FUNCTIONS

- **Def 1:** A relation f from a set A into a set B is said to be a function or mapping from A into B if for each $x \in A$ there exists a unique $y \in B$ such that $(x, y) \in f$. It is denoted by $f : A \to B$.
- **Note:** Example of a function may be represented diagrammatically. The above example can be written diagrammatically as follows.

- **Def 2:** A relation f from a set A into a set B is a said to be a function or mapping from a into B if i) $x \in A \Rightarrow f(x) \in B$ ii) $x_1, x_2 \in A, x_2 \Rightarrow f(x_1) = f(x_2)$
- **Def 3:** If $f : A \rightarrow B$ is a function, then A is called domain, B is called codomain and $f(A) = \{f(x) : x \in A\}$ is called range of f.
- **Def 4:** A function $f : A \rightarrow B$ if said to be one one function or injection from A into B if different element in A have different f-images in B.
- **Note:** A function $f: A \to B$ is one one if $f(x_1, y) \in f, (x_2, y) \in f \Rightarrow x_1 = x_2$.
- **Note:** A function $f: A \to B$ is one one iff $x_1, x_2 \in A, x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$
- **Note:** A function $f: A \to B$ is one one iff $x_1, x_2 \in A$, $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
- **Note:** A function $f: A \rightarrow B$ which is not one one is called many one function
- **Note:** If $f : A \to B$ is one one and A, B are finite then $n(A) \le n(B)$.
- **Def 5:** A function $f: A \rightarrow B$ is said to be onto function or surjection from A onto B if f(A) = B.
- **Note:** A function $f : A \to B$ is onto if $y \in B \Downarrow \exists x \in A \ni f(x) = y$.
- **Note:** A function $f : A \rightarrow B$ which is not onto is called an into function.
- **Note:** If A, B are two finite sets and $f : A \to B$ is onto then $n(B) \le n(A)$.
- Note: If A, B are two finite sets and n (B) = 2, then the number of onto functions that can be defined from A onto B is $2^{n(A)} 2$.
- **Def 6:** A function $f: A \to B$ is said to be one one onto function or bijection from A onto B if $f: A \to B$ is both one one function and onto function.

- **Theorem:** If $f : A \to B$, $g : B \to C$ are two functions then the composite relation *gof* is a function a into C.
- **Theorem:** If $f : A \to B$, $g : B \to C$ are two one one onto functions then $gof : A \to C$ is also one one be onto.

```
Sol: i) Let x_1, x_2 \in A and f(x_1) = f(x_2).

x_1, x_2 \in A, f : A \to B \Rightarrow f(x_1), f(x_2) \in B

f(x_1), f(x_2) \in B, \to C, f(x_2) \Rightarrow g[f(x_1)] = g[f(x_2)] \Rightarrow (gof)(x_1) = (gof)(x_2)

x_1, x_2 \in A, (gof)(x_1) = (gof): A \to C is one one \Rightarrow x_1 = x_2

\therefore x_1, x_2 \in A, f(x_1) = f(x_2) \Rightarrow x_1 = x_2.

\therefore f : A \to B Is one one.

ii) Proof: let z \in C, g : B \to C is onto \exists y \in B \exists : g(y) = z \ y \in B \ f : A \to B is onto

\therefore \exists x \in A \ni f(x) = y

G \{f(x)\} = t

(g \circ f) x = t

\forall z \in C \exists x \in A \ni (gof)(x) = z.

\therefore g \text{ is onto.}
```

Def 7: Two functions $f : A \to B$, $g : C \to D$ are said to be equal if

i) A = C, B = D ii) $f(x) = g(x) \forall x \in A$. It is denoted by f = g

Theorem: If $f : A \to B$, $g : B \to C$, $h: C \to D$ are three functions, then ho(gof) = (hof)of

Theorem: if A is set, then the identify relation I on A is one one onto.

- **Def 8:** If A is a set, then the function I on A defined by $I(x) = x \forall x \in A$, is called identify function on A. it is denoted by I_A .
- **Theorem:** If $f: A \to B$ and I_A, I_B are identify functions on A, B respectively then $foI_A = I_B of = f$.

 $\begin{array}{ll} \textbf{Proof:} \ I_A \colon A \to A \ , f \colon A \to B \Rightarrow foI_A \colon A \to B \\ f \colon A \to B \ , \ I_B \colon B \to B \Rightarrow I_B of \colon A \to B \\ (foI_A)(x) = f\{I_A(x)\} = f(x), \forall x \in A \ & \therefore f_0I_A = f \\ (I_B of)(x) = I_B\{f(x)\} = f(x), \forall x \in A \\ & \therefore I_B of = f \\ \therefore fo I_A = I_B of = f \end{array}$

Def 9: If $f : A \to B$ is a function then $\{(y, x) \in B \times A : (x, y) \in f\}$ is called inverse of f. It is denoted by f^{-1} .

Def 10: If $f: A \to B$ is a bijection, then the function $f^{-1}: B \to A$ defined by $f^{-1}(y) = x$ iff $f(x) = y \forall y \in B$ is called inverse function of f.

Theorem: If $f: A \to B$ is a bijection, then $f^{-1} of = I_A$, $fof^{-1} = I_B$

Proof: Since $f: A \to B$ is a bijection $f^{-1}: B \to A$ is also a bijection and $f^{-1}(y) = x \Leftrightarrow f(x) = y \forall y \in B$ $f: A \to B, f^{-1}: B \to A \Rightarrow f^{-1} of: A \to A$ Clearly $I_A: A \to A$ such that $I_A(x) = x$, $\forall x \in A$. Let $x \in A$ $x \in A, f : A \to B \Longrightarrow f(x) \in B$ Let y = f(x) $y = f(x) \Rightarrow f^{-1}(y) = x$ $(f^{-1}of)(x) = f^{-1}[f(x) = f^{-1}(y) = x = I_A(x)$ $\therefore (f^{-1} of)(x) = I_A(x) \forall x \in A$ $\therefore f^1 o f = I_A$ $f^1: B \to A, f: A \to B \to fof^1: B \to B$ Clearly $I_B: B \to B$ such that $I_B(y) = y \forall y \in B$ Let $y \in B$ $y \in B, f^{-1}: B \to A = f^1(y) \in A$ Let $f^{1}(y) = x$ $f^{1}(y) = x \Longrightarrow f(x) = y$ $(fof^{1})(y) = f[f^{1}(y)] = f(x) = y = I_{B}(y)$ $\therefore (fof^{-1})(y) = I_B(y) \forall y \in B \qquad \therefore fof^{-1} = I_B$

Theorem: If $f: A \to B$, $g: B \to C$ are two bijections then $(gof)^{-1} = f^{-1} og^{-1}$.

Proof: $f: A \to B$, $g: B \to C$ are bijections $\Rightarrow gof: A \to C$ is bijection $\Rightarrow (gof)^{-1}: C \to A$ is a bijection.

