
\end{aligned}
$$

$$
\begin{aligned}
& =1+1+2+2(1)(1) \cos \frac{\pi}{3} \\
& =3+2 \times \frac{1}{2}=3+1=4 \\
& \therefore|\bar{a}+\bar{b}+\bar{c}|=2
\end{aligned}
$$

45. If $\bar{a}=2 \bar{i}+3 \bar{j}+4 \bar{k}, \bar{b}=\bar{i}+\bar{j}-\bar{k}$ and $\bar{c}=\bar{i}-\bar{j}+\bar{k}$ then compute $\bar{a} \times(\bar{b} \times \bar{c})$ and verify that it is perpendicular to a.

Sol. Given $\bar{a}=2 \bar{i}+3 \overline{\mathrm{j}}+4 \overline{\mathrm{k}}, \overline{\mathrm{b}}=\overline{\mathrm{i}}+\overline{\mathrm{j}}-\overline{\mathrm{k}}, \overline{\mathrm{c}}=\overline{\mathrm{i}}-\overline{\mathrm{j}}+\overline{\mathrm{k}}$

$$
\begin{aligned}
& \overline{\mathrm{b}} \times \overline{\mathrm{c}}=\left|\begin{array}{ccc}
\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\
1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right|=\overline{\mathrm{i}}(1-1)-\overline{\mathrm{j}}(1+1)+\overline{\mathrm{k}}(-1-1)=-2 \overline{\mathrm{j}}-2 \overline{\mathrm{k}} \\
& \overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\left|\begin{array}{ccc}
\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\
2 & 3 & 4 \\
0 & -2 & -2
\end{array}\right|=\overline{\mathrm{i}}(-6+8)-\overline{\mathrm{j}}(-4-0)+\overline{\mathrm{k}}(-4-0)=2 \overline{\mathrm{i}}+4 \overline{\mathrm{j}}-4 \overline{\mathrm{k}} \\
& (\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}}) \cdot \overline{\mathrm{a}}=(2 \overline{\mathrm{i}}+4 \overline{\mathrm{j}}-4 \overline{\mathrm{k}}) \cdot(2 \overline{\mathrm{i}}+3 \overline{\mathrm{j}}+4 \overline{\mathrm{k}}) \\
& =4+12-16=16-16=0
\end{aligned}
$$

$\therefore \overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$ is perpendicular to $\overline{\mathrm{a}}$.
46. Let \bar{a}, \bar{b} and \bar{c} are non-coplanar vectors prove that if $\left[\begin{array}{lll}\bar{a}+2 \bar{b} & 2 \bar{b}+\bar{c} \quad 5 \bar{c}+\bar{a}\end{array}\right]=$ $\lambda[\bar{a} \bar{b} \bar{c}]$, then find λ.
Sol. Given

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\overline{\mathrm{a}}+2 \overline{\mathrm{~b}} & 2 \overline{\mathrm{~b}}+\overline{\mathrm{c}} & 5 \overline{\mathrm{c}}+\overline{\mathrm{a}}]=\lambda[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}] \\
& \left|\begin{array}{lll}
1 & 2 & 0 \\
0 & 2 & 1 \\
1 & 0 & 5
\end{array}\right|[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]=\lambda[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}] \\
\Rightarrow[1(10-0)-2(0-1)+0(0-2)] \\
\quad[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]=\lambda[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}] \\
\Rightarrow(10+2)[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]=\lambda[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}] \\
\therefore \lambda=12
\end{array}\right.} \\
&
\end{aligned}
$$

47. If $\bar{a}=\bar{i}-2 \bar{j}-3 \bar{k}, \bar{b}=2 \bar{i}+\bar{j}-\bar{k}$ and $\bar{c}=\bar{i}+3 \bar{j}-2 \bar{k}$ verify that $\bar{a} \times(\bar{b} \times \bar{c}) \neq(\bar{a} \times \bar{b}) \times \bar{c}$.

Sol. $\quad \overline{\mathrm{b}} \times \overline{\mathrm{c}}=\left|\begin{array}{ccc}\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\ 2 & 1 & -1 \\ 1 & 3 & -2\end{array}\right|$

$$
\begin{aligned}
& =\overline{\mathrm{i}}(-2+3)-\overline{\mathrm{j}}(-4+1)+\overline{\mathrm{k}}(6-1) \\
\overline{\mathrm{b}} \times \overline{\mathrm{c}} & =\overline{\mathrm{i}}+3 \overline{\mathrm{j}}+5 \overline{\mathrm{k}}
\end{aligned}
$$

$$
\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\left|\begin{array}{ccc}
\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\
1 & -2 & -3 \\
1 & 3 & 5
\end{array}\right|=\overline{\mathrm{i}}(-10+9)-\overline{\mathrm{j}}(5+3)+\overline{\mathrm{k}}(3+2)
$$

$$
\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=-\overline{\mathrm{i}}-8 \overline{\mathrm{j}}+5 \overline{\mathrm{k}}
$$

$$
\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\left|\begin{array}{ccc}
\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\
1 & -2 & -3 \\
2 & 1 & -1
\end{array}\right|=\overline{\mathrm{i}}(2+3)-\overline{\mathrm{j}}(-1+6)+\overline{\mathrm{k}}(1+4)
$$

$$
\overline{\mathrm{a}} \times \overline{\mathrm{b}}=5 \overline{\mathrm{i}}-5 \overline{\mathrm{j}}+5 \overline{\mathrm{k}}
$$

$$
(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}=\left|\begin{array}{ccc}
\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\
5 & -5 & 5 \\
1 & 3 & -2
\end{array}\right|=\overline{\mathrm{i}}(10-15)-\overline{\mathrm{j}}(-10-5)+\overline{\mathrm{k}}(15+5)
$$

$$
(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}=-5 \overline{\mathrm{i}}+15 \overline{\mathrm{j}}+20 \overline{\mathrm{k}}
$$

$$
\therefore \overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}}) \neq(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}
$$

48. Let $\bar{b}=2 \overline{\mathrm{i}}+\overline{\mathrm{j}}-\overline{\mathrm{k}}, \overline{\mathrm{c}}=\overline{\mathrm{i}}+3 \overline{\mathrm{k}}$. If $\overline{\mathrm{a}}$ is a unit vector then find the maximum value of $[\bar{a} \bar{b} \bar{c}]$.

Sol. Consider $\overline{\mathrm{b}} \times \overline{\mathrm{c}}=\left|\begin{array}{ccc}\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\ 2 & 1 & -1 \\ 1 & 0 & 3\end{array}\right|$

$$
\begin{aligned}
& =\overline{\mathrm{i}}(3)-\overline{\mathrm{j}}(6+1)+\overline{\mathrm{k}}(0-1) \\
& =3 \overline{\mathrm{i}}-7 \overline{\mathrm{j}}-\overline{\mathrm{k}}
\end{aligned}
$$

$|\overline{\mathrm{b}} \times \overline{\mathrm{c}}|=\sqrt{9+49+1}=\sqrt{59}$
Let $(\overline{\mathrm{a}}, \overline{\mathrm{b}} \times \overline{\mathrm{c}})=\theta$
Consider $[\bar{a} \bar{b} \bar{c}]=\bar{a} \cdot \bar{b} \times \bar{c}$

$$
\begin{aligned}
& =|\overline{\mathrm{a}} \| \overline{\mathrm{b}} \times \overline{\mathrm{c}}| \cos [\overline{\mathrm{a}}, \overline{\mathrm{~b}} \times \overline{\mathrm{c}}] \\
& =(1)(\sqrt{59}) \cos \theta \\
& =\sqrt{59} \cos \theta
\end{aligned}
$$

We know that $-1 \leq \cos \theta \leq 1$
\therefore Maximum value of $[\bar{a} \bar{b} \bar{c}]=\sqrt{59}$.
49. Let $\bar{a}, \bar{b}, \bar{c}$ be mutually orthogonal vectors of equal magnitudes. Prove that the vector $\bar{a}+\bar{b}+\bar{c}$ is equally inclined to each of $\bar{a}, \bar{b}, \bar{c}$, the angle of inclination being $\cos ^{-1} \frac{1}{\sqrt{3}}$.

Sol. Let $|\bar{a}|=|\bar{b}|=|\bar{c}|=\lambda$
Now, $|\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}|^{2}=\overline{\mathrm{a}}^{2}+\overline{\mathrm{b}}^{2}+\overline{\mathrm{c}}^{2}+2 \Sigma \overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$

$$
=3 \lambda^{2}(\because \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}=\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}=\overline{\mathrm{c}} \cdot \overline{\mathrm{a}}=0)
$$

Let θ be the angle between \bar{a} and $\bar{a}+\bar{b}+\bar{c}$
Then $\cos \theta=\frac{\overline{\mathrm{a}} \cdot(\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}})}{|\overline{\mathrm{a}}||\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}|}=\frac{\overline{\mathrm{a}} \cdot \overline{\mathrm{a}}}{\lambda(\lambda \sqrt{3})}=\frac{1}{\sqrt{3}}$
Similarly, it can be proved that $\bar{a}+\bar{b}+\bar{c}$ inclines at an angle of $\cos ^{-1} \frac{1}{\sqrt{3}}$ with b and c.
50. In $\triangle \mathrm{ABC}$, if $\overline{\mathrm{BC}}=\overline{\mathrm{a}}, \overline{\mathrm{CA}}=\overline{\mathrm{b}}$ and $\overline{\mathrm{AB}}=\overline{\mathrm{c}}$, then show that $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\overline{\mathrm{b}} \times \overline{\mathrm{c}}=\overline{\mathrm{c}} \times \overline{\mathrm{a}}$.

Sol. $\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}=\overline{\mathrm{BC}}+\overline{\mathrm{CA}}+\overline{\mathrm{AB}}=\overline{\mathrm{BB}}=\overline{0}$
$\therefore \overline{\mathrm{a}}+\overline{\mathrm{b}}=-\overline{\mathrm{c}}$
$\therefore \overline{\mathrm{a}} \times(\overline{\mathrm{a}}+\overline{\mathrm{b}})=\overline{\mathrm{a}} \times(-\overline{\mathrm{c}})$
$\therefore \overline{\mathrm{a}} \times \overline{\mathrm{b}}=-(\overline{\mathrm{a}} \times \overline{\mathrm{c}})=\overline{\mathrm{c}} \times \overline{\mathrm{a}}$
Also $(\overline{\mathrm{a}}+\overline{\mathrm{b}}) \times \overline{\mathrm{b}}=(-\overline{\mathrm{c}}) \times \overline{\mathrm{b}}$
$\therefore \overline{\mathrm{a}} \times \overline{\mathrm{b}}=-(\overline{\mathrm{c}} \times \overline{\mathrm{b}})=\overline{\mathrm{b}} \times \overline{\mathrm{c}}$
$\therefore \overline{\mathrm{b}} \times \overline{\mathrm{c}}=\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\overline{\mathrm{c}} \times \overline{\mathrm{a}}$
51. Let $\bar{a}=2 \overline{\mathrm{i}}+\overline{\mathrm{j}}-2 \overline{\mathrm{k}}, \overline{\mathrm{b}}=\overline{\mathrm{i}}+\overline{\mathrm{j}}$. If $\overline{\mathrm{c}}$ is a vector such that $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=|\overline{\mathrm{c}}|,|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$ and the angle between $\bar{a} \times \bar{b}$ and \bar{c} is 30°, then find the value of $|(\bar{a} \times \bar{b}) \times \bar{c}|$.

Sol. $|\bar{a}|=3,|\bar{b}|=\sqrt{2}$ and $\bar{a} \cdot \bar{c}=|\bar{c}|$

$$
\begin{aligned}
& 2 \sqrt{2}=|\overline{\mathrm{c}}-\overline{\mathrm{a}}| \\
& \Rightarrow 8=|\overline{\mathrm{c}}-\overline{\mathrm{a}}|^{2}=|\overline{\mathrm{c}}|^{2}+|\overline{\mathrm{a}}|^{2}-2(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \\
& \therefore 8=|\overline{\mathrm{c}}|^{2}+9-2|\overline{\mathrm{c}}| \\
& \therefore(|\overline{\mathrm{c}}|-1)^{2}=0 \\
& \therefore|\overline{\mathrm{c}}|=1
\end{aligned}
$$

Now, $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\left|\begin{array}{ccc}\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\ 2 & 1 & -2 \\ 1 & 1 & 0\end{array}\right|=2 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}+\overline{\mathrm{k}}$
$\therefore|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|=|\overline{\mathrm{a}} \times \overline{\mathrm{b}}||\overline{\mathrm{c}}| \sin 30^{\circ}$

$$
=3(1)\left(\frac{1}{2}\right)=\frac{3}{2}
$$

52. If \bar{a} is a non-zero vector and \bar{b}, \bar{c} are two vectors such that $\bar{a} \times \bar{b}=\bar{a} \times \bar{c}$ and $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}$ then prove that $\overline{\mathrm{b}}=\overline{\mathrm{c}}$.

Sol. $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\overline{\mathrm{a}} \times \overline{\mathrm{c}} \Rightarrow \overline{\mathrm{a}} \times(\overline{\mathrm{b}}-\overline{\mathrm{c}})=0$
\Rightarrow either $\bar{b}=\bar{c}$ or $\bar{b}-\bar{c}$ is collinear with \bar{a}
Again $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=\overline{\mathrm{a}} \cdot \overline{\mathrm{c}} \Rightarrow \overline{\mathrm{a}} \cdot(\overline{\mathrm{b}}-\overline{\mathrm{c}})=0$
$\Rightarrow \overline{\mathrm{b}}=\overline{\mathrm{c}}$ or $\overline{\mathrm{b}}-\overline{\mathrm{c}}$ is perpendicular to $\overline{\mathrm{a}}$
\therefore If $\overline{\mathrm{b}} \neq \overline{\mathrm{c}}$, then $\overline{\mathrm{b}}-\overline{\mathrm{c}}$ is parallel to $\overline{\mathrm{a}}$ and is perpendicular to $\overline{\mathrm{a}}$ which is impossible.
$\therefore \overline{\mathrm{b}}=\overline{\mathrm{c}}$.
53. Prove that for any three vectors $\bar{a}, \bar{b}, \bar{c},\left[\begin{array}{llll}\bar{b}+\bar{c} & \bar{c}+\bar{a} & \bar{a}+\bar{b}\end{array}\right]=2\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]$.

Sol. $\left[\begin{array}{lll}\bar{b}+\bar{c} & \bar{c}+\bar{a} & \bar{a}+\bar{b}\end{array}\right]$

$$
\begin{aligned}
& =(\bar{b}+\bar{c}) \cdot\{(\bar{c}+\bar{a}) \times(\bar{a}+\bar{b})\} \\
& =(\bar{b}+\bar{c}) \cdot\{\bar{c} \times \bar{a}+\bar{c} \times \bar{b}+\bar{a} \times \bar{b}\} \\
& =\bar{b}(\bar{c} \times \bar{a})+\bar{b}(\bar{c} \times \bar{b})+\bar{b}(\bar{a} \times \bar{b}) \\
& \quad+\bar{c}(\bar{c} \times \bar{a})+\bar{c}(\bar{c} \times \bar{b})+\bar{c}(\bar{a} \times \bar{b})
\end{aligned}
$$

$$
\begin{aligned}
& =[\overline{\mathrm{b}} \overline{\mathrm{c}} \overline{\mathrm{a}}]+0+0+0+0+[\overline{\mathrm{c}} \overline{\mathrm{a}} \overline{\mathrm{~b}}] \\
& =2[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]
\end{aligned}
$$

54. For any three vectors $\bar{a}, \bar{b}, \bar{c}$ prove that $\left[\begin{array}{ccc}\bar{b} \times \bar{c} & \bar{c} \times \bar{a} & \bar{a} \times \bar{b}\end{array}\right]=\left[\begin{array}{ll}\bar{a} & \bar{b} \bar{c}\end{array}\right]^{2}$.