 $f: A \to B \text{ is a bijection} \Rightarrow f^{-1}: B \to A \text{ is a bijection}$ $g: B \to C \text{ Is a bijection} \Rightarrow g^{-1}: C \to B \text{ is a bijection}$ $g^{-1}: C \to B, g^{-1}: B \to A \text{ are bijections} \Rightarrow f^{-1} o g^{-1}: C \to A \text{ is a bijection}$ Let $z \in C$ $z \in C, g: B \to C \text{ is onto} \Rightarrow \exists y \in B \ni g(y) = z \Rightarrow g^{-1}(z) = y$ $y \in B, f: A \to B \text{ is onto} \Rightarrow \exists x \in A \ni f(x) = y \Rightarrow f^{-1}(y) = x$ $(gof)(x) = g[f(x)] = g(y) = z \Rightarrow (gof)^{-1}(z) = x$ $\therefore (gof)^{-1}(z) = x = f^{-1}(y) = f^{-1}[g^{-1}(z)] = (f^{-1}og^{-1})(z) \qquad \therefore (gof)^{-1} = f^{-1}og^{-1}$

Theorem: If $f : A \to B$, $g : B \to A$ are two functions such that $gof = I_A$ and $fog = I_B$ then $f : A \to B$ is a bijection and $f^{-1} = g$.

Proof: Let $x_1, x_2 \in A$, $f(x_1) = f(x_2)$ $x_1, x_2 \in A$, $f: A \to B \Rightarrow f(x_1), f(x_2) \in B$ $f(x_1), f(x_2) \in B$, $f(x_1) = f(x_2)$, $g = B \to A \Rightarrow g[f(x_1)] = g[f(x_2)]$ $\Rightarrow (gof)(x_1) = (gof)(x_2) \Rightarrow I_A(x_2) \Rightarrow x_1 = x_2$ $\therefore x_1, x_2 \in A$, $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$. $\therefore f: A \to B$ is one one Let $y \in B$. $y \in B, g: B \to A \Rightarrow g(y) \in A$

Def 11: A function $f : A \to B$ is said tobe a constant function if the range of f contain only one element i.e., $f(x) = c \forall x \in A$ where c is a fixed element of B

Def 12: A function $f : A \to B$ is said to be a real variable function if $A \subseteq R$. **Def 13:** A function $f : A \to B$ is said to be a real valued function iff $B \subseteq R$.

Def 14: A function $f : A \to B$ is said to be a real function if $A \subseteq R, B \subseteq R$.

Def 15: If $f: A \to R$, $g: B \to R$ then $f + g: A \cap B \to R$ is defined as $(f+g)(x) = f(x) + g(x) \forall x \in A \cap B$

Def 16: If $f: A \to R$ and $k \in R$ then $kf: A \to R$ is defined as $(kf)(x) = kf(x), \forall x \in A$

Def 17: If $f : A \to B$, $g : B \to R$ then $fg : A \cap B \to R$ is defined as $(fg)(x) = f(x)g(x) \forall x \in A \cap B$.

Def 18: If $f: A \to R$, $g: B \to R$ then $\frac{f}{g}: C \to R$ is defined as $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \quad \forall x \in C$ where $C = \{x \in A \cap B: g(x) \neq 0\}.$

Def 19: If $f: A \to R$ then $|f|(x) = |f(x)|, \forall x \in A$

Def 20: If $n \in \mathbb{Z}$, $n \ge 0$, $a_0, a_2, a_2, \dots, a_n \in \mathbb{R}$, $a_n \ne 0$, then the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \quad \forall x \in \mathbb{R}$ is called a polynomial function of degree n.

Def 21: If $f : R \to R$, $g : R \to R$ are two polynomial functions, then the quotient f/g is called a rational function.

Def 22: A function $f: A \to R$ is said to be bounded on A if there exists real numbers k_1, k_2 such that $k_1 \le f(x) \le k_2 \ \forall x \in A$

Def 23: A function $f: A \to R$ is said to be an even function if $f(-x) = f(x) \forall x \in A$

Def 24: A function $f: A \to R$ is said to be an odd function if $f(-x) = -f(x) \forall x \in A$.

Def 25: If $a \in R, a > 0$ then the function $f : R \to R$ defined as $f(x) = a^x$ is called an exponential function.

Def 26: If $a \in R$, a > 0, $a \ne 1$ then the function $f:(0,\infty) \to R$ defined as $f(x) = \log_a x$ is called a logarithmic function.

Def 27: The function $f : R \to R$ defined as f(x) = n where $n \in Z$ such that $n \le x < n+1$, $\forall x \in R$ is called step function or greatest integer function. It is denoted by f(x) = [x]

Def 28: The functions $f(x) = \sin x$, $\cos x$, $\tan x$, $\cot x$, sec x or cosec x are called trigonometric functions.

Def 29: The functions $f(x) = \sin^{-1} x, \cos^{-1} x, \tan^{-1} x, \cot^{-1} x, \sec^{-1} x$ or $\cos ec^{-1} x$ are called inverse trigonometric functions.

Def 30: The functions $f(x) = \sinh x$, $\cosh x$, $\coth x$, sech x or cosech x are called hyperbolic functions.

Def 31: The functions $f(x) = \sinh^{-1} x, \cos^{-1} x, \tanh^{-1} x, \coth^{-1} x, \sec h^{-1} x$ or $\cos ech^{-1} x$ are called iverse hyperbolic functions

	Function	Domain	Range
1.	a^x	R	(0,∞)
2.	$\log_a x$	$(0,\infty)$	R
3.	[X]	R	Z
4.	[X]	R	[0,∞)
5.	\sqrt{x}	[0,∞)	[0,∞)
6.	$\sin x$	R	[-1, 1]
7.	$\cos x$	R	[-1, 1]
8.	tan <i>x</i>	$R - \{(2n+1)\frac{\pi}{2} : n \in Z\}$	R
9.	$\cot x$	$R - \{n\pi : n \in Z\}$	R
10.	sec x	$R - \{(2n+1)\frac{\pi}{2} : n \in Z\}$	$(-\infty,-1]\cup[1,\infty)$
11.	$\cos ec x$	$R - \{n\pi : n \in Z\}$	$(-\infty,-1]\cup[1,\infty)$
12.	$Sin^{-1}x$	[-1,1]	$[-\pi/2,\pi/2]$
13.	$Cos^{-1}x$	[-1,1]	$[0,\pi]$
14.	$Tan^{-1}x$	R	$(-\pi/2,\pi/2)$
15.	$Cot^{-1}x$	R	$(0,\pi)$
16.	$Sec^{-1}x$	$(-\infty, -1] \cup [1, \infty)$	$[0, \pi/2) \cup (\pi/2, \pi]$
17.	$Co \sec^{-1} x$	(-∞,-1]∪[1,∞)	$[-\pi/2,0) \cup (0,\pi/2]$
18.	sinh x	R	R
19.	cosh x	R	[1,∞)
20.	tanh x	R	(-1,1)
21.	coth x	$(-\infty,0)\cup(0,\infty)$	$(-\infty,-1)\cup(1,\infty)$
22.	sech x	R	(0, 1]
23.	cosech x	$(-\infty,0)\cup(0,\infty)$	$(-\infty,0)\cup(0,\infty)$

24.

$$Sinh^{-1}x$$
 R
 R

 25.
 $Cosh^{-1}x$
 $[1,\infty)$
 $[0,\infty)$

 26.
 $Tanh^{-1}x$
 $(-1, 1)$
 R

 27.
 $Coth^{-1}x$
 $(-\infty, -1) \cup (1, \infty)$
 $(-\infty, 0) \cup (0, \infty)$

 28.
 $Sech^{-1}x$
 $(0, 1]$
 $[0,\infty)$

 29.
 $Coseh^{-1}x$
 $(-\infty, 0) \cup (0, \infty)$
 $(-\infty, 0) \cup (0, \infty)$

PROBLEMS

VSAQ'S

1. If : **R** – {0} \rightarrow is defined by $f(x) = x^3 - \frac{1}{x^3}$, then show that $f(x) + f\left(\frac{1}{x}\right) = 0$.

Sol. Given that $f(x) = x^3 - \frac{1}{x^3}$ $f\left(\frac{1}{x}\right) = \frac{1}{x^3} - x^3$ $\therefore f(x) + f\left(\frac{1}{x}\right) = x^3 - \frac{1}{x^3} + \frac{1}{x^3} - x^3 = 0$

2. If $f: \mathbf{R} - [\pm 1] \to \mathbf{R}$ is defined by $f(x) = \log \left| \frac{1+x}{1-x} \right|$, then show that $f\left(\frac{2x}{1+x^2} \right) = 2f(x)$.

Sol.
$$f(x) = \log \left| \frac{1+x}{1-x} \right|$$

 $f\left(\frac{2x}{1+x^2}\right) = \log \left| \frac{1+\frac{2x}{1+x^2}}{1-\frac{2x}{1+x^2}} \right|$
 $= \log \left| \frac{x^2+1+2x}{x^2+1-2x} \right| = \log \left| \frac{(1+x)^2}{(1-x)^2} \right|$
 $= \log \left| \left(\frac{1+x}{1-x}\right)^2 \right| = 2\log \left| \frac{1+x}{1-x} \right| = 2f(x)$

3. If A = {-2, -1, 0, 1, 2} and f : A \rightarrow B is a surjection defined by f(x) = x² + x + 1, then find B. Sol. Given that

$$f(x) = x^{2} + x + 1$$

$$f(-2) = (-2)^{2} - 2 + 1 = 4 - 2 + 1 = 3$$

$$f(-1) = (-1)^{2} - 1 + 1 = 1 - 1 + 1 = 1$$

$$f(0) = (0)^{2} - 0 + 1 = 1$$

$$f(1) = 1^{2} + 1 + 1 = 3$$

 $f(2) = 2^2 + 2 + 1 = 7$ Thus range of f, $f(A) = \{1, 3, 7\}$ Since f is onto, f(A) = B \therefore B = {3, 1, 7}

If A = {1, 2, 3, 4} and f : A \rightarrow R is a function defined by $f(x) = \frac{x^2 - x + 1}{x + 1}$ then find the range of f. 4.

Sol. Given that

f(x) =
$$\frac{x^2 - x + 1}{x + 1}$$

f(1) = $\frac{1^2 - 1 + 1}{1 + 1} = \frac{1}{2}$
f(2) = $\frac{2^2 - 2 + 1}{2 + 1} = \frac{3}{3} = 1$
f(3) = $\frac{3^2 - 3 + 1}{3 + 1} = \frac{7}{4}$
f(4) = $\frac{4^2 - 4 + 1}{4 + 1} = \frac{13}{5}$
∴ Range of f is $\left\{\frac{1}{2}, 1, \frac{7}{4}, \frac{13}{5}\right\}$

5. If $f(x + y) = f(xy) \forall x, y \in R$ then prove that f is a constant function.

Sol. f(x + y) = f(xy)Let f(0) = kthen $f(x) = f(x + 0) = f(x \cdot 0) = f(0) = k$ \Rightarrow f(x + y) = k : f is a constant function.

Which of the following are injections or surjections or bijections? Justify your answers. 6.

i) $\mathbf{f}: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = \frac{2x+1}{3}$ ii) f : R \rightarrow (0, ∞) defined by f(x) = 2^x. iii) f: $(0, \infty) \rightarrow R$ defined by $f(x) = \log_e x$ iv) f: $[0, \infty) \rightarrow [0, \infty)$ defined by $f(x) = x^2$ v) $f : \mathbb{R} \to [0, \infty)$ defined by $f(x) = x^2$ vi) f : R \rightarrow R defined by f(x) = x² i) $f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = \frac{2x+1}{3}$ is a bijection. **Sol.** i) $f: R \to R$ defined by $f(x) = \frac{2x+1}{3}$ a) To prove $f : R \rightarrow R$ is injection

Let $x_1, x_2 \in R$ and $f(x_1) = f(x_2)$

$$\Rightarrow \frac{2x_1 + 1}{3} = \frac{2x_2 + 1}{3}$$
$$\Rightarrow 2x_1 + 1 = 2x_2 + 1$$
$$\Rightarrow 2x_1 = 2x_2$$
$$\Rightarrow x_1 = x_2$$
$$\Rightarrow f: R \rightarrow R \text{ is injection}$$

b) To prove $f : \mathbb{R} \to \mathbb{R}$ is surjection

Let
$$y \in R$$
 and $f(x) = y$

$$\Rightarrow \frac{2x+1}{3} = y$$

$$\Rightarrow 2x+1=3y$$

$$\Rightarrow 2x = 3y-1$$

$$\Rightarrow x = \frac{3y-1}{2}$$

Thus for every $y \in R$, \exists an element $\frac{3y-1}{2} \in R$ such that

$$f\left(\frac{3y-1}{2}\right) = \frac{2\left(\frac{3y-1}{2}\right)+1}{3} = \frac{3y-1+1}{3} = y$$

- $\therefore f: R \rightarrow R$ is both injection and surjection
- \therefore f : R \rightarrow R is a bijection.

ii) $f : \mathbf{R} \to (0, \infty)$ defined by $f(\mathbf{x}) = 2^{\mathbf{x}}$.

- a) To prove $f : \mathbb{R} \to \mathbb{R}^+$ is injection Let $x_1, x_2 \in \mathbb{R}$ and $f(x_1) = f(x_2)$ $\Rightarrow 2^{x_1} = 2^{x_2}$ $\Rightarrow x_1 = x_2$
 - \therefore f : R \rightarrow R⁺ is injection.
- b) To prove $f : \mathbb{R} \to \mathbb{R}^+$ is surjection
 - Let $y \in R^+$ and f(x) = y

$$\Rightarrow 2^{x} = y$$

 \Rightarrow x = log₂y \in R

Thus for every $y \in R^+$, \exists an element

 $\log_2 y \in$ such that

 $f(\log_2 y) = 2^{\log_2 y} = y$

 \therefore f : R \rightarrow R⁺ is a surjection

Thus $f : R \rightarrow R^+$ is both injection and surjection.

 \therefore f : R \rightarrow R⁺ is a bijection.