Sol. $\left[\begin{array}{lll}\bar{b} \times \bar{c} & \bar{c} \times \bar{a} & \bar{a} \times \bar{b}\end{array}\right]$

$$
\begin{aligned}
& =(\overline{\mathrm{b}} \times \overline{\mathrm{c}}) \cdot\{(\overline{\mathrm{c}} \times \overline{\mathrm{a}}) \times(\overline{\mathrm{a}} \times \overline{\mathrm{b}})\} \\
& =(\overline{\mathrm{b}} \times \overline{\mathrm{c}}) \cdot\{[\overline{\mathrm{c}} \overline{\mathrm{a}} \overline{\mathrm{~b}}] \overline{\mathrm{a}}-[\overline{\mathrm{a}} \overline{\mathrm{a}} \overline{\mathrm{~b}}] \bar{c}\} \\
& =(\overline{\mathrm{b}} \times \overline{\mathrm{c}}) \cdot \overline{\mathrm{a}}[\overline{\mathrm{c}} \overline{\mathrm{a}} \overline{\mathrm{~b}}]=[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]^{2}
\end{aligned}
$$

55. For any four vectors $\bar{a}, \bar{b}, \bar{c}$ and $\bar{d}, \quad(\bar{a} \times \bar{b}) \times(\bar{c} \times \bar{d})=[\bar{a} \bar{c} \bar{d}] \bar{b}-[\bar{b} \bar{c} \bar{d}] \bar{a} \quad$ and $(\bar{a} \times \bar{b}) \times(\bar{c} \times \bar{d})=\left[\begin{array}{l}\bar{a} \\ \mathrm{~b} \\ \mathrm{~d}\end{array}\right] \overline{\mathrm{c}}-[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}] \overline{\mathrm{d}}$.

Sol. Let $\mathrm{m}=\mathrm{c} \times \mathrm{d}$

$$
\begin{aligned}
& \therefore(\bar{a} \times \bar{b}) \times(\bar{c} \times \bar{d})=(\bar{a} \times \bar{b}) \times m \\
&=(\bar{a} \cdot m) \bar{b}-(\bar{b} \cdot m) \bar{a} \\
& \quad=(\bar{a} \cdot(\bar{c} \times \bar{d})) \bar{b}-(\bar{b} \cdot(\bar{c} \times \bar{d})) \bar{a} \\
& \quad=[\overline{\mathrm{a}} \overline{\mathrm{c}} \overline{\mathrm{~d}}] \overline{\mathrm{b}}-[\overline{\mathrm{b}} \overline{\mathrm{c}} \overline{\mathrm{~d}}] \overline{\mathrm{a}}
\end{aligned}
$$

Again, Let $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\mathrm{n}$, then

$$
\begin{aligned}
& (\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})=\mathrm{n} \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}}) \\
& =(\mathrm{n} \cdot \overline{\mathrm{~d}}) \overline{\mathrm{c}}-(\mathrm{n} \cdot \overline{\mathrm{c}}) \overline{\mathrm{d}} \\
& = \\
& =((\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{d}}) \overline{\mathrm{c}}-((\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \overline{\mathrm{c}}) \overline{\mathrm{d}} \\
& = \\
& =[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{~d}}] \overline{\mathrm{c}}-[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}] \overline{\mathrm{d}}
\end{aligned}
$$

56. The angle in semi circle is a right angle

Proof: Let APB be a semi circle with centre at O.
$\mathrm{OA}=\mathrm{OB}=\mathrm{OP}$ also $\overrightarrow{O B}=-\overrightarrow{O A}$
$\overrightarrow{A P} \cdot \overrightarrow{B P}=(\overrightarrow{O P}-\overrightarrow{O A}) \cdot(\overrightarrow{O P}-\overrightarrow{O A})$

$$
\begin{aligned}
& =(\overrightarrow{O P}-\overrightarrow{O A}) \cdot(\overrightarrow{O P}+\overrightarrow{O A}) \quad \because \overrightarrow{O B}=-\overrightarrow{O A} \\
& =(\overrightarrow{O P})^{2}-(\overrightarrow{O A})^{2} \quad\left\{\because\left(\vec{a}+\vec{b} 0 \cdot(\vec{a}-\vec{b})=(\vec{a})^{2}-(\vec{b})^{2}\right\}\right. \\
& =|\overrightarrow{O P}|^{2}-|\overrightarrow{O A}|^{2}=O P^{2}-O P^{2}=0 \quad\{\because O A=O P\} \\
& \overrightarrow{A P} \cdot \overrightarrow{B P}=0 \quad \therefore \overrightarrow{A P} \perp r \overrightarrow{P B} \text { Hence } \angle A P B=90^{\circ}
\end{aligned}
$$

Hence angle in semi -cricle is 90°
57. For any two vectors \vec{a} and \vec{b} prove that $(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}=|\vec{a}||\vec{b}|^{2}$

Sol: $\quad(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}$

$$
\begin{aligned}
& |\vec{a}|^{2}|\vec{b}|^{2} \sin ^{2}(\vec{a}, \vec{b})+(\vec{a} \cdot \vec{b})^{2} \\
& |\vec{a}|^{2}|\vec{b}|^{2}\left\{1-\cos ^{2}(\vec{a}, \vec{b})\right\}+(\vec{a} \cdot \vec{b})^{2} \\
& |\vec{a}|^{2}|\vec{b}|^{2}-|\vec{a}|^{2}|\vec{b}|^{2} \cos ^{2}(\vec{a}, \vec{b})+(\vec{a} \cdot \vec{b})^{2} \\
& |\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2} \\
& =|\vec{a}|^{2}|\vec{b}|^{2}=\text { R.H.S }
\end{aligned}
$$

58. If $\bar{a}=a_{1} \bar{i}+a_{2} \bar{j}+a_{3} \bar{k} \quad \bar{b}=b_{1} \bar{i}+b_{2} \bar{j}+b_{3} \bar{k}$, then $\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\bar{i} & \bar{j} & \bar{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

Proof : $\bar{a} \times \bar{b}=\left(a_{1} \bar{i}+a_{2} \bar{j}+a_{3} \bar{k}\right) \times\left(b_{1} \bar{i}+b_{2} \bar{j}+b_{3} \bar{k}\right)$

$$
\begin{aligned}
& =a_{1} b_{1}(\bar{i} \times \bar{i})+a_{1} b_{2}(\bar{i} \times \bar{j})+a_{1} b_{3}(\bar{i} \times \bar{k})+a_{2} b_{1}(\bar{j} \times \bar{i})+a_{2} b_{2}(\bar{j} \times \bar{j})+a_{2} b_{3}(\bar{j} \times \bar{k}) \\
& +a_{3} b_{1}(\bar{k} \times \bar{i})+a_{3} b_{2}(\bar{k} \times \bar{j})+a_{3} b_{3}(\bar{k} \times \bar{k}) \\
& =a_{1} b_{1}(\overline{0})+a_{1} b_{2}(\bar{k})+a_{1} b_{3}(-\bar{j})+a_{2} b_{1}(-\bar{k})+a_{2} b_{2}(\overline{0})+a_{2} b_{3}(\bar{i})+a_{3} b_{1}(\bar{j})+a_{3} b_{2}(-\bar{i})+a_{3} b_{3}(\overline{0}) \\
& =\bar{i}\left(a_{2} b_{3}-a_{3} b_{2}\right)-\bar{j}\left(a_{1} b_{3}-a_{3} b_{1}\right)+\bar{k}\left(a_{1} b_{2}-a_{2} b_{1}\right)
\end{aligned}
$$

$$
=\left|\begin{array}{ccc}
\bar{i} & \bar{j} & \bar{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

59. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are four vectors then $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=\left|\begin{array}{ll}\vec{a} \cdot \vec{c} & \vec{a} \cdot \vec{d} \\ \vec{b} \cdot \vec{c} & \vec{b} \cdot \vec{d}\end{array}\right|$

Proof: $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=\{(\vec{a} \times \vec{b}) \times \vec{c}\} \cdot \vec{d} \quad\{\because$ dot and cross are inter changeable $\}$

$$
\begin{aligned}
& \{(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a}\} \cdot \vec{d}=(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d})-(\vec{b} \cdot \vec{c})(\vec{a} \cdot \vec{d}) \\
= & \left|\begin{array}{ll}
\vec{a} \cdot \vec{c} & \vec{a} \cdot \vec{d} \\
\vec{b} \cdot \vec{c} & \vec{b} \cdot \vec{d}
\end{array}\right|
\end{aligned}
$$

60. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are four vectors then $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=[\vec{a} \vec{b} \vec{d}] \vec{c}-[\vec{a} \vec{b} \vec{c}] \vec{d}$ $=[\vec{a} \vec{c} \vec{d}] \vec{b}-[\vec{b} \vec{c} \vec{d}] \vec{a}$

Proof :- $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=(\vec{a} \times \vec{b} \cdot \vec{d}) \vec{c}-(\vec{a} \times \vec{b} \cdot \vec{c}) \vec{d}=[\vec{a} \vec{b} \vec{d}] \vec{c}-[\vec{a} \vec{b} \vec{c}] \vec{d}$

$$
\begin{aligned}
& (\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=(\vec{c} \times \vec{d} \cdot \vec{a}] \vec{b}-(\vec{c} \times \vec{d} \cdot \vec{b}] \vec{a} \\
& =[\vec{a} \vec{c} \vec{d}] \vec{b}-(\vec{b} \vec{c} \vec{d}] \vec{a}
\end{aligned}
$$

LAQ'S

61. a, b, c and d are the position vectors of four coplanar points such that $(a-d) .(b-c)=(b-d) .(c-a)=0$ show that the point ' d ' represents the orthocenter of the triangle with a, b and c as its vertices.

Sol.

Let O be the origin and
$\overline{\mathrm{OA}}=\overline{\mathrm{a}}, \overline{\mathrm{OB}}=\overline{\mathrm{b}}, \overline{\mathrm{OC}}=\overline{\mathrm{c}}, \overline{\mathrm{OD}}=\overline{\mathrm{d}}$
Given that $(\bar{a}-\bar{d}) \cdot(\bar{b}-\bar{c})=0$
$\Rightarrow(\overline{\mathrm{OA}}-\overline{\mathrm{OD}}) \cdot(\overline{\mathrm{OB}}-\overline{\mathrm{OC}})=0$
$\Rightarrow \overline{\mathrm{DA}} \cdot \overline{\mathrm{CB}}=0$
$\Rightarrow \overline{\mathrm{DA}}$ perpendicular to $\overline{\mathrm{CB}}$
D is an altitudes of $\triangle A B C$
Consider $(\bar{b}-\bar{d}) \cdot(\bar{c}-\bar{a})=0$
$(\overline{\mathrm{OB}}-\overline{\mathrm{OD}}) \cdot(\overline{\mathrm{OC}}-\overline{\mathrm{OA}})=0$
$\overline{\mathrm{DB}} \cdot \overline{\mathrm{AC}}=0$
$\Rightarrow \overline{\mathrm{DB}}$ perpendicular to $\overline{\mathrm{AC}}$
$\Rightarrow \overline{\mathrm{DB}}$ is also an altitude of $\triangle \mathrm{ABC}$
The altitudes $\overline{\mathrm{DA}}, \overline{\mathrm{DB}}$ intersect at D .
$\Rightarrow \mathrm{D}$ is the orthocenter of $\triangle \mathrm{ABC}$.
62. Let $\overline{\mathrm{a}}=4 \overline{\mathrm{i}}+5 \overline{\mathrm{j}}-\overline{\mathrm{k}}, \overline{\mathrm{b}}=\overline{\mathrm{i}}-4 \overline{\mathrm{j}}+5 \overline{\mathrm{k}}$ and $\overline{\mathrm{c}}=3 \overline{\mathrm{i}}+\overline{\mathrm{j}}-\overline{\mathrm{k}}$. Find the vector which is perpendicular to both \bar{a} and \bar{b} whose magnitude is twenty one times the magnitude of \bar{c}.

Sol. Given that $\overline{\mathrm{a}}=4 \overline{\mathrm{i}}+5 \overline{\mathrm{j}}-\overline{\mathrm{k}}, \overline{\mathrm{b}}=\overline{\mathrm{i}}-4 \overline{\mathrm{j}}+5 \overline{\mathrm{k}}$ and $\overline{\mathrm{c}}=3 \overline{\mathrm{i}}+\overline{\mathrm{j}}-\overline{\mathrm{k}}$

$$
|\overline{\mathrm{c}}|=\sqrt{9+1+1}=\sqrt{11}
$$

The unit vector perpendicular to both \bar{a} and \bar{b} is $=\frac{\bar{a} \times \bar{b}}{|\bar{a} \times \bar{b}|}$
Now $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\left|\begin{array}{ccc}\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\ 4 & 5 & -1 \\ 1 & -4 & 5\end{array}\right|$
$=\overline{\mathrm{i}}(25-4)-\overline{\mathrm{j}}(20+1)+\overline{\mathrm{k}}(-16-5)$
$=21 \overline{\mathrm{i}}-21 \overline{\mathrm{j}}-21 \overline{\mathrm{k}}$
$=21(\overline{\mathrm{i}}-\overline{\mathrm{j}}-\overline{\mathrm{k}})$
$|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|=21 \sqrt{1+1+1}=21 \sqrt{3}$
The vector perpendicular both \bar{a} and \bar{b} and having the magnitude 21 times magnitude of $\overline{\mathrm{c}}$ is
$= \pm \frac{21|\overline{\mathrm{c}}|(\overline{\mathrm{a}} \times \overline{\mathrm{b}})}{|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|}$
$= \pm \frac{21 \sqrt{11} \times 21(\overline{\mathrm{i}}-\overline{\mathrm{j}}-\overline{\mathrm{k}})}{21 \sqrt{3}}$
$=\frac{ \pm 21 \sqrt{11}(\overline{\mathrm{i}}-\overline{\mathrm{j}}-\overline{\mathrm{k}})}{\sqrt{3}}$
$=\frac{ \pm 7 \cdot 3 \sqrt{11}(\overline{\mathrm{i}}-\overline{\mathrm{j}}-\overline{\mathrm{k}})}{\sqrt{3}}$
$= \pm 7 \sqrt{3} \sqrt{11}(\overline{\mathrm{i}}-\overline{\mathrm{j}}-\overline{\mathrm{k}})$
$= \pm 7 \sqrt{33}(\overline{\mathrm{i}}-\overline{\mathrm{j}}-\overline{\mathrm{k}})$
63. G is the centroid $\triangle A B C$ and a, b, c are the lengths of the sides $B C, C A$ and $A B$ respectively. Prove that $a^{2}+b^{2}+c^{2}=3\left(O A^{2}+O B^{2}+O C^{2}\right)-9(O G)^{2}$ where O is any point.

Sol.