- iii) $f : (0, \infty) \rightarrow R$ defined by $f(x) = \log_e x$ Explanation :
- a) To prove $f : \mathbb{R}^+ \to \mathbb{R}$ is injection Let $x_1, x_2 \in \mathbb{R}^+$ and $f(x_1) = f(x_2)$ $\Rightarrow \log_e x_1 = \log_e x_2$ $\Rightarrow x_1 = x_2$

 \therefore f : R⁺ \rightarrow R is injection.

b) To prove $f : R^+ \to R$ is surjection Let $y \in R$ and f(x) = y $\Rightarrow \log_e x = y$ $\Rightarrow x = e^y \in R^+$ Thus for every $y \in R$, \exists an element $e^y \in R^+$ such that $f(e^y) = \log_e e^y = y \log_e e = y$

 $\therefore f : R^+ \rightarrow R$ is surjection

Thus $f : \mathbb{R}^+ \to \mathbb{R}$ is both injection and surjection.

- \therefore f : R⁺ \rightarrow R is a bijection.
- iv) $f : [0, \infty) \rightarrow [0, \infty)$ defined by $f(x) = x^2$ Explanation :
- a) To prove $f : A \to A$ is injection

Let $x_1, x_2 \in A$ and $f(x_1) = f(x_2)$ $\Rightarrow x_1^2 = x_2^2$ $\Rightarrow x_1 = x_2(\because x_1 \ge 0, x_2 \ge 0)$

 $:: f : A \rightarrow A$ is injection

b) To prove $f: A \to A$ is surjection

Let $y \in A$ and f(x) = y $\Rightarrow x^2 = y$ $\Rightarrow x = \sqrt{y} \in A$

Thus for every $y \in A$, \exists an element $\sqrt{y} \in A$

Such that
$$f\left[\sqrt{y}\right] = \left(\sqrt{y}\right)^2 = y$$

 \therefore f : A \rightarrow A is a surjection

Thus $f : A \to A$ is both injection and surjection. $\therefore f : [0, \infty) \to [0, \infty)$ is a bijection.

- v) $\mathbf{f} : \mathbf{R} \to [0, \infty)$ defined by $\mathbf{f}(\mathbf{x}) = \mathbf{x}^2$ Explanation :
- a) To prove f : R → A is not a injection
 Since distinct elements have not having distinct f-images
 For example :
 f(2) = 2² = 4 = (-2)² = f(-2)
 But 2 ≠ -2

Let $y \in A$ and f(x) = y $\Rightarrow x^2 = y$ $\Rightarrow x = \pm \sqrt{y} \in R$

Thus for every $y \in A$, \exists an element $\pm \sqrt{y} \in R$ such that

$$f\left(\pm\sqrt{y}\right) = \left(\pm\sqrt{y}\right)^2 = y$$

 \therefore f : R \rightarrow A is a surjection

Thus $f : R \rightarrow A$ is surjection only.

vi) f : R \rightarrow R defined by f(x) = x²

a) To prove f : R → R is not a injection
Since distinct element in set R are not having distinct f-images in R.
For example :
f(2) = 2² = 4 = (-2)² = f(-2)

- \therefore f : R \rightarrow R is not a injection.
- b) To prove $f : R \rightarrow R$ is not surjection

 $-1 \in \mathbb{R}$, suppose f(x) = -1 $x^2 = -1$ $x = \sqrt{-1} \notin \mathbb{R}$ $\therefore f: \mathbb{R} \to \mathbb{R}$ is not surjection.

7. If $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$ is a function from $A = \{1, 2, 3, 4\}$ to $B = \{1, 3, 5, 7\}$? If this is given by the formula g(x) = ax + b, then find a and b.

Sol. Given that

A = {1, 2, 3,4} and B = {1, 3, 5, 7} and g = {(1, 1), (2, 3), (3, 5), (4, 7)} ...(1) Clearly every element in set A has unique g-image in set B. \therefore g : A \rightarrow B is a function. Consider, g(x) = ax + b g(1) = a + b g(2) = 2a + b g(3) = 3a + b g(4) = 4a + b

 $\therefore g = \{(1, a + b), (2, 2a + b), (3, 3a + b), (4, 4a + b)\} \dots (2)$ Comparing (1) and (2) $a + b = 1 \Rightarrow a = 1 - b \Rightarrow a = 1 + 1 = 2$ $2a + b = 3 \Rightarrow 2[1 - b] + b = 3$ $\Rightarrow 2 - 2b + b = 3 \Rightarrow 2 - b = 3 \Rightarrow b = -1$

8. If f(x) = 2, $g(x) = x^2$, h(x) = 2x for all $x \in \mathbb{R}$, then find [fo(goh)(x)].

Sol. fo(goh)(x) = fog [h(x)]= fog (2x)= f [g(2x)]= $f (4x^2) = 1$ $\therefore fo(goh)(x) = 2.$

9. Find the inverse of the following functions.

i) If $a, b \in R, f : R \rightarrow R$ defined by $f(x) = ax + b \ (a \neq 0)$

ii)
$$f : \mathbb{R} \to (0, \infty)$$
 defined by $f(x) = 5^x$

iii) $f: (0, \infty) \rightarrow R$ defined by $f(x) = \log_2 x$.

Sol. i) Let f(x) = ax + b = y

$$\Rightarrow ax = y - b \Rightarrow x = \frac{y - b}{a}$$

Thus $f^{-1}(x) = \frac{x - b}{a}$
ii) Let $f(x) = 5^x = y$
 $\Rightarrow x = \log_5 y$
Thus $f^{-1}(x) = \log_5 x$
iii)Let $f(x) = \log_2 x = y$

$$\Rightarrow x = 2^{y}$$
$$\Rightarrow f^{-1}(x) = 2^{x}$$

10. If $f(x) = 1 + x + x^2 + \dots$ for |x| < 1 then show that $f^{-1}(x) = \frac{x-1}{x}$.

Sol. $f(x) = 1 + x + x^2 + \dots$ for |x| < 1 $= (1 - x)^{-1}$ by Binomial theorem for rational index $= \frac{1}{1 - x} = y$ 1 = y - xy xy = y - 1 $x = \frac{y - 1}{y}$ $f^{-1}(x) = \frac{x - 1}{x}$ **R**, find gof(x).

11. If f: [1, ∞) → [1, ∞) defined by
f(x) = 2^{x(x-1)} then find f⁻¹(x).
Sol. f(x) : [1∞) → [1∞)
f(x) = 2^{x(x-1)}
f(x) = 2^{x(x-1)} = y
x(x-1) = log₂ y
x² - x - log₂ y = 0
x =
$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

x = $\frac{1\pm \sqrt{1 + 4 \log_2 y}}{2}$
f⁻¹(x) = $\frac{1\pm \sqrt{1 + 4 \log_2 x}}{2}$
12. f(x) = 2x - 1, g(x) = $\frac{x + 1}{2}$ for all x ∈

Sol.
$$gof(x) = g[f(x)] = g(2x - 1)$$

$$= \frac{2x - 1 + 1}{2} = \frac{2x}{2} = x$$
$$\therefore gof(x) = x$$

13. Find the domain of the following real valued functions.

i)
$$f(x) = \frac{2x^2 - 5x + 7}{(x - 1)(x - 2)(x - 3)}$$

ii) $f(x) = \frac{1}{\log(2 - x)}$
iii) $f(x) = \sqrt{4x - x^2}$
iv) $f(x) = \sqrt{4x - x^2}$
v) $f(x) = \sqrt{4x - x^2}$
v) $f(x) = \sqrt{x^2 - 25}$
vi) $f(x) = \sqrt{x^2 - 25}$
vi) $f(x) = \sqrt{x - [x]}$
vii) $f(x) = \sqrt{[x] - x}$
Sol. i) $f(x) = \frac{2x^2 - 5x + 7}{(x - 1)(x - 2)(x - 3)}$
 $(x - 1)(x - 2)(x - 3) \neq 0$
 $\Rightarrow x - 1 \neq 0, x - 2 \neq 0, x - 3 \neq 0$
 $\Rightarrow x \neq 1, x \neq 2, x \neq 3$
 $\Rightarrow x \in R - \{1, 2, 3\}$
 \therefore Domain of f is $R - \{1, 2, 3\}$

ii)
$$f(x) = \frac{1}{\log(2-x)}$$

 $2-x > 0$ and $2-x \neq 1$
 $2 > x$ and $2-1 \neq x$
 $x < 2$ and $x \neq 1$
 \therefore Domain of f is $(-\infty, 1) \cup (1, 2)$

iii)
$$f(x) = \sqrt{4x - x^2}$$

 $4x - x^2 \ge 0$
 $x(4-x) \ge 0$
 $\Rightarrow 0 \le x \le 4$
Since the coefficient of x^2 is -ve
 \therefore Domain of f is [0, 4]

iv)
$$f(x) = \frac{1}{\sqrt{1-x^2}}$$

 $1-x^2 > 0$
 $\Rightarrow (1-x)(1+x) > 0$
 $\Rightarrow -1 < x < 1$
Since the coefficient of x^2 is -ve
∴ Domain of f is (-1, 1).

v)
$$f(x) = \sqrt{x^2 - 25}$$

 $x^2 - 25 \ge 0$
 $\Rightarrow (x - 5)(x + 5) \ge 0$
 $\Rightarrow x \le -5 \text{ or } x \ge 5$
Since the coefficient of x^2 is +vec
 \therefore Domain of f is $(-\infty, -5] \cup [5, -5]$

∞)

vi) $f(x) = \sqrt{x - [x]}$ $x - [x] \ge 0 \Rightarrow x \ge [x]$ It is true for all $x \in \mathbb{R}$ \therefore Domain of f is R.

vii) $f(x) = \sqrt{[x] - x}$ $\Rightarrow [x] - x \ge 0$ $\Rightarrow [x] \ge x$ It is true only when x is an integer \therefore Domain of f is Z.

14. Find the ranges of the following real valued functions.

i)
$$\log |4-x^2|$$

ii) $\sqrt{[x]-x}$
iii) $\frac{\sin \pi[x]}{1+[x]^2}$
iv) $\frac{x^2-4}{x-2}$
v) $\sqrt{9+x^2}$
Sol. i) $f(x) = \log |4-x^2|$
Domain of f is $R - \{-2, 2\}$
 \therefore Range = R
ii) $f(x) = \sqrt{[x]-x}$
Domain of f is Z
Range of f is $\{0\}$
iii) $\frac{\sin \pi[x]}{1+[x]^2}$
Domain of f is R
Range of f is $\{0\}$
Since sin $n\pi = 0, \forall n \in Z$.
iv) $f(x) = \frac{x^2-4}{x-2}$
Domain of f is $R - \{2\}$
Range of f is $R - \{2\}$
Range of f is $R - \{4\}$

v)
$$f(x) = \sqrt{9 + x^2}$$

 $9 + x^2 > 0, \forall x \in R$
Domain of f is R
Range of f is [3, ∞)

SAQ'S

15. If the function $f : \mathbf{R} \to \mathbf{R}$ defined by $f(x) = \frac{3^x + 3^{-x}}{2}$, then show that

f(x + y) + f(x - y) = 2f(x) f(y). Sol. Given that

$$f(x) = \frac{3^{x} + 3^{-x}}{2} \text{ and } f(y) = \frac{3^{y} + 3^{-y}}{2}$$

We have $f(x + y) = \frac{3^{x+y} + 3^{-(x+y)}}{2}$
 $f(x - y) = \frac{3^{x-y} + 3^{-(x-y)}}{2}$
L.H.S. = $f(x + y) + f(x - y)$

$$= \frac{3^{x+y} + 3^{-(x+y)}}{2} + \frac{3^{x-y} + 3^{-(x-y)}}{2}$$

= $\frac{1}{2} \Big[3^{x+y} + 3^{-(x+y)} + 3^{x-y} + 3^{-(x-y)} \Big] \dots (1)$
R.H.S. : 2 f(x) f(y) = $2 \Big[\frac{3^x + 3^{-x}}{2} \cdot \frac{3^y + 3^{-y}}{2} \Big]$
= $\frac{1}{2} \Big[3^{x+y} + 3^{x-y} + 3^{y-x} + 3^{-x-y} \Big]$
= $\frac{1}{2} \Big[3^{x+y} + 3^{-(x-y)} + 3^{x-y} + 3^{-(x+y)} \Big] \dots (2)$

From (1) and (2) \therefore L.H.S. = R.H.S. f(x + y) + f(x - y) = 2 f(x) f(y)

16. If the function $f : \mathbf{R} \to \mathbf{R}$ defined by $f(x) = \frac{4^x}{4^x + 2}$, then show that f(1 - x) = 1 - f(x), and hence deduce the value of $f\left(\frac{1}{4}\right) + 2f\left(\frac{1}{2}\right) + f\left(\frac{3}{4}\right)$.

Sol. Given that $f(x) = \frac{4^x}{4^x + 2}$ We obtain, $f(1 - x) = \frac{4^{1-x}}{4^{1-x} + 2}$ $= \frac{\frac{4}{4^x}}{\frac{4}{4^x} + 2} = \frac{4}{4 + 2 \cdot 4^x} = \frac{2}{2 + 4^x} \dots (1)$ $1 - f(x) = 1 - \frac{4^x}{4^x + 2}$ $= \frac{4^x + 2 - 4^x}{4^x + 2} = \frac{2}{2 + 4^x} \dots (2)$ From (1) and (2) : f(1 - x) = 1 - f(x)We have f(1 - x) = 1 - f(x)Now, f(1 - x) + f(x) = 1Put $x = \frac{1}{4}$, then $f(1 - \frac{1}{4}) + f(\frac{1}{4}) = 1$ $f(\frac{3}{4}) + f(\frac{1}{4}) = 1$ -------(3) f(1 - x) + f(x) = 1 put $x = \frac{1}{2}$ then

f(1 - 1/2) + f(1/2) = 1f(1/2) + f(1/2) = 1 => 2f(1/2) = 1 -----(4)

 $(3)+(4) \implies f(3/4) + f(1/4) + 2f(1/2) = 2$

Therefore, $f\left(\frac{1}{4}\right) + 2f\left(\frac{1}{2}\right) + f\left(\frac{3}{4}\right) = 2.$