Given that $\mathrm{BC}=\mathrm{a}, \mathrm{CA}=\mathrm{b}, \mathrm{AB}=\mathrm{c}$
Let O be the origin

$$
\begin{aligned}
& \overline{\mathrm{OA}}+\overline{\mathrm{OB}}+\overline{\mathrm{OC}}=3 \overline{\mathrm{OG}} \\
& \begin{aligned}
\mathrm{a}^{2} & =\overline{\mathrm{BC}}^{2}=(\overline{\mathrm{OC}}-\overline{\mathrm{OB}})^{2} \\
& =\overline{\mathrm{OC}}^{2}+\overline{\mathrm{OB}}^{2}-2 \overline{\mathrm{OC}} \cdot \overline{\mathrm{OB}} \\
\mathrm{~b}^{2} & =\overline{\mathrm{CA}}^{2}=(\overline{\mathrm{OA}}-\overline{\mathrm{OC}})^{2} \\
& =\overline{\mathrm{OA}}^{2}+\overline{\mathrm{OC}}^{2}-2 \overline{\mathrm{OA}} \cdot \overline{\mathrm{OC}} \\
\mathrm{c}^{2} & =\overline{\mathrm{AB}}^{2}=(\overline{\mathrm{OB}}-\overline{\mathrm{OA}})^{2} \\
& =\overline{\mathrm{OB}}^{2}+\overline{\mathrm{OA}}^{2}-2 \overline{\mathrm{OB}} \cdot \overline{\mathrm{OA}}
\end{aligned}
\end{aligned}
$$

Consider
$\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=2\left[\overline{\mathrm{OA}}^{2}+\overline{\mathrm{OB}}^{2}+\overline{\mathrm{OC}}^{2}\right]-2[\overline{\mathrm{OA}} \cdot \overline{\mathrm{OB}}+\overline{\mathrm{OB}} \cdot \overline{\mathrm{OC}}+\overline{\mathrm{OC}} \cdot \overline{\mathrm{OA}}] \ldots$
We have $\overline{\mathrm{OA}}+\overline{\mathrm{OB}}+\overline{\mathrm{OC}}=3 \overline{\mathrm{OG}}$
Squaring on both sides

$$
\begin{align*}
& \overline{\mathrm{OA}}^{2}+\overline{\mathrm{OB}}^{2}+\overline{\mathrm{OC}}^{2}+2[\overline{\mathrm{OA}} \cdot \overline{\mathrm{OB}}+\overline{\mathrm{OB}} \cdot \overline{\mathrm{OC}}+\overline{\mathrm{OC}} \cdot \overline{\mathrm{OA}}]=9 \overline{\mathrm{OG}}^{2} \\
& \Rightarrow-2(\overline{\mathrm{OA}} \cdot \overline{\mathrm{OB}}+\overline{\mathrm{OB}} \cdot \overline{\mathrm{OC}}+\overline{\mathrm{OC}} \cdot \overline{\mathrm{OA}}) \\
& \quad=\overline{\mathrm{OA}}^{2}+\overline{\mathrm{OB}}^{2}+\overline{\mathrm{OC}}^{2}-9 \overline{\mathrm{OG}}^{2} \tag{2}
\end{align*}
$$

Substituting in eq.(1), we get

$$
\begin{aligned}
& \mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=2\left[\overline{\mathrm{OA}}^{2}+\overline{\mathrm{OB}}^{2}+\overline{\mathrm{OC}}^{2}\right]+\left[\overline{\mathrm{OA}}^{2}+\overline{\mathrm{OB}}^{2}+\overline{\mathrm{OC}}^{2}\right]-9 \overline{\mathrm{OG}}^{2} \\
& \mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=3\left[\overline{\mathrm{OA}}^{2}+\overline{\mathrm{OB}}^{2}+\overline{\mathrm{OC}}^{2}\right]-9 \overline{\mathrm{OG}}^{2}
\end{aligned}
$$

64. A line makes angles $\theta_{1}, \theta_{2}, \theta_{3}$ and θ_{4} with the diagonals of a cube. Show that $\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}+\cos ^{2} \theta_{3}+\cos ^{2} \theta_{4}=\frac{4}{3}$.

Sol.

Let $\mathrm{OAB}^{\prime} \mathrm{C}, \mathrm{BC}^{\prime} \mathrm{PA}^{\prime}$ be a unit cube.
Let $\overline{\mathrm{OA}}=\overline{\mathrm{i}}, \overline{\mathrm{OB}}=\overline{\mathrm{j}}$ and $\overline{\mathrm{OC}}=\overline{\mathrm{k}}$
$\overline{\mathrm{OP}}, \mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}$ be its diagonals.
Let $\bar{r}=x \overline{\mathrm{i}}+y \overline{\mathrm{j}}+z \overline{\mathrm{k}}$ be a unit vector along a line L.
Which makes angles $\theta_{1}, \theta_{2}, \theta_{3}$ and θ_{4} with $\overline{\mathrm{AA}^{\prime},} \overline{\mathrm{BB}^{\prime}, \overline{\mathrm{CC}^{\prime}} \text { and } \overline{\mathrm{OP}} \text {. } . \text {. }}$

$$
\Rightarrow|\overline{\mathrm{r}}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}=1
$$

We have $\overline{\mathrm{OB}^{\prime}}=\overline{\mathrm{OA}}-\overline{\mathrm{OC}}=\overline{\mathrm{i}}+\overline{\mathrm{k}}$

$$
\begin{aligned}
\overline{\mathrm{OP}}= & \overline{\mathrm{OB}^{\prime}}-\overline{\mathrm{B}^{\prime} \mathrm{P}}=\overline{\mathrm{i}}+\overline{\mathrm{k}}+\overline{\mathrm{j}}\left[\because \overline{\mathrm{~B}^{\prime} \mathrm{O}}=\overline{\mathrm{OB}}=\overline{\mathrm{j}}\right] \\
& =\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}}
\end{aligned}
$$

$$
\overline{\mathrm{AA}^{\prime}}=\overline{\mathrm{OA}^{\prime}}-\overline{\mathrm{OA}}=\overline{\mathrm{j}}+\overline{\mathrm{k}}-\overline{\mathrm{i}}=-\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}}
$$

$$
\overline{\mathrm{BB}^{\prime}}=\overline{\mathrm{OB}^{\prime}}-\overline{\mathrm{OB}}=\overline{\mathrm{i}}+\overline{\mathrm{k}}-\overline{\mathrm{j}}=\overline{\mathrm{i}}-\overline{\mathrm{j}}+\overline{\mathrm{k}}
$$

$$
\overline{\mathrm{CC}^{\prime}}=\overline{\mathrm{OC}^{\prime}}-\overline{\mathrm{OC}}=\overline{\mathrm{i}}+\overline{\mathrm{j}}-\overline{\mathrm{k}}
$$

Let $(\overline{\mathrm{r}}, \overline{\mathrm{OP}})=\theta_{1}$

$$
\begin{gather*}
\cos \theta_{1}=\frac{\overline{\mathrm{r}} \cdot \overline{\mathrm{OP}}}{|\overline{\mathrm{r}} \| \overline{\mathrm{OP}}|}=\frac{(x \overline{\mathrm{i}}+\mathrm{y} \overline{\mathrm{j}}+\mathrm{z} \mathrm{\bar{k})} \mathrm{\cdot(} \mathrm{\bar{i}+} \mathrm{\bar{j}+} \mathrm{\bar{k})}}{1 \cdot \sqrt{1+1+1}} \\
=\frac{\mathrm{x}+\mathrm{y}+\mathrm{z}}{\sqrt{3}} \tag{1}
\end{gather*}
$$

Similarly $\left(\overline{\mathrm{r}}, \mathrm{AA}^{\prime}\right)=\theta_{2}$

$$
\begin{gather*}
\Rightarrow \cos \theta_{2}=\frac{\overline{\mathrm{r}} \cdot \overline{\mathrm{AA}^{\prime}}}{\left|\overline{\mathrm{r}} \| \overline{\mathrm{AA}^{\prime}}\right|}=\frac{(x \overline{\mathrm{i}}+y \overline{\mathrm{j}}+\mathrm{z} \overline{\mathrm{k}}) \cdot(-\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}})}{1 \cdot \sqrt{1+1+1}} \\
\quad=\frac{-x+y+\mathrm{z}}{\sqrt{3}} \tag{2}
\end{gather*}
$$

$$
\begin{align*}
& \left(\overline{\mathrm{r}}, \overline{\mathrm{BB}^{\prime}}\right)=\theta_{3} \\
& \Rightarrow \cos \theta_{3}=\frac{\overline{\mathrm{r}} \cdot \overline{\mathrm{BB}^{\prime}}}{|\overline{\mathrm{r}}| \mid \overline{\mathrm{BB}^{\prime} \mid}} \\
& \quad=\frac{(\mathrm{x} \overline{\mathrm{i}}+\mathrm{y} \overline{\mathrm{j}}+\mathrm{z} \overline{\mathrm{k}}) \cdot(\overline{\mathrm{i}}-\overline{\mathrm{j}}+\overline{\mathrm{k}})}{1 \cdot \sqrt{1+1+1}} \\
& \quad=\frac{\mathrm{x}-\mathrm{y}+\mathrm{z}}{\sqrt{3}} \tag{3}
\end{align*}
$$

$$
\begin{align*}
& \left(\overline{\mathrm{r}}, \overline{\mathrm{CC}^{\prime}}\right)=\theta_{4} \\
& \Rightarrow \cos \theta_{3}=\frac{\overline{\mathrm{r}} \cdot \overline{\mathrm{CC}}}{\mid \overline{\mathrm{r}} \| \overline{\mathrm{CC}^{\prime} \mid}} \\
& \quad=\frac{(\mathrm{x} \overline{\mathrm{i}}+\mathrm{y} \overline{\mathrm{j}}+\mathrm{z} \overline{\mathrm{k}}) \cdot(\overline{\mathrm{i}}+\overline{\mathrm{j}}-\overline{\mathrm{k}})}{1 \cdot \sqrt{1+1+1}} \\
& \quad=\frac{\mathrm{x}+\mathrm{y}-\mathrm{z}}{\sqrt{3}} \tag{4}
\end{align*}
$$

$\therefore \cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}+\cos ^{2} \theta_{3}+\cos ^{2} \theta_{4}$

$$
=\left(\frac{x+y+z}{\sqrt{3}}\right)^{2}+\left(\frac{-x+y+z}{\sqrt{3}}\right)^{2}+\left(\frac{x-y+z}{\sqrt{3}}\right)^{2}+\left(\frac{x+y-z}{\sqrt{3}}\right)^{2}
$$

$$
(x+y+z)^{2}+(-x+y+z)^{2}=\frac{(x+y+z)^{2}+(x-y+z)^{2}+(x+y-z)^{2}}{3}
$$

$$
=\frac{2(x+y)^{2}+2 z^{2}+2(x-y)^{2}+2 z^{2}}{3}=\frac{2\left[(x+y)^{2}+(x-y)^{2}\right]+4 z^{2}}{3}
$$

$$
=\frac{2\left[2 x^{2}+2 y^{2}\right]+4 z^{2}}{3}
$$

$$
=\frac{4 x^{2}+4 y^{2}+4 z^{2}}{3}=\frac{4}{3}\left[x^{2}+y^{2}+z^{2}\right]=\frac{4}{3}(1)=\frac{4}{3}
$$

65. If $\bar{a}+\bar{b}+\bar{c}=0$ then prove that $\bar{a} \times \bar{b}=\bar{b} \times \bar{c}=\bar{c} \times \bar{a}$.

Sol. Given $\bar{a}+\bar{b}+\bar{c}=0$

$$
\begin{align*}
& \bar{a}+\bar{b}=-\bar{c} \\
& (\overline{\mathrm{a}}+\overline{\mathrm{b}}) \times \overline{\mathrm{b}}=-\overline{\mathrm{c}} \times \overline{\mathrm{b}} \\
& \overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{b}} \times \overline{\mathrm{b}}=\overline{\mathrm{b}} \times \overline{\mathrm{c}} \\
& \overline{\mathrm{a}} \times \overline{\mathrm{b}}+0=\overline{\mathrm{b}} \times \overline{\mathrm{c}} \\
& \overline{\mathrm{a}} \times \overline{\mathrm{b}}=\overline{\mathrm{b}} \times \overline{\mathrm{c}} \tag{1}
\end{align*}
$$

Given $\bar{a}+\bar{b}+\bar{c}=0$

$$
\begin{align*}
& \bar{a}+\bar{b}=-\bar{c} \\
& (\bar{a}+\bar{b}) \times \bar{a}=-\bar{c} \times \bar{a} \\
& \bar{a} \times \bar{a}+\bar{b} \times \bar{a}=-\bar{c} \times \bar{a} \\
& 0-\bar{a} \times \bar{b}=-\bar{c} \times \bar{a} \\
& \bar{a} \times \bar{b}=\bar{c} \times \bar{a} \tag{2}
\end{align*}
$$

From (1) and (2)

$$
\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\overline{\mathrm{b}} \times \overline{\mathrm{c}}=\overline{\mathrm{c}} \times \overline{\mathrm{a}}
$$

66. Let \bar{a} and \bar{b} be vectors, satisfying $|\bar{a}|=|\bar{b}|=5$ and $(\bar{a}, \bar{b})=45^{\circ}$. Find the area of the triangle have $\bar{a}-2 \bar{b}$ and $3 \bar{a}+2 \bar{b}$ as two of its sides.

Sol. Given \bar{a} and \bar{b} are two vectors.
$|\bar{a}|=|\bar{b}|=5$ and $(\bar{a}, \bar{b})=45^{\circ}$
$\overline{\mathrm{c}}=\overline{\mathrm{a}}-2 \overline{\mathrm{~b}}$ and $\overline{\mathrm{d}}=3 \overline{\mathrm{a}}+2 \overline{\mathrm{~b}}$
The area of Δ le having $\overline{\mathrm{c}}$ and $\overline{\mathrm{d}}$ as adjacent sides is $\frac{|\overline{\mathrm{c}} \times \overline{\mathrm{d}}|}{2}$
$|\overline{\mathrm{c}} \times \overline{\mathrm{d}}|=|(\overline{\mathrm{a}}-2 \overline{\mathrm{~b}}) \times(3 \overline{\mathrm{a}}+2 \overline{\mathrm{~b}})|$
$=|3(\bar{a} \times \bar{a})+2(\bar{a} \times \bar{b})-6(\bar{b} \times \bar{a})-4(\bar{b} \times \bar{b})|$
$=|3(0)+2(\bar{a} \times \bar{b})+6(\bar{a} \times \bar{b})-4(0)|$
$=|8(\overline{\mathrm{a}} \times \overline{\mathrm{b}})|$
$=8|\bar{a} \times \bar{b}|$
$=8|\overline{\mathrm{a}} \| \overline{\mathrm{b}}| \sin (\overline{\mathrm{a}}, \overline{\mathrm{b}})$
$=8.5 \cdot 5 \sin 45^{\circ}$
$=200 \cdot \frac{1}{\sqrt{2}}=100 \sqrt{2}$
\therefore Area $=\frac{|\overline{\mathrm{c}} \times \overline{\mathrm{d}}|}{2}=\frac{100 \sqrt{2}}{2}=50 \sqrt{2}$ sq.units.
67. Find a unit vector perpendicular to the plane determined by the points $\mathbf{P}(1,-1,2), \mathbf{Q}(2,0,-1)$ and $R(0,2,1)$.

Sol. Let O be the origin and

$$
\begin{aligned}
& \overline{\mathrm{OP}}=\overline{\mathrm{i}}-\overline{\mathrm{j}}+2 \overline{\mathrm{k}}, \overline{\mathrm{OQ}}=2 \overline{\mathrm{i}}-\overline{\mathrm{k}}, \overline{\mathrm{OR}}=2 \overline{\mathrm{j}}+\overline{\mathrm{k}} \\
& \overline{\mathrm{PQ}}=\overline{\mathrm{OQ}}-\overline{\mathrm{OP}}=\overline{\mathrm{i}}-2 \overline{\mathrm{k}} \\
& \overline{\mathrm{PR}}=\overline{\mathrm{OR}}-\overline{\mathrm{OP}}=-\overline{\mathrm{i}}+3 \overline{\mathrm{j}}-\overline{\mathrm{k}} \\
& \overline{\mathrm{PQ}} \times \overline{\mathrm{PR}}=\left|\begin{array}{ccc}
\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\
1 & 0 & -2 \\
-1 & 3 & -1
\end{array}\right| \\
& =\overline{\mathrm{i}}(0+6)-\overline{\mathrm{j}}(-1-2)+\overline{\mathrm{k}}(3-0) \\
& \overline{\mathrm{PQ}} \times \overline{\mathrm{PR}}=6 \overline{\mathrm{i}}+3 \overline{\mathrm{j}}+3 \overline{\mathrm{k}} \\
& \mid \overline{\mathrm{PQ}} \times \overline{\mathrm{PR}}=3 \sqrt{4+1+1}=3 \sqrt{6}
\end{aligned}
$$

\therefore The unit vector perpendicular to the plane passing through
P, Q and R is $= \pm \frac{\overline{\mathrm{PQ}} \times \overline{\mathrm{PR}}}{|\overline{\mathrm{PQ}} \times \overline{\mathrm{PR}}|}$

$$
= \pm \frac{3(2 \overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}})}{3 \sqrt{6}}= \pm \frac{2 \overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}}}{\sqrt{6}}
$$

68. If \bar{a}, \bar{b} and \bar{c} represent the vertices A, B and C respectively of $\triangle A B C$, then prove that $|(\bar{a} \times \bar{b})+(\bar{b}+\bar{c})+(\bar{c} \times \bar{a})|$ is twice the area of $\Delta \mathbf{A B C}$.

Sol.

Let O be the origin,

$$
\overline{\mathrm{OA}}=\overline{\mathrm{a}}, \overline{\mathrm{OB}}=\overline{\mathrm{b}}, \overline{\mathrm{OC}}=\overline{\mathrm{c}}
$$

Area of $\Delta \mathrm{ABC}$ is $\Delta=\frac{1}{2}|(\overline{\mathrm{AB}} \times \overline{\mathrm{AC}})|$

$$
\begin{aligned}
& =\frac{1}{2}|(\overline{\mathrm{OB}}-\overline{\mathrm{OA}}) \times(\overline{\mathrm{OC}}-\overline{\mathrm{OA}})| \\
& =\frac{1}{2}|(\overline{\mathrm{~b}}-\overline{\mathrm{a}}) \times(\overline{\mathrm{c}}-\overline{\mathrm{a}})| \\
& =\frac{1}{2}|\overline{\mathrm{~b}} \times \overline{\mathrm{c}}-\overline{\mathrm{b}} \times \overline{\mathrm{a}}-\overline{\mathrm{a}} \times \overline{\mathrm{c}}+\overline{\mathrm{a}} \times \overline{\mathrm{a}}| \\
& =\frac{1}{2}|\overline{\mathrm{~b}} \times \overline{\mathrm{c}}+\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{c}} \times \overline{\mathrm{a}}+\overline{0}| \\
& =\frac{1}{2}|\overline{\mathrm{~b}} \times \overline{\mathrm{c}}+\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{c}} \times \overline{\mathrm{a}}|
\end{aligned}
$$

$2 \Delta=|\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{b}} \times \overline{\mathrm{c}}+\overline{\mathrm{c}} \times \overline{\mathrm{a}}|$. Hence proved.
69. If $\bar{a}=4 \bar{i}-2 \bar{j}+3 \bar{k}, \bar{b}=2 \bar{i}+8 \bar{k}$ and $\bar{c}=\bar{i}+\bar{j}+\bar{k}$ then $\bar{a} \times \bar{b}, \bar{a} \times \bar{c}$ and $\bar{a} \times(\bar{b}+\bar{c})$.

Verify whether the cross product is distributive over vector addition.

Sol. Given

$$
\begin{aligned}
& \left.\begin{array}{rl}
\overline{\mathrm{a}} & =4 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}+3 \overline{\mathrm{k}}, \overline{\mathrm{~b}}=2 \overline{\mathrm{i}}+8 \overline{\mathrm{k}}, \overline{\mathrm{c}}=\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}} \\
\begin{aligned}
\overline{\mathrm{a}} \times \overline{\mathrm{b}} & =\left|\begin{array}{ccc}
\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\
7 & -2 & 3 \\
2 & 0 & 8
\end{array}\right| \\
& =\overline{\mathrm{i}}(-16-0)-\overline{\mathrm{j}}(56-6)+\overline{\mathrm{k}}(0+4) \\
\overline{\mathrm{a}} \times \overline{\mathrm{b}} & =-16 \overline{\mathrm{i}}-50 \overline{\mathrm{j}}+4 \overline{\mathrm{k}}
\end{aligned} \\
\begin{aligned}
\overline{\mathrm{a}} \times \overline{\mathrm{c}} & =\left|\begin{array}{ccc}
\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\
7 & -2 & 3 \\
1 & 1 & 1
\end{array}\right| \\
& =\overline{\mathrm{i}}(-2-3)-\overline{\mathrm{j}}(7-3)+\overline{\mathrm{c}}(7+2)
\end{aligned} \\
\begin{aligned}
\overline{\mathrm{a}} \times(\overline{\mathrm{b}} & +\overline{\mathrm{i}})=-4 \overline{\mathrm{j}}+9 \overline{\mathrm{k}}
\end{aligned} \\
=\overline{\mathrm{i}} \quad \overline{\mathrm{i}}(-18-3)-\overline{\mathrm{j}} \\
7 & -2 \\
3 & 1 \\
\overline{\mathrm{j}}(63-9)+\overline{\mathrm{k}}(7+6)
\end{array} \right\rvert\,
\end{aligned}
$$

$\therefore \overline{\mathrm{a}} \times(\overline{\mathrm{b}}+\overline{\mathrm{c}})=-21 \overline{\mathrm{i}}-54 \overline{\mathrm{j}}+13 \overline{\mathrm{k}}$
$\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{a}} \times \overline{\mathrm{c}}=-21 \overline{\mathrm{i}}-54 \overline{\mathrm{j}}+13 \overline{\mathrm{k}}$
$\therefore \overline{\mathrm{a}} \times(\overline{\mathrm{b}}+\overline{\mathrm{c}})=\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{a}} \times \overline{\mathrm{c}}$
70. If $\bar{a}=\bar{i}+\bar{j}+\bar{k}, \bar{c}=\bar{j}-\bar{k}$, then find vector b such that $\bar{a} \times \bar{b}=\bar{c}$ and $\bar{a} \cdot \bar{b}=3$.

Sol.

Let $\bar{b}=x \bar{i}+y \bar{j}+z \bar{k}$
$\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\left|\begin{array}{ccc}\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\ 1 & 1 & 1 \\ \mathrm{x} & \mathrm{y} & \mathrm{z}\end{array}\right|=\overline{\mathrm{i}}(\mathrm{z}-\mathrm{y})-\overline{\mathrm{j}}(\mathrm{z}-\mathrm{x})+\overline{\mathrm{k}}(\mathrm{y}-\mathrm{x})=\overline{\mathrm{c}}($ given $)$
$\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\overline{\mathrm{c}}$
$\Rightarrow \overline{\mathrm{i}}(\mathrm{z}-\mathrm{y})-\overline{\mathrm{j}}(\mathrm{z}-\mathrm{x})+\overline{\mathrm{k}}(\mathrm{y}-\mathrm{x})=\overline{\mathrm{j}}-\overline{\mathrm{k}}$
$z-y=0$
$\mathrm{x}-\mathrm{z}=1$
$y-x=-1 \Rightarrow x-y=1$
$\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=3$
$(\bar{i}+\bar{j}+\bar{k}) \cdot(x \bar{i}+y \bar{j}+z \bar{k})=3$
$x+y+z=3$
Put $y=z$ in (4)
$x+z+z=3$
$x+2 z=3$
From (2) and (5)
$x+2 y=3$
$\mathrm{x}-\mathrm{z}=1$
$3 \mathrm{z}=2 \Rightarrow \mathrm{z}=\frac{2}{3} \Rightarrow \mathrm{y}=\frac{2}{3}$
Now, we have
$x+y+z=3$
$x+\frac{2}{3}+\frac{2}{3}=3$
$x+\frac{4}{3}=3$
$x=3-\frac{4}{3}=\frac{5}{3}$
$\therefore \overline{\mathrm{b}}=\frac{5}{3} \overline{\mathrm{i}}+\frac{2}{3} \overline{\mathrm{j}}+\frac{2}{3} \overline{\mathrm{k}}=\frac{1}{3}[5 \overline{\mathrm{i}}+2 \overline{\mathrm{j}}+2 \overline{\mathrm{k}}]$
71. $\bar{a}, \bar{b}, \bar{c}$ are three vectors of equal magnitudes and each of them is inclined at an angle of 60° to the others. If $|\bar{a}+\bar{b}+\bar{c}|=\sqrt{6}$, then find $|\bar{a}|$.

Sol. $|\bar{a}+\bar{b}+\bar{c}|=\sqrt{6}$
$\Rightarrow|\bar{a}+\bar{b}+\bar{c}|^{2}=6$
$\Rightarrow \overline{\mathrm{a}}^{2}+\overline{\mathrm{b}}^{2}+\overline{\mathrm{c}}^{2}+2 \overline{\mathrm{a}} \overline{\mathrm{b}}+2 \overline{\mathrm{~b}} \overline{\mathrm{c}}+2 \overline{\mathrm{c}} \overline{\mathrm{a}}=6$
Let $|\overline{\mathrm{a}}|=|\overline{\mathrm{b}}|=|\overline{\mathrm{c}}|=\mathrm{a}$
$\Rightarrow \mathrm{a}^{2}+\mathrm{a}^{2}+\mathrm{a}^{2}+2 \mathrm{a}^{2} \cos (\overline{\mathrm{a}}, \overline{\mathrm{b}})+2 \mathrm{a}^{2} \cos (\overline{\mathrm{~b}}, \overline{\mathrm{c}})+2 \mathrm{a}^{2} \cos (\overline{\mathrm{c}}, \overline{\mathrm{a}})=6$
$\Rightarrow 3 \mathrm{a}^{2}+2 \mathrm{a}^{2} \cos 60^{\circ}+2 \mathrm{a}^{2} \cos 60^{\circ}+2 \mathrm{a}^{2} \cos 60^{\circ}=6$
$\Rightarrow 3 \mathrm{a}^{2}+6 \mathrm{a}^{2} \cos 60^{\circ}=6$
$\Rightarrow 3 \mathrm{a}^{2}+6 \mathrm{a}^{2} \times \frac{1}{2}=6$
$\Rightarrow 3 \mathrm{a}^{2}+3 \mathrm{a}^{2}=6$
$\Rightarrow 6 a^{2}=6$
$\Rightarrow \mathrm{a}^{2}=1 \Rightarrow \mathrm{a}=1 \Rightarrow|\overline{\mathrm{a}}|=1$
72. $\overline{\mathrm{a}}=3 \overline{\mathrm{i}}-\overline{\mathrm{j}}+2 \overline{\mathrm{k}}, \overline{\mathrm{b}}=-\overline{\mathrm{i}}+3 \overline{\mathrm{j}}+2 \overline{\mathrm{k}}, \overline{\mathrm{c}}=4 \overline{\mathrm{i}}+5 \overline{\mathrm{j}}-2 \overline{\mathrm{k}}$ and $\overline{\mathrm{d}}=\overline{\mathrm{i}}+3 \overline{\mathrm{j}}+5 \overline{\mathrm{k}}$, then compute the

following.

i) $(\bar{a} \times \bar{b}) \times(\bar{c} \times \bar{d})$
ii) $(\bar{a} \times \bar{b}) \cdot \bar{c}-(\bar{a} \times \bar{d}) \cdot \bar{b}$

Sol. i) $\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\bar{i} & \bar{j} & \bar{k} \\ 3 & -1 & 2 \\ -1 & 3 & 2\end{array}\right|$

$$
\begin{aligned}
& =\overline{\mathrm{i}}(-2-6)-\overline{\mathrm{j}}(6+2)+\overline{\mathrm{k}}(9-1) \\
\overline{\mathrm{a}} \times \overline{\mathrm{b}} & =-8 \overline{\mathrm{i}}-8 \overline{\mathrm{j}}+8 \overline{\mathrm{k}}
\end{aligned}
$$

$$
\begin{aligned}
\overline{\mathrm{c}} \times \overline{\mathrm{d}} & =\left|\begin{array}{ccc}
\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\
4 & 5 & -2 \\
1 & 3 & 5
\end{array}\right| \\
& =\overline{\mathrm{i}}(25+6)-\overline{\mathrm{j}}(20+2)+\overline{\mathrm{k}}(12-5) \\
& =31 \overline{\mathrm{i}}-22 \overline{\mathrm{j}}+7 \overline{\mathrm{k}}
\end{aligned}
$$

$(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})=\left|\begin{array}{ccc}\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\ -8 & -8 & 8 \\ 31 & -22 & 7\end{array}\right|$
$=\overline{\mathrm{i}}(-56+176)-\overline{\mathrm{j}}(-56-248)+\overline{\mathrm{k}}(176+248)$
$\therefore(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})=120 \overline{\mathrm{i}}+304 \overline{\mathrm{j}}+424 \overline{\mathrm{k}}$
ii) $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{c}}=(-8 \overline{\mathrm{i}}-8 \overline{\mathrm{j}}+8 \overline{\mathrm{k}}) \cdot(3 \overline{\mathrm{i}}-\overline{\mathrm{j}}+2 \overline{\mathrm{k}})$

$$
\begin{aligned}
& =-24+8+16 \\
& (\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{c}}=0
\end{aligned}
$$

$$
\overline{\mathrm{a}} \times \overline{\mathrm{d}}=\left|\begin{array}{ccc}
\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\
3 & -1 & 2 \\
1 & 3 & 5
\end{array}\right|
$$

$$
=\overline{\mathrm{i}}(-5-6)-\overline{\mathrm{j}}(15-2)+\overline{\mathrm{k}}(9+1)
$$

$$
=-11 \overline{\mathrm{i}}-13 \overline{\mathrm{j}}+10 \overline{\mathrm{k}}
$$

$$
(\overline{\mathrm{a}} \times \overline{\mathrm{d}}) \cdot \overline{\mathrm{b}}(-11 \overline{\mathrm{i}}-13 \overline{\mathrm{j}}+10 \overline{\mathrm{k}}) \cdot(-\overline{\mathrm{i}}+3 \overline{\mathrm{j}}+2 \overline{\mathrm{k}})
$$

$$
=11-39+20=-8
$$

$$
\therefore(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{c}}-(\overline{\mathrm{a}} \times \overline{\mathrm{d}}) \cdot \overline{\mathrm{b}}=0-(-8)
$$

$$
=0+8=8
$$

73. If \bar{a}, \bar{b} and \bar{c} are mutually perpendicular unit vectors then find the value of $[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]^{2}$.

Sol. Case (i) : Let $\bar{a}, \bar{b}, \bar{c}$ form a right hand system

$$
\begin{aligned}
& \Rightarrow \overline{\mathrm{b}} \times \overline{\mathrm{c}}=\overline{\mathrm{a}} \\
& \Rightarrow[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]=\overline{\mathrm{a}} \cdot(\overline{\mathrm{~b}} \times \overline{\mathrm{c}})=\overline{\mathrm{a}} \cdot \overline{\mathrm{a}}=|\overline{\mathrm{a}}|^{2}=1 \\
& \therefore[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]^{2}=1
\end{aligned}
$$

Case (ii) : Let $\bar{a}, \bar{b}, \bar{c}$ form a left hand system

$$
\begin{aligned}
& \Rightarrow(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=-\overline{\mathrm{a}} \\
& \Rightarrow[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]=\overline{\mathrm{a}} \cdot(\overline{\mathrm{~b}} \times \overline{\mathrm{c}}) \\
& \quad=-(\overline{\mathrm{a}} \cdot \overline{\mathrm{a}})=-|\overline{\mathrm{a}}|^{2}=-1 \\
& \therefore[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]^{2}=1
\end{aligned}
$$

\therefore In both cases we have $[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]^{2}=1$.