- 17. If the function $f : \{-1, 1\} \rightarrow \{0, 2\}$, defined by f(x) = ax + b is a surjection, then find a and b.
- **Sol.** Domain of f is $\{-1, 1\}$ and

f(x) = ax + bf(-1) = -a + bf(1) = a + b

Case I : Suppose $f = \{(-1, 0), (1, 2)\}$...(1) and $f = \{(-1, (-a + b)), (1, (a + b))\}$...(2) Comparing (1) and (2) $-a + b = 0 \Rightarrow a = b$ $a + b = 2 \Rightarrow b + b = 2$ (\because a = b) $\Rightarrow 2b = 2 \Rightarrow b = 1; a = 1.$

Case II : Suppose $f = \{(-1, 2), (1, 0)\}$...(3) and $f = \{(-1, (-a + b)), (1, (a + b))\}$...(4) Comparing (3) and (4) we get $-a + b = 2 \Rightarrow a = b - 2$ $a + b = 0 \Rightarrow b = -a$ Thus -a - a = 2 $\Rightarrow -2a = 2 \Rightarrow a = -1$ $\Rightarrow b = -(-1) = 1$ Thus a = -1, b = 1.

```
18. If f(x) = \cos(\log x), then show that f\left(\frac{1}{x}\right)f\left(\frac{1}{y}\right) - \frac{1}{2}\left[f\left(\frac{x}{y}\right) + f(xy)\right] = 0.
```

```
Sol. Given that f(x) = \cos(\log x)

Consider,

f\left(\frac{1}{x}\right)f\left(\frac{1}{y}\right) = \cos\left(\log\frac{1}{x}\right)\cos\left(\log\frac{1}{y}\right)

= \cos(\log x^{-1})\cos(\log y^{-1})

= [-\cos(\log x)][-\cos(\log y)]

= \cos(\log x)\cos(\log y)

\therefore f\left(\frac{1}{x}\right)f\left(\frac{1}{y}\right) = \cos(\log x)\cos(\log y) \dots(1)

Again
```

$$\frac{1}{2} \left[f\left(\frac{x}{y}\right) + f(xy) \right] = \frac{1}{2} \left[\cos\left(\log \frac{x}{y}\right) + \cos\log(xy) \right]$$

$$= \frac{1}{2} \left[\cos(\log x - \log y) + \cos(\log x + \log y) \right]$$

$$= \frac{1}{2} \left[\cos(\log x) \cos(\log y) \quad [\because \cos(A-B) + \cos(A+B) = 2 \cos A \cos B] \right]$$

$$\therefore \frac{1}{2} \left[f\left(\frac{x}{y}\right) + f(xy) \right] = \cos(\log x) \cos(\log y) \dots (2)$$
(1) - (2):
$$f\left(\frac{1}{x}\right) f\left(\frac{1}{y}\right) - \frac{1}{2} \left[f\left(\frac{x}{y}\right) + f(xy) \right] = 0.$$
If $f(y) = \frac{y}{\sqrt{1-y^2}}$ and $g(y) = \frac{y}{\sqrt{1+y^2}}$ then show that $(fog)(y) = y$.
Given that
$$f(y) = \frac{y}{\sqrt{1-y^2}} \text{ and } g(y) = \frac{y}{\sqrt{1+y^2}}$$

$$\therefore fog(y) = f[g(y)] = f\left[\frac{y}{\sqrt{1-y^2}} \right]$$

$$= \frac{y}{\sqrt{1+y^2}} / \sqrt{1 - \left(\frac{y}{\sqrt{1+y^2}}\right)^2}$$

$$= \frac{y}{\sqrt{1+y^2}} \times \frac{\sqrt{1+y^2}}{1+y^2 - y^2} = y$$

$$\therefore fog(y) = y$$

19. If
$$f(y) = \frac{y}{\sqrt{1-y^2}}$$
 and $g(y) = \frac{y}{\sqrt{1+y^2}}$ then show that $(fog)(y) = y$.

Sol. Given that

$$f(y) = \frac{y}{\sqrt{1 - y^2}} \text{ and } g(y) = \frac{y}{\sqrt{1 + y^2}}$$

$$\therefore fog(y) = f[g(y)] = f\left[\frac{y}{\sqrt{1 - y^2}}\right]$$
$$= \frac{y}{\sqrt{1 + y^2}} / \sqrt{1 - \left(\frac{y}{\sqrt{1 + y^2}}\right)^2}$$
$$= \frac{y}{\sqrt{1 + y^2}} \times \frac{\sqrt{1 + y^2}}{1 + y^2 - y^2} = y$$
$$\therefore fog(y) = y$$

20. If f : R \rightarrow R and g : R \rightarrow R are defined by f(x) = 2x² + 3 and g(x) = 3x - 2 then find (i) (fog)(x) (ii) gof(x)

(i) (iog)(x) (ii) gol(x)
(iii) fof (0) (iv) gol(fof)(3)
Sol. i) fog(x) = f[g(x)]
=
$$f(3x - 2)$$

= $2(3x - 2)^2 + 3$
= $2[9x^2 + 4 - 12x] + 3$
= $18x^2 + 8 - 24x + 3$
= $18x^2 - 24x + 11$
 \therefore (fog)(x) = $18x^2 - 24x + 11$
ii) gof(x) = g[f(x)]
= $g(2x^2 + 3)$
= $3(2x^2 + 3) - 2$
= $6x^2 + 9 - 2$

www.sakshieducation.com

$$= 6x^{2} + 7$$
.: (g0)(x) = 6x^{2} + 7
iii) fo(0) = [f(0)]
= 12(20)^{2} + 3]
= (7(3) = 2(3)^{2} + 3
= 2 \times 9 + 3 = 18 + 3 = 21
: fo(0) = 21
iv) go(fof)(3) = gof[f(3)]
= go[f(2)]
= g[2(21)^{2} + 3]
= g[2(21)^{2} + 3]
= g[82 + 3]
= g(885) = 3(885) - 2
= 2655 - 2 = 2653
: go(fof)(3) = 2653.
21. If f: R $\rightarrow R$ g: R $\rightarrow R$ are defined by
f(x) = 3x - 1, g(x) = x^{2} + 1, then find
(i) fof(x^{2} + 1) = f[(x^{2} + 1)] = 1
= f[3x^{2} + 3 - 1]
= f[3x^{2} + 2] = 2(3x^{2} + 2) - 1
= 9x^{2} + 6 - 1
= 9x^{2} + 6 - 1
= 9x^{2} + 5
io) log(2) = f[g(2)]
= f(2^{2} + 1) = 14
:. fog(2) = 14
iii)(gof)(2a - 3) = g[f(2a - 3)]
= g[3(2a - 3) - 1]
= g[6a - 01]
= g(6a - 01]
= g(6a - 10)
= (6a - 10) + 1
= 53a^{2} + 100 - 120a + 1
= 53a^{2} - 120a + 101

22. If
$$f(x) = \frac{x-1}{x+1}, x \neq \pm 1$$
, show that fof⁻¹(x)=x.
Sol. Given that $f(x) = \frac{x-1}{x+1}$
Let $y = f(x)$
 $\Rightarrow y = \frac{x-1}{x+1} \Rightarrow x = \frac{1+y}{1-y}$
 $f^{-1}(y) = \frac{1+y}{1-y}$
 $\therefore f^{-1}(x) = \frac{1+x}{1-x}$
 $\therefore fof^{-1}(x) = f[f^{-1}(x)]$
 $= f\left[\frac{1+x}{1-x}\right] = \frac{\frac{1+x}{1-x}-1}{\frac{1+x}{1-x}+1}$
 $= \frac{1+x-1+x}{1+x+1-x} = \frac{2x}{2} = x$
 $\therefore fof^{-1}(x) = x$

23. If $f: R \rightarrow R$, $g: R \rightarrow R$ defined by f(x) = 3x - 2, $g(x) = x^2 + 1$ then find (i) $gof^{-1}(2)$, (ii) gof(x - 1).

Sol. i) Given that f(x) = 3x - 2

Let
$$y = f(x)$$

 $y = 3x - 2$
 $x = \frac{y+2}{3}$
 $\therefore f^{-1}(x) = \frac{x+2}{3}$
 $\therefore gof^{-1}(2) = g[f^{-1}(2)]$
 $= g\left(\frac{2+2}{3}\right) = g\left(\frac{4}{3}\right)$
 $= \left(\frac{4}{3}\right)^2 + 1 = \frac{16}{9} + 1 = \frac{25}{9}$
ii) $gof(x - 1) = g[f(x - 1)]$
 $= g[3(x - 1) - 2]$
 $= g[3x - 3 - 2]$
 $= g[3x - 5]$
 $= (3x - 5)^2 + 1$
 $= 9x^2 + 25 - 30x + 1$
 $= 9x^2 - 3 - x + 26$

24. Let $f = \{(1, a), (2, c), (4, d), (3, b)\}$ and $g^{-1} = \{(2, a), (4, b), (1, c), (3, d)\}$, then show that $(gof)^{-1} = f^{-1}og^{-1}$.

Sol. Given that,

 $f = \{(1, a), (2, c), (4, d), (3, b)\}$ $\Rightarrow f^{-1} = \{(a, 1), (c, 2), (d, 4), (b, 3)\}$ $g^{-1} = \{(2, a), (4, b), (1, c), (3, d)\}$ $\Rightarrow g = \{(a, 2), (b, 4), (c, 1), (d, 3)\}$ L.H.S. : gof = {(1, 2), (2, 1), (4, 3), (3, 4)} (gof)^{-1} = {(2, 1), (1, 2), (3, 4), (4, 3)} R.H.S. : $f^{-1}og^{-1} = \{(2, 1), (4, 3), (1, 2), (3, 4)\}$ L.H.S. = R.H.S.

- 25. Let $f : \mathbb{R} \to \mathbb{R}$, $g : \mathbb{R} \to \mathbb{R}$ are defined by f(x) = 2x 3, $g(x) = x^3 + 5$ then find $(fog)^{-1}(x)$.
- Sol. Given that,

f(x) = 2x - 3 and g(x) = x³ + 5
fog(x) = f[g(x)]
= f(x³ + 5)
= 2(x³ + 5) - 3
= 2x³ + 10 - 3
= 2x³ + 7
∴ fog(x) = 2x³ + 7
Let y = fog(x)
y = 2x³ + 7
x³ =
$$\frac{y - 7}{2}$$

x = $\sqrt[3]{\frac{y - 7}{2}}$
∴ (fog)⁻¹(x) = $\sqrt[3]{\frac{x - 7}{2}}$
∴ (fog)⁻¹(x) = $\sqrt[3]{\frac{x - 7}{2}}$

26. If $f(x) = \frac{x+1}{x-1} (x \neq \pm 1)$ then find (fofof)(x) and (fofofof)(x). Sol. Given that, $f(x) = \frac{x+1}{x-1}$

(fofof)(x) = (fof)[f(x)]

$$= \operatorname{fof}\left(\frac{x+1}{x-1}\right) = \operatorname{f}\left[\operatorname{f}\left(\frac{x+1}{x-1}\right)\right]$$
$$= \operatorname{f}\left[\frac{x+1}{x-1}+1\right] = \operatorname{f}\left[\frac{x+1+x-1}{x+1-x+1}\right]$$
$$= \operatorname{f}\left(\frac{2x}{2}\right) = \operatorname{f}(x) = \frac{x+1}{x-1}$$
$$\therefore (\operatorname{fofof})(x) = \frac{x+1}{x-1}$$
$$(\operatorname{fofof})(x) = \operatorname{f}[(\operatorname{fofof})(x)]$$
$$= \operatorname{f}\left(\frac{1+x}{1-x}\right)$$
$$= \frac{\frac{x+1}{x-1}+1}{\frac{x+1}{x-1}-1} = \frac{x+1+x-1}{x+1-x+1} = \frac{2x}{2} = x$$
$$\therefore (\operatorname{fofof})(x) = x$$

 $) = y^2$ 27. If f and g are real valued functions defined by f(x) = 2x - 1 and $g(x) = x^2$ then find

(i)
$$(3f - 2g)(x)$$
 (ii) $(fg)(x)$ (iii) $\left(\frac{\sqrt{f}}{g}\right)(x)$ (iv) $(f + g + 2)(x)$
Sol. Given that $f(x) = 2x - 1$, $g(x) = x^2$

i)
$$3f = 3(2x - 1) = 6x - 3$$

 $g(x) = x^{2} \Rightarrow 2g = 2x^{2}$
 $\therefore (3f - 2g)(x) = 3f(x) - 2g(x)$
 $= 6x - 3 - 2x^{2}$
 $= -2x^{2} + 6x - 3$
 $= -[2x^{2} - 6x + 3]$
ii) $(fg)(x) = f(x)g(x) = (2x - 1)x^{2} = 2x^{3} - x^{2}$
iii) $\left(\frac{\sqrt{f}}{g}\right)(x) = \frac{\sqrt{f(x)}}{g(x)} = \frac{\sqrt{2x - 1}}{x^{2}}$
iv) $(f + g + 2)(x) = f(x) + g(x) + 2$
 $= 2x - 1 + x^{2} + 2$
 $= x^{2} + 2x + 1$
 $= x(x + 1) + 1(x + 1)$
 $= (x + 1)(x + 1) = (x + 1)^{2}$

28. If $f = \{(1, 2), (2, -3), (3, -1)\}$ then find (i) 2f, (ii) 2 + f, (iii) f^2 , (iv) \sqrt{f} .

Sol. Given that

$$\begin{split} &f = \{(1, 2), (2, -3), (3, -1)\} \\ &i) \quad 2f = \{(1, 2 \times 2), (2, -3 \times 2), (3, -1 \times 2)\} \\ &= \{(1, 4), (2, -6), (3, -2)\} \\ ⅈ) \quad 2 + f = \{(1, 2+2), (2, -3+2), (3, -1+2)\} \\ &= \{(1, 4), (2, -1), (3, 1)\} \\ &iii) \quad f^2 = \{(1, 2^2), (2, (-3)^2), (3, (-1)^2)\} \\ &= \{(1, 4), (2, 9), (3, 1)\} \\ &iv) \quad \sqrt{f} = \left\{(1, \sqrt{2})\right\} \end{split}$$