74. If \bar{a}, \bar{b} and \bar{c} are non-zero vectors and a is perpendicular to both b and c. If

 $|\bar{a}|=2,|\bar{b}|=3,|\bar{c}|=4$ and $(\bar{b}, \bar{c})=\frac{2 \pi}{3}$, then find $|[\bar{a} \bar{b} \bar{c}]|$.Sol. If \bar{a} is perpendicular to \bar{b} and \bar{c}.
$\Rightarrow \overline{\mathrm{a}}$ is parallel to $\overline{\mathrm{b}} \times \overline{\mathrm{c}}$
$\Rightarrow[\overline{\mathrm{a}}, \overline{\mathrm{b}} \times \overline{\mathrm{c}}]=0$
$\Rightarrow \overline{\mathrm{b}} \times \overline{\mathrm{c}}=|\overline{\mathrm{b}} \| \overline{\mathrm{c}}| \sin (\overline{\mathrm{b}}, \overline{\mathrm{c}}) \hat{\mathrm{a}}$
$\Rightarrow|\overline{\mathrm{b}} \times \overline{\mathrm{c}}|=3 \times 4 \sin \frac{2 \pi}{3} \hat{\mathrm{a}}$
$\Rightarrow|\overline{\mathrm{b}} \times \overline{\mathrm{c}}|=12 \sin 120.1=12 \times \frac{\sqrt{3}}{2}=6 \sqrt{3}$
$\therefore[|\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}|]=|\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})|=|\overline{\mathrm{a}} \| \overline{\mathrm{b}} \times \overline{\mathrm{c}}| \cos (\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}})$

$$
=(2 \cdot 6 \sqrt{3}) \cos 0=12 \sqrt{3}
$$

$\therefore|\overline{\mathrm{a}} \cdot \overline{\mathrm{b}} \times \overline{\mathrm{c}}|=(2 \cdot 6 \sqrt{3})=12 \sqrt{3}$
75. If $\left[\begin{array}{lll}\bar{b} & \bar{c} & \bar{d}\end{array}\right]+\left[\begin{array}{lll}\bar{c} & \bar{a} & \bar{d}\end{array}\right]+\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{d}\end{array}\right]=\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]$ then show that $\bar{a}, \bar{b}, \bar{c}, \bar{d}$ are coplanar.

Sol. Let O be the origin, then
$\overline{\mathrm{OA}}=\overline{\mathrm{a}}, \overline{\mathrm{OB}}=\overline{\mathrm{b}}, \overline{\mathrm{OC}}=\overline{\mathrm{c}}, \overline{\mathrm{OD}}=\overline{\mathrm{d}}$ are position vectors.
Then $\overline{\mathrm{AB}}=\overline{\mathrm{b}}-\overline{\mathrm{a}}, \overline{\mathrm{AC}}=\overline{\mathrm{c}}-\overline{\mathrm{a}}$ and $\overline{\mathrm{AD}}=\overline{\mathrm{d}}-\overline{\mathrm{a}}$
The vectors $\overline{\mathrm{AB}}, \overline{\mathrm{AC}}, \overline{\mathrm{AD}}$ are coplanar.
$\therefore[\overline{\mathrm{AB}} \overline{\mathrm{AC}} \overline{\mathrm{AD}}]=0$
$\Rightarrow\left[\begin{array}{lll}\overline{\mathrm{b}}-\overline{\mathrm{a}} & \overline{\mathrm{c}}-\overline{\mathrm{a}} & \overline{\mathrm{d}}-\overline{\mathrm{a}}\end{array}\right]=0$
$\Rightarrow(\bar{b}-\bar{a}) \times(\bar{c}-\bar{a}) \cdot(\bar{d}-\bar{a})=0$
$\Rightarrow(\bar{b} \times \bar{c}-\bar{b} \times \bar{a}-\bar{a} \times \bar{c}+\bar{a} \times \bar{a}) \cdot(\bar{d}-\bar{a})=0$
$\Rightarrow(\overline{\mathrm{b}} \times \overline{\mathrm{c}}+\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{c}} \times \overline{\mathrm{a}}) \cdot(\overline{\mathrm{d}}-\overline{\mathrm{a}})=0$
$(\because \bar{a} \times \bar{a}=0)$
$\Rightarrow(\bar{b} \times \bar{c}) \cdot \bar{d}+(\bar{a} \times \bar{b}) \cdot \bar{d}+(\bar{c} \times \bar{a}) \cdot \bar{d}-(\bar{b} \times \bar{c}) \cdot \bar{a}-(\bar{a} \times \bar{b}) \cdot \bar{a}-(\bar{c} \times \bar{a}) \cdot \bar{a}=0$
$\Rightarrow(\overline{\mathrm{b}} \times \overline{\mathrm{c}}) \cdot \overline{\mathrm{d}}+(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{d}}+(\overline{\mathrm{c}} \times \overline{\mathrm{a}}) \cdot \overline{\mathrm{d}}-(\overline{\mathrm{b}} \times \overline{\mathrm{c}}) \cdot \overline{\mathrm{a}}=0$
$\Rightarrow\left[\begin{array}{lll}\overline{\mathrm{b}} & \overline{\mathrm{c}} & \overline{\mathrm{d}}\end{array}\right]+\left[\begin{array}{lll}\overline{\mathrm{a}} & \overline{\mathrm{b}} & \overline{\mathrm{d}}\end{array}\right]+\left[\begin{array}{lll}\overline{\mathrm{c}} & \overline{\mathrm{a}} & \overline{\mathrm{d}}\end{array}\right]=\left[\begin{array}{lll}\overline{\mathrm{a}} & \overline{\mathrm{b}} & \overline{\mathrm{c}}\end{array}\right]$
76. If $\bar{a}, \bar{b}, \bar{c}$ non-coplanar vectors then prove that the four points with position vectors $2 \bar{a}+3 \bar{b}-\bar{c}, \bar{a}-2 \bar{b}+3 \bar{c}, 3 \bar{a}+4 \bar{b}-2 \bar{c}$ and $\bar{a}-6 \bar{b}+6 \bar{c}$ are coplanar.

Sol. Let A, B, C, D be the position vectors of given vectors.
Then $\overline{\mathrm{OA}}=2 \overline{\mathrm{a}}+3 \overline{\mathrm{~b}}-\overline{\mathrm{c}}, \overline{\mathrm{OB}}=\overline{\mathrm{a}}-2 \overline{\mathrm{~b}}+3 \overline{\mathrm{c}}$

$$
\overline{\mathrm{OC}}=3 \overline{\mathrm{a}}+4 \overline{\mathrm{~b}}-2 \overline{\mathrm{c}}, \overline{\mathrm{OD}}=\overline{\mathrm{a}}-6 \overline{\mathrm{~b}}+6 \overline{\mathrm{c}}
$$

$$
\overline{\mathrm{AB}}=\overline{\mathrm{OB}}-\overline{\mathrm{OA}}=-\overline{\mathrm{a}}-5 \overline{\mathrm{~b}}+4 \overline{\mathrm{c}}
$$

$$
\overline{\mathrm{AC}}=\overline{\mathrm{OC}}-\overline{\mathrm{OA}}=\overline{\mathrm{a}}+\overline{\mathrm{b}}-\overline{\mathrm{c}}
$$

$$
\overline{\mathrm{AD}}=\overline{\mathrm{OD}}-\overline{\mathrm{OA}}=-\overline{\mathrm{a}}-9 \overline{\mathrm{~b}}+7 \overline{\mathrm{c}}
$$

Let $\overline{\mathrm{AB}}=x \overline{\mathrm{AC}}+y \overline{\mathrm{AD}}$ where x, y are scalars.

$$
\begin{aligned}
& -\bar{a}-5 \bar{b}+4 \bar{c}=x(\bar{a}+\bar{b}-\bar{c})+y(-\bar{a}-9 \bar{b}+7 \bar{c}) \\
& -\bar{a}-5 \bar{b}+4 \bar{c}=(x-y) \bar{a}+(x-9 y) \bar{b}+(-x+7 y) \bar{c}
\end{aligned}
$$

Comparing $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ coefficients on both sides

$$
\begin{align*}
& x-y=-1 \tag{1}\\
& x-9 y=-5 \tag{2}\\
& -x+7 y=4 \tag{3}
\end{align*}
$$

$(1)-(2) \Rightarrow 8 y=4 \Rightarrow y=\frac{1}{2}$
From (1) : $x=-\frac{1}{2}$
$\Rightarrow \frac{1}{2}+\frac{7}{2}=4 \Rightarrow \frac{8}{2}=4 \Rightarrow 4=4$
\therefore Given vectors are coplanar.

77. Show that the equation of the plane passing through the points with

 position vectors $3 \overline{\mathrm{i}}-5 \overline{\mathrm{j}}-\overline{\mathrm{k}},-\overline{\mathrm{i}}+5 \overline{\mathrm{j}}+7 \overline{\mathrm{k}}$ and parallel to the vector $3 \overline{\mathrm{i}}-\overline{\mathrm{j}}+7 \overline{\mathrm{k}}$ is$$
3 x+2 y-z=0
$$

Sol. Let $\overline{\mathrm{OA}}=3 \overline{\mathrm{i}}-5 \overline{\mathrm{j}}-\overline{\mathrm{k}}, \overline{\mathrm{OB}}=-\overline{\mathrm{i}}+5 \overline{\mathrm{j}}+7 \overline{\mathrm{k}}$

$$
\overline{\mathrm{OC}}=3 \overline{\mathrm{i}}-\overline{\mathrm{j}}+7 \overline{\mathrm{k}}
$$

Let $P(x \bar{i}+y \bar{j}+z \bar{k})$ be any point on the plane with position vector.
Such that $\overline{\mathrm{OP}}=x \overline{\mathrm{i}}+y \overline{\mathrm{j}}+z \overline{\mathrm{k}}$

$$
\begin{aligned}
\overline{\mathrm{AP}} & =\overline{\mathrm{OP}}-\overline{\mathrm{OA}}=x \overline{\mathrm{i}}+y \overline{\mathrm{j}}+\mathrm{z} \overline{\mathrm{k}}-3 \overline{\mathrm{i}}+5 \overline{\mathrm{j}}+\overline{\mathrm{k}} \\
& =(\mathrm{x}-3) \overline{\mathrm{i}}+(\mathrm{y}+5) \overline{\mathrm{j}}+(\mathrm{z}+1) \overline{\mathrm{k}} \\
\overline{\mathrm{AB}} & =\overline{\mathrm{OB}}-\overline{\mathrm{OA}}=-\overline{\mathrm{i}}+5 \overline{\mathrm{j}}+7 \overline{\mathrm{k}}-3 \overline{\mathrm{i}}+5 \overline{\mathrm{j}}+\overline{\mathrm{k}} \therefore \text { The vector equation of the plane passing } \\
& =-4 \overline{\mathrm{i}}+10 \overline{\mathrm{j}}+8 \overline{\mathrm{k}} \\
\overline{\mathrm{C}}= & 3 \overline{\mathrm{i}}-\overline{\mathrm{j}}+7 \overline{\mathrm{k}}
\end{aligned}
$$

through A, B and parallel to $\overline{\mathrm{C}}$ is :

$$
\begin{aligned}
& {[\overline{\mathrm{AP}} \overline{\mathrm{AB}} \overline{\mathrm{C}}]=0 } \\
\Rightarrow & \left|\begin{array}{ccc}
\mathrm{x}-3 & \mathrm{y}+5 & \mathrm{z}+1 \\
-4 & 10 & 8 \\
3 & -1 & 7
\end{array}\right|=0 \\
\Rightarrow & (\mathrm{x}-3)[70+8]-(\mathrm{y}+5)[-28-24]+(\mathrm{z}+1)[4-30]=0 \\
\Rightarrow & (\mathrm{x}-3) 78+(\mathrm{y}+5) 52+(\mathrm{z}+1)(-26)=0 \\
\Rightarrow & 26[(\mathrm{x}+1) 3+(\mathrm{y}+5) 2+(\mathrm{z}+1)(-1)]=0 \\
\Rightarrow & 3 \mathrm{x}-9+2 \mathrm{y}+10-\mathrm{z}-1=0 \\
\Rightarrow & 3 \mathrm{x}+2 \mathrm{y}-\mathrm{z}=0
\end{aligned}
$$

78. Find the vector equation of the plane passing through the intersection of planes $\bar{r} \cdot(2 \bar{i}+2 \overline{\mathrm{j}}-3 \overline{\mathrm{k}})=7, \bar{r} \cdot(2 \overline{\mathrm{i}}+5 \overline{\mathrm{j}}+3 \overline{\mathrm{k}})=9$ and through the point $(2, \mathbf{1}, 3)$.

Sol. Cartesian form the given planes is

$$
\begin{align*}
& 2 x+2 y-3 z=7 \\
& 2 x+5 y+3 z=9 \tag{2}
\end{align*}
$$

Equation of the required plane will be in the form
$(2 x+2 y-3 z-7)+\lambda(2 x+5 y+3 z-9)=0$
Since it is passing through the point $(2,1,3)$
$[2(2)+2(1)-3(3)-7]+\lambda[2(2)+5(1)+3(3)-9]=0$
$(4+2-9-7)+\lambda(4+5+9-9)=0$
$-10+9 \lambda=0$
$9 \lambda=10 \Rightarrow \lambda=\frac{10}{9}$
Required plane is :

$$
\begin{aligned}
& (2 x+2 y-3 z-7)+\frac{10}{9}(2 x+5 y+3 z-9)=0 \\
& 18 x+18 y-27 z-63+20 x+50 y+30 z-90=0 \\
& 38 x+68 y+3 z-153=0
\end{aligned}
$$

Its vector form is
$\overline{\mathrm{r}} \cdot(38 \overline{\mathrm{i}}+68 \overline{\mathrm{j}}+3 \overline{\mathrm{k}})=153$.
79. Find the shortest distance between the lines $\bar{r}=6 \bar{i}+2 \bar{j}+2 \bar{k}+\lambda(\bar{i}-2 \bar{j}+2 \bar{k})$ and $\overline{\mathrm{r}}=-4 \overline{\mathrm{i}}-\overline{\mathrm{k}}+\mu(3 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}-2 \overline{\mathrm{k}})$.

Sol. Given lines are

$$
\begin{aligned}
& \bar{r}=6 \overline{\mathrm{i}}+2 \overline{\mathrm{j}}+2 \overline{\mathrm{k}}+\lambda(\overline{\mathrm{i}}-2 \overline{\mathrm{j}}+2 \overline{\mathrm{k}}) \\
& \overline{\mathrm{r}}=-4 \overline{\mathrm{i}}-\overline{\mathrm{k}}+\mu(3 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}-2 \overline{\mathrm{k}})
\end{aligned}
$$

Let $\overline{\mathrm{a}}=6 \overline{\mathrm{i}}+2 \overline{\mathrm{j}}+2 \overline{\mathrm{k}}, \overline{\mathrm{b}}=\overline{\mathrm{i}}-2 \overline{\mathrm{j}}+2 \overline{\mathrm{k}}$
$\overline{\mathrm{c}}=-4 \overline{\mathrm{i}}-\overline{\mathrm{k}}, \overline{\mathrm{d}}=3 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}-2 \overline{\mathrm{k}}$
Shortest distance between the given lines is
$\left.\frac{\mid[\bar{a}-\bar{c} \quad \bar{b}}{} \bar{d}\right] \mid$
$\overline{\mathrm{a}}-\overline{\mathrm{c}}=10 \overline{\mathrm{i}}+2 \overline{\mathrm{j}}+3 \overline{\mathrm{k}}$
$\left|\left[\begin{array}{lll}\overline{\mathrm{a}} & -\overline{\mathrm{c}} & \overline{\mathrm{b}} \\ \bar{d}\end{array}\right]\right|=\left|\begin{array}{ccc}10 & 2 & 3 \\ 1 & -2 & 2 \\ 3 & -2 & -2\end{array}\right|$
$=10(4+4)-2(-2-6)+3(-2+6)$
$=80+16+12=108$
$[\overline{\mathrm{b}} \times \overline{\mathrm{d}}]=\left|\begin{array}{ccc}\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\ 1 & -2 & 2 \\ 3 & -2 & -2\end{array}\right|$
$=\overline{\mathrm{i}}(4+4)-\overline{\mathrm{j}}(-2-6)+\overline{\mathrm{k}}(-2+6)$
$=8 \overline{\mathrm{i}}+8 \overline{\mathrm{j}}+4 \overline{\mathrm{k}}$
$|\overline{\mathrm{b}} \times \overline{\mathrm{d}}|=\sqrt{64+64+16}=\sqrt{144}=12$
\therefore Distance $=\frac{108}{12}=9$ units.
80. If $\bar{a}, \bar{b}, \bar{c}$ are the position vectors of the points A, B and C respectively. Then prove that the vector $\bar{a} \times \bar{b}+\bar{b} \times \bar{c}+\bar{c} \times \bar{a}$ is perpendicular to the plane of $\triangle \mathrm{ABC}$.

Sol. We have
$\overline{\mathrm{AB}}=\overline{\mathrm{b}}-\overline{\mathrm{a}}, \overline{\mathrm{BC}}=\overline{\mathrm{c}}-\overline{\mathrm{b}}$ and $\overline{\mathrm{CA}}=\overline{\mathrm{a}}-\overline{\mathrm{c}}$
Let $\bar{r}=\bar{a} \times \bar{b}+\bar{b} \times \bar{c}+\bar{c} \times \bar{a}$
then $\overline{\mathrm{r}} \cdot \overline{\mathrm{AB}}=\overline{\mathrm{r}} \cdot(\overline{\mathrm{b}}-\overline{\mathrm{a}})$
$=(\bar{a} \times \bar{b}+\bar{b} \times \bar{c}+\bar{c} \times \bar{a}) \cdot(\bar{b}-\bar{a})$
$=\bar{a} \times \bar{b} \cdot \bar{b}-\bar{a} \times \bar{b} \cdot \bar{a}+\bar{b} \times \bar{c} \cdot \bar{b}-\bar{b} \times \bar{c} \cdot \bar{a}+\bar{c} \times \bar{a} \cdot \bar{b}-\bar{c} \times \bar{a} \cdot \bar{a}$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
\overline{\mathrm{a}} & \overline{\mathrm{~b}} & \overline{\mathrm{~b}}
\end{array}\right]-\left[\begin{array}{lll}
\overline{\mathrm{a}} & \overline{\mathrm{~b}} & \overline{\mathrm{a}}
\end{array}\right]+\left[\begin{array}{lll}
\overline{\mathrm{b}} & \overline{\mathrm{c}} & \overline{\mathrm{~b}}
\end{array}\right]-\left[\begin{array}{lll}
\overline{\mathrm{b}} & \overline{\mathrm{c}} & \overline{\mathrm{a}}
\end{array}\right]+\left[\begin{array}{lll}
\overline{\mathrm{c}} & \overline{\mathrm{a}} & \overline{\mathrm{~b}}
\end{array}\right]-\left[\begin{array}{lll}
\overline{\mathrm{c}} & \overline{\mathrm{a}} & \overline{\mathrm{a}}
\end{array}\right] \\
& =-\left[\begin{array}{lll}
\overline{\mathrm{b}} & \overline{\mathrm{c}} & \overline{\mathrm{a}}
\end{array}\right]+\left[\begin{array}{lll}
\overline{\mathrm{c}} & \overline{\mathrm{a}} & \overline{\mathrm{~b}}
\end{array}\right]\left(\because \left[\begin{array}{ll}
\overline{\mathrm{a} \bar{b}}]=0)
\end{array}\right.\right. \\
& \left.=0\left(\begin{array}{lll}
\because \overline{\mathrm{c}} & \overline{\mathrm{a}} & \overline{\mathrm{~b}}
\end{array}\right]=\left[\begin{array}{lll}
\overline{\mathrm{b}} & \overline{\mathrm{c}} & \overline{\mathrm{a}}
\end{array}\right]\right)
\end{aligned}
$$

Thus \bar{r} is perpendicular to $\overline{\mathrm{AB}}$
(\because neither of them is zero vector)

Similarly we can show that $\overline{\mathrm{r}} \cdot \overline{\mathrm{BC}}=0$ and hence $\overline{\mathrm{r}}$ is also perpendicular to $\overline{\mathrm{BC}}$. Since \bar{r} is perpendicular to two lines in the plane $\triangle \mathrm{ABC}$, it is perpendicular to the plane $\triangle \mathrm{ABC}$.
81. Show that $(\bar{a} \times(\bar{b} \times \bar{c})) \times \bar{c}=(\bar{a} \cdot \bar{c})(\bar{b} \times \bar{c}) \boldsymbol{\&}(\bar{a} \times \bar{b}) \cdot(\bar{a} \times \bar{c})+(\bar{a} \cdot \bar{b})(\bar{a} \cdot \bar{c})=(\bar{a} \cdot \bar{a})(\bar{b} \cdot \bar{c})$.

Sol. $[\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})] \times \overline{\mathrm{c}}=[(\overline{\mathrm{a}} \cdot \cdot \overline{\mathrm{c}}) \overline{\mathrm{b}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{c}}] \times \overline{\mathrm{c}}$

$$
\begin{aligned}
& \quad=(\bar{a} \cdot \bar{c})(\bar{b} \times \bar{c})=(\bar{a} \cdot \bar{b})(\bar{c} \times \bar{c}) \\
& \quad=(\bar{a} \cdot \bar{c})(\bar{b} \times \bar{c})-(\bar{a} \cdot \bar{b})(0) \\
& {\left[\begin{array}{rl}
{[\bar{a} \times} & (\bar{b} \times \bar{c})] \times \bar{c}=(\bar{a} \cdot \bar{c})(\bar{b} \times \bar{c}) \\
(\bar{a} \times \bar{b}) \cdot(\bar{a} \times \bar{c})+(\bar{a} \cdot \bar{b})(\bar{a} \cdot \bar{c})=(\bar{a} \cdot \bar{b})(\bar{b} \cdot \bar{c})
\end{array}\right.} \\
& \begin{aligned}
&(\bar{a} \times \bar{b}) \cdot(\bar{a} \times \bar{c})=\left|\begin{array}{ll}
\bar{a} \cdot \bar{a} & \bar{a} \cdot \bar{c} \\
\bar{b} \cdot \bar{a} & \bar{b} \cdot \bar{c}
\end{array}\right|=(\bar{a} \cdot \bar{a})(\bar{b} \cdot \bar{c})-(\bar{a} \cdot \bar{c})(\bar{b} \cdot \bar{a}) \\
& \text { L.H.S. }=(\bar{a} \times \bar{b}) \cdot(\bar{a} \times \bar{c})+(\bar{a} \cdot \bar{b})(\bar{a} \cdot \bar{c}) \\
& \quad=(\bar{a} \cdot \bar{a})(\bar{b} \cdot \bar{c})-(\bar{a} \cdot \bar{c})(\bar{b} \cdot \bar{a})+(\bar{a} \cdot \bar{b})(\bar{a} \cdot \bar{c}) \\
& \quad=(\bar{a} \cdot \bar{a})(\bar{b} \cdot \bar{c})=\text { R.H.S. }
\end{aligned}
\end{aligned}
$$

82. If $A=(1,-2,-1), B=(4,0,-3), C=(1,2,-1)$ and $D=(2,-4,-5)$ find the shortest distance between AB and CD .

Sol. Let O be the origin
Let $\overline{\mathrm{OA}}=\overline{\mathrm{i}}-2 \overline{\mathrm{j}}-\overline{\mathrm{k}}, \overline{\mathrm{OB}}=4 \overline{\mathrm{i}}-3 \overline{\mathrm{k}}$

$$
\overline{\mathrm{OC}}=\overline{\mathrm{i}}+2 \overline{\mathrm{j}}-\overline{\mathrm{k}}, \overline{\mathrm{OD}}=2 \overline{\mathrm{i}}-4 \overline{\mathrm{j}}-5 \overline{\mathrm{k}}
$$

The vector equation of a line passing through A, B is

$$
\begin{aligned}
\overline{\mathrm{r}} & =(1-\mathrm{t}) \overline{\mathrm{a}}+\mathrm{t}, \mathrm{t}, \mathrm{t} \in \mathrm{R} \\
& =\overline{\mathrm{a}}+\mathrm{t}(\overline{\mathrm{~b}}-\overline{\mathrm{a}}) \\
& =\overline{\mathrm{i}}-2 \overline{\mathrm{j}}-\overline{\mathrm{k}}+\mathrm{t}(4 \overline{\mathrm{i}}-3 \overline{\mathrm{k}}-\overline{\mathrm{i}}+2 \overline{\mathrm{j}}+\overline{\mathrm{k}}) \\
& =\overline{\mathrm{i}}-2 \overline{\mathrm{j}}-\overline{\mathrm{k}}+\mathrm{t}(3 \overline{\mathrm{i}}+2 \overline{\mathrm{j}}-2 \overline{\mathrm{k}}) \\
& =\overline{\mathrm{a}}+\mathrm{t} \mathrm{\bar{b}}
\end{aligned}
$$

where $\overline{\mathrm{a}}=\overline{\mathrm{i}}-2 \overline{\mathrm{j}}-\overline{\mathrm{k}}, \overline{\mathrm{b}}=3 \overline{\mathrm{i}}+2 \overline{\mathrm{j}}-2 \overline{\mathrm{k}}$
The vector equation of a line passing through C, D is
$\overline{\mathrm{r}}=(1-s) \overline{\mathrm{c}}+\mathrm{s} \overline{\mathrm{d}}, \mathrm{s} \in \mathrm{R}$
$\overline{\mathrm{r}}=\overline{\mathrm{c}}+\mathrm{s}(\overline{\mathrm{d}}-\overline{\mathrm{c}})$
$=\overline{\mathrm{i}}+2 \overline{\mathrm{i}}-\overline{\mathrm{k}}+\mathrm{s}[2 \overline{\mathrm{i}}-4 \overline{\mathrm{j}}-5 \overline{\mathrm{k}}-\overline{\mathrm{i}}-2 \overline{\mathrm{j}}+\overline{\mathrm{k}}]$
$=\overline{\mathrm{i}}+2 \overline{\mathrm{j}}-\overline{\mathrm{k}}+\mathrm{s}[\overline{\mathrm{i}}-6 \overline{\mathrm{j}}-4 \overline{\mathrm{k}}]$
$=\bar{c}+s \bar{d}$
where $\bar{c}=\bar{i}+2 \bar{j}-\bar{k}, \bar{d}=\bar{i}-6 \bar{j}-4 \bar{k}$
$\overline{\mathrm{b}} \times \overline{\mathrm{d}}=\left|\begin{array}{ccc}\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\ 3 & 2 & -2 \\ 1 & -6 & -4\end{array}\right|$
$=\overline{\mathrm{i}}[-8-12]-\overline{\mathrm{j}}[-12+2]+\overline{\mathrm{k}}[-18-2]$
$=-20 \overline{\mathrm{i}}+10 \overline{\mathrm{j}}-20 \overline{\mathrm{k}}=10[-2 \overline{\mathrm{i}}+\overline{\mathrm{j}}-2 \overline{\mathrm{k}}]$
$|\overline{\mathrm{b}} \times \overline{\mathrm{d}}|=10 \sqrt{4+1+4}=10 \cdot 3=30$
$\bar{a}-\bar{c}=\bar{i}-2 \bar{j}-\bar{k}-\bar{i}-2 \bar{j}+\bar{k}=-4 \bar{j}$
$\frac{[\overline{\mathrm{a}}-\overline{\mathrm{c}} \overline{\mathrm{b}} \cdot \overline{\mathrm{d}}]}{|\overline{\mathrm{b}} \times \overline{\mathrm{d}}|}=\frac{(\overline{\mathrm{a}}-\overline{\mathrm{c}}) \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{d}})}{|\overline{\mathrm{b}} \times \overline{\mathrm{d}}|}$
$=\frac{-4 \overline{\mathrm{j}} \cdot 10[-2 \overline{\mathrm{i}}+\overline{\mathrm{j}}-2 \overline{\mathrm{k}}]}{30}=\frac{10[4]}{30}=\frac{40}{30}=\frac{4}{3}$
\therefore The shortest distance between the lines $=4 / 3$.
83. If $\bar{a}=2 \bar{i}+\bar{j}-3 \bar{k}, \bar{b}=\bar{i}-2 \bar{j}+\bar{k}, \bar{c}=-\bar{i}+\bar{j}-4 \bar{k}$ and $\bar{d}=\bar{i}+\bar{j}+\bar{k}$ then compute $|(\bar{a} \times \bar{b}) \times(\bar{c} \times \bar{d})|$.

Sol. $\quad \bar{a} \times \overline{\mathrm{b}}=\left|\begin{array}{ccc}\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\ 2 & 1 & -3 \\ 1 & -2 & 1\end{array}\right|$

$$
\begin{aligned}
& =\overline{\mathrm{i}}(1-6)-\overline{\mathrm{j}}(2+3)+\overline{\mathrm{k}}(-4-1) \\
\overline{\mathrm{a}} \times \overline{\mathrm{b}} & =-5 \overline{\mathrm{i}}-5 \overline{\mathrm{j}}-5 \overline{\mathrm{k}}
\end{aligned}
$$

$$
\overline{\mathrm{c}} \times \overline{\mathrm{d}}=\left|\begin{array}{ccc}
\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\
-1 & 1 & -4 \\
1 & 1 & 1
\end{array}\right|=\overline{\mathrm{i}}(1+4)-\overline{\mathrm{j}}(-1+4)+\overline{\mathrm{k}}(-1-1)
$$

$$
\begin{aligned}
& \overline{\mathrm{c}} \times \overline{\mathrm{d}}=5 \overline{\mathrm{i}}-3 \overline{\mathrm{j}}-2 \overline{\mathrm{k}} \\
& (\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})=\left|\begin{array}{ccc}
\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\
-5 & -5 & -5 \\
5 & -3 & -2
\end{array}\right|=\overline{\mathrm{i}}(10-15)-\overline{\mathrm{j}}(10+25)+\overline{\mathrm{k}}(15+25) \\
& \quad=-5 \overline{\mathrm{i}}-35 \overline{\mathrm{j}}+40 \overline{\mathrm{k}} \\
& (\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})=+5[-\overline{\mathrm{i}}-7 \overline{\mathrm{j}}+8 \overline{\mathrm{k}}] \\
& |(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})|=+5 \sqrt{1+49+64} \\
& \therefore|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})|=+5 \sqrt{114}
\end{aligned}
$$

84. If $\bar{A}=\left(1 \bar{a} \bar{a}^{2}\right), \bar{B}=\left(1 \bar{b} \bar{b}^{2}\right)$ and $\bar{c}=\left(1 \bar{c} \bar{c}^{2}\right)$ are non-coplanar vectors and

$$
\left|\begin{array}{ccc}
\overline{\mathrm{a}} & \overline{\mathrm{a}}^{2} & 1+\overline{\mathrm{a}}^{3} \\
\overline{\mathrm{~b}} & \overline{\mathrm{~b}}^{2} & 1+\overline{\mathrm{b}}^{3} \\
\overline{\mathrm{c}} & \overline{\mathrm{c}}^{2} & 1+\overline{\mathrm{c}}^{3}
\end{array}\right|=0 \text { then show that }(\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}+1)=0
$$

Sol. Given $\left|\begin{array}{lll}\bar{a} & \bar{a}^{2} & 1+\bar{a}^{3} \\ \bar{b} & \bar{b}^{2} & 1+\bar{b}^{3} \\ \overline{\mathrm{c}} & \overline{\mathrm{c}}^{2} & 1+\overline{\mathrm{c}}^{3}\end{array}\right|=0$

$$
\left|\begin{array}{ccc}
\overline{\mathrm{a}} & \overline{\mathrm{a}}^{2} & 1 \\
\overline{\mathrm{~b}} & \bar{b}^{2} & 1 \\
\overline{\mathrm{c}} & \overline{\mathrm{c}}^{2} & 1
\end{array}\right|+\left|\begin{array}{ccc}
\overline{\mathrm{a}} & \overline{\mathrm{a}}^{2} & \overline{\mathrm{a}}^{3} \\
\overline{\mathrm{~b}} & \bar{b}^{2} & \bar{b}^{3} \\
\overline{\mathrm{c}} & \overline{\mathrm{c}}^{2} & \overline{\mathrm{c}}^{3}
\end{array}\right|=0
$$

$$
\Rightarrow\left|\begin{array}{ccc}
\overline{\mathrm{a}} & \overline{\mathrm{a}}^{2} & 1 \\
\overline{\mathrm{~b}} & \overline{\mathrm{~b}}^{2} & 1 \\
\overline{\mathrm{c}} & \overline{\mathrm{c}}^{2} & 1
\end{array}\right|+\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}\left|\begin{array}{ccc}
1 & \overline{\mathrm{a}} & \bar{a}^{2} \\
1 & \overline{\mathrm{~b}} & \bar{b}^{2} \\
1 & \overline{\mathrm{c}} & \overline{\mathrm{c}}^{2}
\end{array}\right|=0
$$

$$
\Rightarrow\left|\begin{array}{lll}
\overline{\mathrm{a}} & \overline{\mathrm{a}}^{2} & 1 \\
\overline{\mathrm{~b}} & \overline{\mathrm{~b}}^{2} & 1 \\
\overline{\mathrm{c}} & \overline{\mathrm{c}}^{2} & 1
\end{array}\right|(1+\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}})=0
$$

$$
\bar{a} \bar{b} \bar{c}+1=0
$$

$$
\begin{aligned}
& (\because \overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}} \text { are non-coplanar vectors }) \\
& \Rightarrow \overline{\mathrm{a}}, \overline{\mathrm{~b}}, \overline{\mathrm{c}}=-1
\end{aligned}
$$

85. If $\bar{a}, \bar{b}, \bar{c}$ are non-zero vectors $|(\bar{a} \times \bar{b}) \bar{c}|=|\bar{a}\|\bar{b}\| \bar{c}| \Leftrightarrow \bar{a} \cdot \bar{b}=\bar{b} \cdot \bar{c}=\bar{c} \cdot \bar{a}=0$.

Sol. Given $\bar{a} \neq 0, \bar{b} \neq 0$ and $\bar{c} \neq 0$

$$
\begin{aligned}
& |\overline{\mathrm{a}} \times \overline{\mathrm{b}} \cdot \overline{\mathrm{c}}|=|\overline{\mathrm{a}}\|\overline{\mathrm{~b}}\| \overline{\mathrm{c}}| \\
& \Rightarrow|\overline{\mathrm{a}} \times \overline{\mathrm{b}}\|\overline{\mathrm{c}}|\cos ((\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{c}})=|\overline{\mathrm{a}}\|\overline{\mathrm{~b}}\| \overline{\mathrm{c}}| \\
& \Rightarrow|\overline{\mathrm{a}}\|\overline{\mathrm{~b}}|\sin (\overline{\mathrm{a}}, \overline{\mathrm{~b}}) \cdot \cos (\overline{\mathrm{a}} \times \overline{\mathrm{b}} \cdot \overline{\mathrm{c}})=|\overline{\mathrm{a}} \| \overline{\mathrm{b}}| \\
& \Rightarrow \sin (\overline{\mathrm{a}}, \overline{\mathrm{~b}}) \cdot \cos (\overline{\mathrm{a}} \times \overline{\mathrm{b}} \cdot \overline{\mathrm{c}})=1 \\
& \Rightarrow \sin (\overline{\mathrm{a}}, \overline{\mathrm{~b}})=1 \text { and } \cos (\overline{\mathrm{a}} \times \overline{\mathrm{b}} \cdot \overline{\mathrm{c}})=1 \\
& \Rightarrow \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}=90^{\circ} \text { and } \overline{\mathrm{a}} \times \overline{\mathrm{b}} \cdot \overline{\mathrm{c}}=0 \\
& \Rightarrow \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}=90^{\circ} \text { and } \overline{\mathrm{a}} \times \overline{\mathrm{b}} \text { parallel to } \overline{\mathrm{c}} \\
& \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}=90^{\circ} \text { and } \overline{\mathrm{a}}, \overline{\mathrm{~b}} \text { are perpendicular to } \overline{\mathrm{c}} \\
& \Rightarrow \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}=0^{\circ} \text { and } \overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}=0 \\
& \Rightarrow \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}=\overline{\mathrm{c}} \cdot \overline{\mathrm{c}} \cdot \overline{\mathrm{a}}=0
\end{aligned}
$$

86. If $|\bar{a}|=1,|\bar{b}|=1,|\bar{c}|=2$ and $\bar{a} \times(\bar{a} \times \bar{c})+\bar{b}=0$, then find the angle between \bar{a} and \bar{c}.

Sol. Given that $|\bar{a}|=1,|\bar{b}|=1,|\bar{c}|=2$
Let $(\bar{a}, \bar{c})=\theta$
Consider $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=|\overline{\mathrm{a}} \| \overline{\mathrm{c}}| \cos \theta$

$$
\begin{align*}
& =(1)(2) \cos \theta \\
& =2 \cos \theta \tag{1}
\end{align*}
$$

Consider $\overline{\mathrm{a}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{c}})+\overline{\mathrm{b}}=0$
$(\bar{a} \cdot \bar{c}) \bar{a}-(\bar{a} \cdot \bar{a}) \bar{c}+\bar{b}=\overline{0}$
$(2 \cos \theta) \bar{a}-(1) \bar{c}+\bar{b}=0$
$(2 \cos \theta) \overline{\mathrm{a}}-\overline{\mathrm{c}}=-\overline{\mathrm{b}}$
Squaring on both sides

$$
\begin{aligned}
& {[(2 \cos \theta) \overline{\mathrm{a}}-\overline{\mathrm{c}}]^{2}=(-\overline{\mathrm{b}})^{2}} \\
& \Rightarrow\left(4 \cos ^{2} \theta\right)(\overline{\mathrm{a}})^{2}+(\overline{\mathrm{c}})^{2}-4 \cos \theta(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}})=\overline{\mathrm{b}}^{2} \\
& \Rightarrow 4 \cos ^{2} \theta(1)+(2)^{2}-4 \cos \theta(2 \cos \theta)=1 \\
& \Rightarrow 4 \cos ^{2} \theta+4-8 \cos ^{2} \theta=1 \\
& \Rightarrow 4-4 \cos ^{2} \theta=1 \\
& \Rightarrow 4 \cos ^{2} \theta=3
\end{aligned}
$$

$\Rightarrow \cos ^{2} \theta=\frac{3}{4} \Rightarrow \cos \theta= \pm \frac{\sqrt{3}}{2}$

Case I :

If $\cos \theta=\frac{\sqrt{3}}{2} \Rightarrow \theta=\frac{\pi}{6}$
$\Rightarrow(\overline{\mathrm{a}}, \overline{\mathrm{c}})=\frac{\pi}{6}=30^{\circ}$
Case II :
If $\cos \theta=-\frac{\sqrt{3}}{2} \Rightarrow \theta=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}=150^{\circ}$
$\Rightarrow(\overline{\mathrm{a}}, \overline{\mathrm{c}})=\frac{5 \pi}{6}=150^{\circ}$

87. Prove that the smaller angle θ between any tow diagonals of a cube is given by $\cos \theta=1 / 3$.

Sol. Without loss of generality we may assume that the cube is a unit cube.
\therefore Let $\overline{\mathrm{OA}}=\overline{\mathrm{i}}, \overline{\mathrm{OC}}=\overline{\mathrm{j}}$ and $\overline{\mathrm{OG}}=\overline{\mathrm{k}}$ be coterminus edges of the cube.

\therefore Diagonal $\overline{\mathrm{OE}}=\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}}$ and diagonal $\overline{\mathrm{BG}}=-\overline{\mathrm{i}}-\overline{\mathrm{j}}+\overline{\mathrm{k}}$.
Let θ be the smaller angle between the diagonals OE and BG .
Then $\cos \theta=\frac{|\overline{\mathrm{OE}} \cdot \overline{\mathrm{BG}}|}{|\overline{\mathrm{OE}}||\overline{\mathrm{BG}}|}=\frac{|-1-1+1|}{\sqrt{3} \sqrt{3}}=\frac{1}{3}$

88. The altitudes of a triangle are concurrent

Proof : Let $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}$ and $\overrightarrow{O C}=\vec{c}$ be the position vectors of the vertices of of a triangle ABC

Let the altitudes through A and B meet at p . let $\overrightarrow{O P}=\vec{r}$ now
$\overrightarrow{A P} \perp^{r} \overrightarrow{B C} \Rightarrow \overrightarrow{A P} \cdot \overrightarrow{B C}=0$

$$
(\vec{r}-\vec{a}) \cdot(\vec{c}-\vec{b})=0 \Rightarrow \vec{r} \cdot(\vec{c}-\vec{b})=\vec{a} \cdot(\vec{c}-\vec{b}) \rightarrow(1)
$$

Also $\overrightarrow{B P} \perp^{r} \overrightarrow{B C} \Rightarrow \overrightarrow{B P} \cdot \overrightarrow{C A}=0$

$$
(\vec{r}-\vec{a}) \cdot(\vec{a}-\vec{c})=0 \Rightarrow \vec{r} \cdot(\vec{a}-\vec{c})=\vec{b} \cdot(\vec{a}-\vec{c}) \rightarrow(2)
$$

$$
(1)+(2) \Rightarrow \vec{r} \cdot(\vec{c}-\vec{b})+\vec{r}(\vec{a}-\vec{c})=\vec{a} \cdot(\vec{c}-\vec{b})+\vec{b} \cdot(\vec{a}-\vec{c})
$$

$$
\vec{r} \cdot(\vec{a}-\vec{b})=\vec{c} \cdot(\vec{b}-\vec{a})
$$

$$
\vec{r} \cdot(\vec{b}-\vec{a})-\vec{c} \cdot(\vec{b}-\vec{a})=0
$$

$$
(\vec{r}-\vec{c}) \cdot(\vec{b}-\vec{a})=0
$$

$\overrightarrow{C P} \cdot \overrightarrow{A B}=0 \quad \therefore \overrightarrow{C P} \perp^{r} \overrightarrow{A B}$
\therefore Altitude through C also passes through
\therefore Altitudes are concurrent

89. The perpendicular bisectors of sides of a triangle are concurrent.

Proof: Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be the vertices of a triangle with position vectors $\vec{a}, \vec{b}, \vec{c}$.
Let D, E, F be the mid points of $B C, C A, A B$ respectively Let ' O ' be point of intersection of perpendicular bisectors of BC and AC

$$
\begin{aligned}
& \overrightarrow{O D}=\frac{\vec{b}+\vec{c}}{2} \quad \overrightarrow{O E}=\frac{\vec{a}+\vec{c}}{2} \\
& \overrightarrow{O D} \perp^{r} \overrightarrow{B C} \Rightarrow \overrightarrow{O D} \cdot \overrightarrow{B C}=0 \\
& \left(\frac{\vec{b}+\vec{c}}{2}\right) \cdot(\vec{c}-\vec{b})=0 \\
& (\vec{c})^{2}-(\vec{b})^{2}=0 \rightarrow(1) \\
& \overrightarrow{O E}=\frac{\vec{a}+\vec{c}}{2} \quad \overrightarrow{A C}=\vec{c}-\vec{a} \\
& \overrightarrow{O E} \perp^{r} \overrightarrow{C A} \Rightarrow \overrightarrow{O E} \cdot \overrightarrow{C A}=0 \\
& \left(\frac{\vec{a}+\vec{c}}{2}\right) \cdot(\vec{a}-\vec{c})=0 \\
& \Rightarrow(\vec{a})^{2}-(\vec{c})^{2}=0 \rightarrow(2)
\end{aligned}
$$

(1) $+(2)$ we have $(\vec{a})^{2}-(\vec{b})^{2}=0 \Rightarrow(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=0$

$$
\left(\frac{\vec{a}+\vec{b}}{2}\right) \cdot(\vec{a}-\vec{b})=0 \Rightarrow \overrightarrow{O F} \cdot \overrightarrow{B A}=0
$$

```
\(\overrightarrow{O F} \perp^{r} \overrightarrow{B A}\)
```

$\therefore \perp^{r}$ bisector of AB also passes through O
Hence perpendicular bisectors are concurrent.

90. The vector equation of plane passing through the points A, B, C having position vectors $\vec{a}, \vec{b}, \vec{c}$ is $[\vec{r}-\vec{a} \vec{b}-\vec{a} \vec{c}-\vec{a}]=0$ (or) $\vec{r} .\{(\vec{b} \times \vec{c})+(\vec{c} \times \vec{a})+(\vec{a} \times \vec{b})]=[\vec{a} \vec{b} \vec{c}]$

Sol: Let $\overrightarrow{O P}=\vec{r}$ be any point on the plane $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}, \overrightarrow{O C}=\vec{c}$ are the given points $\overrightarrow{A P}, \overrightarrow{A B}, \overrightarrow{A C}$ are coplanar
$[\overrightarrow{A P} \overrightarrow{A B} \overrightarrow{A C}]=0$
$\left[\begin{array}{ll}\vec{r}-\vec{a} & \vec{b}-\vec{a} \\ c\end{array}-\vec{a}\right]=0$
$(\vec{r}-\vec{a}) .(\vec{b}-\vec{a}) \times(\vec{c}-\vec{a})=0$

$(\vec{r}-\vec{a}) .\{\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{a} \times \vec{b}\}=0$
$\vec{r} .\{\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{a} \times \vec{b}\}-\vec{a} \cdot \vec{b} \times \vec{c}-\vec{a} \cdot \vec{c} \times \vec{a}-\vec{a} \cdot \vec{a} \times \vec{b}=0$
$\vec{r} .\{\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{a} \times \vec{b}\}=[\vec{a} \vec{b} \vec{c}]\{\therefore \vec{a} \cdot \vec{c} \times \vec{a}=0 \vec{a} \cdot \vec{a} \times \vec{b}=0\}$

91. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors then

i) $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$ ii) $(\vec{a} \times \vec{b}) \times \vec{c}=(\vec{c} \cdot \vec{a}) \vec{b}-(\vec{c} \cdot \vec{b}) \vec{b}$

Proof : i) Let $\vec{a}=a_{1} \vec{l}+a_{2} \vec{j}+a_{3} \vec{k}, \quad \vec{b}=b_{1} \vec{l}+b_{2} \vec{j}+b_{3} \vec{k}, \quad \vec{c}=c_{1} \vec{l}+c_{2} \vec{j}+c_{3} \vec{k}$ be three vectors $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|=\vec{l}\left(a_{2} b_{3}-a_{3} b_{2}\right)-\vec{j}\left(a_{1} b_{3}-a_{3} b_{1}\right)+\vec{k}\left(a_{1} b_{2}-a_{2} b_{1}\right)$
$(\vec{a} \times \vec{b}) \times \vec{c}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ a_{2} b_{3}-a_{3} b_{2} & a_{3} b_{1}-a_{1} b_{3} & a_{1} b_{2}-a_{2} b_{1} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
$=\vec{l}\left\{c_{3}\left(a_{3} b_{1}-a_{1} b_{3}\right)-c_{2}\left(a_{1} b_{2}-a_{2} b_{1}\right)\right\}-\vec{j}\left\{c_{3}\left(a_{2} b_{3}-a_{3} b_{2}-c_{1}\left(a_{1} b_{2}-a_{2} b_{1}\right)\right\}+\vec{k}\left\{c_{2}\left(a_{2} b_{3}-a_{3} b_{2}\right)-c_{1}\left(a_{3} b_{1}-a_{1} b_{3}\right)\right\}\right.$
$(\vec{c} \cdot \vec{a}) \vec{b}-(\vec{c} \cdot \vec{b}) \vec{a}=\left(a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3}\right)\left\{b_{1} \vec{l}+b_{2} \vec{j}+b_{3} \vec{k}\right)$
$\left(a_{1} b_{1} c_{1}+a_{2} b_{1} c_{2}+a_{3} b_{1} c_{3}-a_{1} b_{1} c_{2}-a_{1} b_{3} c_{3}\right) \vec{l}+\left(a_{1} b_{2} c_{1}+a_{2} b_{3} c_{2}+a_{3} b_{3} c_{3}-a_{2} b_{1} c_{1}-a_{2} b_{2} c_{2}-a_{2} b_{3} c_{3}\right) \vec{j}$
$+\left(a_{1} b_{3} c_{1}+a_{2} b_{3} c_{2}+a_{3} b_{3} c_{3}-a_{3} b_{1} c_{1}-a_{3} b_{2} c_{2}-a_{3} b_{3} c_{3}\right) \vec{k}$

$$
\Rightarrow\left\{c_{3}\left(a_{3} b_{1}-a_{1} b_{3}\right)-c_{2}\left(a_{1} b_{2}-a_{2} b_{1}\right)\right\} \vec{l}+\vec{j}\left\{c_{3}\left(a_{2} b_{3}-a_{3} b_{2}\right)-c_{1}\left(a_{1} b_{2}-a_{2} b_{1}\right)+\vec{k}\left\{c_{2}\left(a_{2} b_{3}-a_{3} b_{2}\right)-c_{1}\left(a_{3} b_{1}-a_{1} b_{3}\right)\right\}\right.
$$

Hence proved
Proof ii ; $\vec{b} \times \vec{c}=\left|\begin{array}{ccc}i & j & \vec{k} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$

$$
=\vec{l}\left(b_{2} c_{3}-b_{3} c_{2}\right)-\vec{j}\left(b_{1} c_{3}-b_{3} c_{1}\right)+\vec{k}\left(b_{1} c_{2}-b_{2} c_{1}\right)
$$

$$
\vec{a} \times(\vec{b} \times \vec{c})=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & k \\
a_{1} & a_{2} & a_{3} \\
b_{2} c_{3}-b_{3} c_{2} & b_{3} c_{1}-b_{1} c_{3} & b_{1} c_{2}-b_{2} c_{1}
\end{array}\right|
$$

$$
=\vec{l}\left\{a_{2}\left(b_{1} c_{2}-b_{2} c_{1}\right)-a_{3}\left(b_{3} c_{1}-b_{1} c_{3}\right)\right\}-\vec{j}\left\{a_{1}\left(b_{1} c_{2}-b_{2} c_{1}\right)-a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)\right\}+\vec{k}\left\{a_{1}\left(b_{3} c_{1}-b_{1} c_{3}\right)-a_{2}\left(b_{2} c_{3}-b_{3} c_{2}\right)\right\}
$$

R.H.S. $(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$

$$
\begin{aligned}
& \left(a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3}\right)\left\{b_{1} \vec{l}+b_{2} \vec{j}+b_{3} \vec{k}\right\}-\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)\left\{c_{1} \vec{l}+c_{2} \vec{j}+c_{3} \vec{k}\right\} \\
& \left.\Rightarrow \vec{l}\left\{a_{2}\left(b_{1} c_{2}-b_{2} c_{1}\right)-a_{3}\left(b_{3} c_{1}-b_{1} c_{3}\right)\right\}-\vec{j}\left\{a_{1} c b_{1} c_{2}-b_{2} c_{1}\right)-a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)\right\}+\vec{k}\left\{a_{1}\left(b_{3} c_{1}-b_{1} c_{3}\right)-a_{2}\left(b_{2} c_{3}-b_{3} c_{2}\right)\right\}
\end{aligned}
$$

92. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are four vectors then $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=\left|\begin{array}{ll}\vec{a} \cdot \vec{c} & \vec{a} \cdot \vec{d} \\ \vec{b} \cdot \vec{c} & \vec{b} \cdot \vec{d}\end{array}\right|$

Proof : $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=\{(\vec{a} \times \vec{b}) \times \vec{c}\} \cdot \vec{d} \quad\{\because$ dot and cross are inter changeable $\}$
$\{(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a}\} \cdot \vec{d}=(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d})-(\vec{b} \cdot \vec{c})(\vec{a} \cdot \vec{d})=\left|\begin{array}{ll}\vec{a} \cdot \vec{c} & \vec{a} \cdot \vec{d} \\ \vec{b} \cdot \vec{c} & \vec{b} \cdot \vec{d}\end{array}\right|$

93. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are four vectors then

$(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=[\vec{a} \vec{b} \vec{d}] \vec{c}-[\vec{a} \vec{b} \vec{c}] \vec{d}=[\vec{a} \vec{c} \vec{d}] \vec{b}-[\vec{b} \vec{c} \vec{d}] \vec{a}$
Proof :- $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=(\vec{a} \times \vec{b} \cdot \vec{d}) \vec{c}-(\vec{a} \times \vec{b} \cdot \vec{c}) \vec{d}$
$=[\vec{a} \vec{b} \vec{d}] \vec{c}-[\vec{a} \vec{b} \vec{c}] \vec{d}$
$(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=(\vec{c} \times \vec{d} \cdot \vec{a}] \vec{b}-(\vec{c} \times \vec{d} \cdot \vec{b}] \vec{a}$
$=\left[\begin{array}{lll}\vec{a} & \vec{c} & \vec{d}\end{array}\right] \vec{b}-(\vec{b} \vec{c} \vec{d}] \vec{a}$
94. The vector area of a triangle $\mathbf{A B C}$ is $\frac{1}{2} \overrightarrow{A B} \times \overrightarrow{A C}=\frac{1}{2} \overrightarrow{B C} \times \overrightarrow{B A},=\frac{1}{2} \overrightarrow{C A} \times \overrightarrow{C B}$

Sol: In a triangle $\overrightarrow{A B C}, \overrightarrow{A B}, \overrightarrow{B C}, \overrightarrow{C A}$ are the vectors represented by the sides AB , BC, CA

$$
A=(\overrightarrow{A B}, \overrightarrow{A C}) B=(\overrightarrow{B A}, \overrightarrow{B C}) \quad C=(\overrightarrow{C B}, \overrightarrow{C A})
$$

Let \vec{n} be the unit vector $\perp^{r} \overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{A B}, \overrightarrow{A C}, \vec{n}$ form right handed system area of triangle ABC

$$
\begin{gathered}
\Delta=\frac{1}{2} A B \cdot A C \sin A \\
\Delta=\frac{1}{2}|\overrightarrow{A B}||\overrightarrow{A C}| \sin A \\
\Delta \vec{n}=\frac{1}{2}|\overrightarrow{A B}||\overrightarrow{A C}| \vec{n} \sin A \\
\Delta \vec{n}=\frac{1}{2} \overrightarrow{A B} \times \overrightarrow{A C} \\
\Delta \vec{n}=\frac{1}{2} \overrightarrow{B C} \times \overrightarrow{B A}=\frac{1}{2} \overrightarrow{C A} \times \overrightarrow{C B}
\end{gathered}
$$

95. If $\vec{a}, \vec{b}, \vec{c}$ are the prove that of the vertices of the triangle $\mathbf{A B C}$ then vector

$$
\text { area }=\frac{1}{2}\{\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{a} \times \vec{b}\}
$$

Sol: $\quad \overrightarrow{O A}=\vec{a} \quad \overrightarrow{O B}=\vec{b} \quad \overrightarrow{O C}=\vec{c}$ be the given vertices
Vector area $=\frac{1}{2} \overrightarrow{A B} \times \overrightarrow{A C}$

$$
\begin{aligned}
& =\frac{1}{2}\{(\vec{b}-\vec{a}) \times(\vec{c}-\vec{a})\} \\
& =\frac{1}{2}\{\vec{b} \times \vec{c}-\vec{b} \times \vec{a}-\vec{a} \times \vec{c}+\vec{a} \times \vec{a}\} \\
& =\frac{1}{2}\{\vec{b} \times \vec{c}+\vec{a} \times \vec{b}+\vec{c} \times \vec{a}\}
\end{aligned}
$$

96. In $\triangle A B C$ the length of the median through the vertex A is $\frac{\mathbf{1}}{\mathbf{2}}\left(\mathbf{2} \mathbf{b}^{\mathbf{2}}+\mathbf{2} \mathbf{c}^{\mathbf{2}}-\mathbf{a}^{\mathbf{2}}\right)^{\mathbf{1 / 2}}$

Proof: Let D be the mid point of the side $B C$. Take ' A ' as the origin. Let $\overline{A B}=\bar{\alpha}$ and $\overline{A C}=\beta$ so that $(\bar{\alpha}, \bar{\beta})=\angle A$

Since $\overline{A D}=\frac{\bar{\alpha}+\bar{\beta}}{2}$, we have $4 \overline{A D}^{2}=\bar{\alpha}^{2}+\bar{\beta}^{2}+2 \bar{\alpha} \cdot \bar{\beta}=\overline{A B}^{2}+\overline{A C}^{2}+2|\overline{A B}||\overline{A C}| \cos (\overline{A B}, \overline{A C})$
$=c^{2}+b^{2}+2 b c \cos A=c^{2}+b^{2}+\left(b^{2}+c^{2}-a^{2}\right)=2 b^{2}+2 c^{2}-a^{2}$
$\therefore A D=\frac{1}{2} \sqrt{2 b^{2}+2 c^{2}-a^{2}}$

97. Theorem : If $\vec{a}, \vec{b}, \vec{c}$ are three vectors then

i) $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$ ii) $(\vec{a} \times \vec{b}) \times \vec{c}=(\vec{c} \cdot \vec{a}) \vec{b}-(\vec{c} \cdot \vec{b}) \vec{b}$

Proof : i) Let $\vec{a}=a_{1} \vec{l}+a_{2} \vec{j}+a_{3} \vec{k}, \quad \vec{b}=b_{1} \vec{l}+b_{2} \vec{j}+b_{3} \vec{k}, \quad \vec{c}=c_{1} \vec{l}+c_{2} \vec{j}+c_{3} \vec{k} \quad$ be three vectors $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|=\vec{l}\left(a_{2} b_{3}-a_{3} b_{2}\right)-\vec{j}\left(a_{1} b_{3}-a_{3} b_{1}\right)+\vec{k}\left(a_{1} b_{2}-a_{2} b_{1}\right)$ $(\vec{a} \times \vec{b}) \times \vec{c}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ a_{2} b_{3}-a_{3} b_{2} & a_{3} b_{1}-a_{1} b_{3} & a_{1} b_{2}-a_{2} b_{1} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$ $=\vec{l}\left\{c_{3}\left(a_{3} b_{1}-a_{1} b_{3}\right)-c_{2}\left(a_{1} b_{2}-a_{2} b_{1}\right)\right\}-\vec{j}\left\{c_{3}\left(a_{2} b_{3}-a_{3} b_{2}-c_{1}\left(a_{1} b_{2}-a_{2} b_{1}\right)\right\}+\vec{k}\left\{c_{2}\left(a_{2} b_{3}-a_{3} b_{2}\right)-c_{1}\left(a_{3} b_{1}-a_{1} b_{3}\right)\right\}\right.$
$(\vec{c} \cdot \vec{a}) \vec{b}-(\vec{c} \cdot \vec{b}) \vec{a}=\left(a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3}\right)\left\{b_{1} \vec{l}+b_{2} \vec{j}+b_{3} \vec{k}\right)$
$\left(a_{1} b_{1} c_{1}+a_{2} b_{1} c_{2}+a_{3} b_{1} c_{3}-a_{1} b_{1} c_{2}-a_{1} b_{3} c_{3}\right) \vec{l}+\left(a_{1} b_{2} c_{1}+a_{2} b_{3} c_{2}+a_{3} b_{3} c_{3}-a_{2} b_{1} c_{1}-a_{2} b_{2} c_{2}-a_{2} b_{3} c_{3}\right) \vec{j}$
$+\left(a_{1} b_{3} c_{1}+a_{2} b_{3} c_{2}+a_{3} b_{3} c_{3}-a_{3} b_{1} c_{1}-a_{3} b_{2} c_{2}-a_{3} b_{3} c_{3}\right) \vec{k}$
$\Rightarrow\left\{c_{3}\left(a_{3} b_{1}-a_{1} b_{3}\right)-c_{2}\left(a_{1} b_{2}-a_{2} b_{1}\right)\right\} \vec{l}+\vec{j}\left\{c_{3}\left(a_{2} b_{3}-a_{3} b_{2}\right)-c_{1}\left(a_{1} b_{2}-a_{2} b_{1}\right)+\vec{k}\left\{c_{2}\left(a_{2} b_{3}-a_{3} b_{2}\right)-c_{1}\left(a_{3} b_{1}-a_{1} b_{3}\right)\right\}\right.$

Hence proved

Proof ii ; $\vec{b} \times \vec{c}=\left|\begin{array}{ccc}i & j & \vec{k} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$

$$
=\vec{l}\left(b_{2} c_{3}-b_{3} c_{2}\right)-\vec{j}\left(b_{1} c_{3}-b_{3} c_{1}\right)+\vec{k}\left(b_{1} c_{2}-b_{2} c_{1}\right)
$$

$$
\vec{a} \times(\vec{b} \times \vec{c})=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & k \\
a_{1} & a_{2} & a_{3} \\
b_{2} c_{3}-b_{3} c_{2} & b_{3} c_{1}-b_{1} c_{3} & b_{1} c_{2}-b_{2} c_{1}
\end{array}\right|
$$

$$
=\vec{l}\left\{a_{2}\left(b_{1} c_{2}-b_{2} c_{1}\right)-a_{3}\left(b_{3} c_{1}-b_{1} c_{3}\right)\right\}-\vec{j}\left\{a_{1}\left(b_{1} c_{2}-b_{2} c_{1}\right)-a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)\right\}+\vec{k}\left\{a_{1}\left(b_{3} c_{1}-b_{1} c_{3}\right)-a_{2}\left(b_{2} c_{3}-b_{3} c_{2}\right)\right\}
$$

R.H.S. $(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} . \vec{b}) \vec{c}$

$$
\begin{aligned}
& \left(a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3}\right)\left\{b_{1} \vec{l}+b_{2} \vec{j}+b_{3} \vec{k}\right\}-\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)\left\{c_{1} \vec{l}+c_{2} \vec{j}+c_{3} \vec{k}\right\} \\
& \left.\Rightarrow \vec{l}\left\{a_{2}\left(b_{1} c_{2}-b_{2} c_{1}\right)-a_{3}\left(b_{3} c_{1}-b_{1} c_{3}\right)\right\}-\vec{j}\left\{a_{1} c b_{1} c_{2}-b_{2} c_{1}\right)-a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)\right\}+\vec{k}\left\{a_{1}\left(b_{3} c_{1}-b_{1} c_{3}\right)-a_{2}\left(b_{2} c_{3}-b_{3} c_{2}\right)\right\}
\end{aligned}
$$