29. Find the domains at the following real valued functions.

i)
$$f(x) = \sqrt{x^2 - 3x + 2}$$

ii) $f(x) = \log(x^2 - 4x + 3)$
iii) $f(x) = \frac{\sqrt{2 + x} + \sqrt{2 - x}}{x}$
iv) $f(x) = \frac{\sqrt{2 + x} + \sqrt{2 - x}}{\sqrt{x}}$
iv) $f(x) = \frac{\sqrt{2 + x} + \sqrt{2 - x}}{\sqrt{x}}$
v) $f(x) = \frac{1}{\sqrt{x^2 - 10g_{(4-x)}}}$
vi) $f(x) = \sqrt{\sqrt{x^2 - 10g_{(4-x)}}}$
vii) $f(x) = \sqrt{\sqrt{x^2 - 10g_{(4-x)}}}$
vii) $f(x) = \sqrt{\sqrt{x^2 - 10g_{(4-x)}}}$
vii) $f(x) = \sqrt{\sqrt{x^2 - 10g_{(4-x)}}}$
viii) $f(x) = \sqrt{\sqrt{x^2 - 3x + 2}}$
 $x^2 - 3x + 2 \ge 0$
 $\Rightarrow (x - 1)(x - 2) \ge 0$
 $\Rightarrow x \le 1 \text{ or } x \ge 2$
Since the coefficient of x^2 is +ve
Domain of f is $(-\infty, 1] \cup [2, \infty)$
ii) $f(x) = \log(x^2 - 4x + 3)$
 $x^2 - 4x + 3 > 0$
 $(x - 1)(x - 3) > 0$
 $x < 1 \text{ or } x > 3$
Since the coefficient of x^2 is +ve
Domain of f is $R - [1, 3]$

www.sakshieducation.com
iii)
$$f(x) = \frac{\sqrt{2+x} + \sqrt{2-x}}{x}$$

 $2 + x \ge 0|2 - x \ge 0|x \ne 0$
 $\Rightarrow x \ge -2 = \frac{1}{\Rightarrow 2 \ge x} |x \ne 0$
 $\Rightarrow x \ge -2 = \frac{1}{\Rightarrow x \le 2}|$
: Domain of fis [-2, 2] - [0}
iv) $f(x) = \frac{1}{\sqrt[3]{x-2} \log_{(4-x)} 10}$
 $x - 2 \ne 0 \Rightarrow x \ne 2$
 $4 - x \ge 0 & 4 - x \ne 1 \Rightarrow x \ne 3$
 $\Rightarrow 4 > x \Rightarrow x < 4$
: Domain of fis (-∞, 2) \cup (2, 3) \cup (3, 4)
or
Domain of fis (-∞, 4) - [2, 3]
v) $f(x) = \sqrt{\frac{4 - x^2}{|x| + 2}}$
Case I:
 $4 - x^2 \ge 0$
 $(2 + x)(2 - x) \ge 0$
 $\Rightarrow x \in [-2, 2]$...(1)
Since the coefficient of x^2 is -ve
Also
 $[x] + 2 > 0$
 $[x] - 2$
 $x \in [-1, \infty]$...(2)
From (1) and (2)
 $x \in (-\infty, -2)$...(4)
From (2) and (4)
 $x \in (-\infty, -2)$...(4)
From (3) and (4)
 $x \in (-\infty, -2)$
From case-1 and case-II
Domain of fis (-∞, -2) $\cup [-1, 2]$

vi)
$$f(x) = \sqrt{\log_{0.3}(x - x^2)}$$

 $\log_{0.3}(x - x^2) \ge 0$
 $\Rightarrow (x - x^2) \le (0.3)^0$
 $\Rightarrow x - x^2 \le 1$
 $\Rightarrow 0 \le x^2 - x + 1$
 $\Rightarrow x^2 - x + 1 \ge 0$
 $\Rightarrow x^2 - x + 1 \ge 0, \forall x \in \mathbb{R}$...(1)
 $x - x^2 > 0$
 $\Rightarrow x^2 - x < 0$
 $\Rightarrow x(x - 1) < 0$
 $\Rightarrow 0 < x < 1$
Since the coefficient of x^2 is +ve
 $\therefore x \in (0, 1)$...(2)
From (1) and (2)
Domain of f is $\mathbb{R} \cap (0, 1) = (0, 1)$
(or) Domain of f is $(0, 1)$
vii) $f(x) = \frac{1}{x + |x|}$
 $x + |x| \ne 0$
 $x \ne - |x|$
It is not holds good when $x \in (-\infty, 0]$
 \therefore Domain of f is $(0, \infty) = \mathbb{R}^+$.

30. Prove that the real valued function $f(x) = \frac{x}{e^x - 1} - \frac{x}{2} + 1$ is an even function on $\mathbf{R} - \{0\}$.

Sol. $f(x) = \frac{x}{e^x - 1} - \frac{x}{2} + 1$...(1) Let $x \in R - \{0\}$ Consider $f(x) = \frac{-x}{e^{-x} - 1} + \frac{x}{2} + 1$ $= \frac{-x}{\frac{1}{e^x} - 1} + \frac{x}{2} + 1$ $= \frac{-xe^x}{1 - e^x} + \frac{x}{2} + 1 = \frac{-xe^x}{-(e^x - 1)} + \frac{x}{2} + 1$

$$=\frac{xe^{x}}{e^{x}-1}+\frac{x}{2}+1$$
 ...(2)

Consider f(x) - f(-x)

$$= \frac{x}{e^{x} - 1} - \frac{x}{2} + 1 - \frac{xe^{x}}{e^{x} - 1} - \frac{x}{2} - 1$$
$$= \frac{x - xe^{x}}{e^{x} - 1} - \frac{2x}{2}$$
$$= \frac{x(e^{x} - 1)}{(e^{x} - 1)} - x$$
$$= x - x = 0$$
$$f(x) - f(-x) = 0$$
$$\Rightarrow f(-x) = f(x)$$

 \therefore f is an even function.

31. Find the domain and range of the following functions.

i)
$$f(x) = \frac{\tan \pi[x]}{1 + \sin \pi[x] + [x^2]}$$

ii) $f(x) = \frac{x}{2 - 3x}$
iii) $f(x) = |x| + |1 + x|$

Sol. i)
$$f(x) = \frac{\tan \pi [x]}{1 + \sin \pi [x] + [x^2]}$$

Domain of f is R (:: $\tan n\pi = 0, \forall n \in \mathbb{Z}$)
Range of f is {0}
ii)
$$f(x) = \frac{x}{2 - 3x}$$

$$2 - 3x \neq 0$$

$$2 \neq 3x$$

$$x \neq \frac{2}{3}$$

Domain of f is R - $\left\{\frac{2}{3}\right\}$

$$\frac{x}{2 - 3x} = y$$

$$\Rightarrow x = y(2 - 3x)$$

$$\Rightarrow x = 2y - 3yx$$

$$\Rightarrow x + 3yx = 2y$$

$$\Rightarrow x(1 + 3y) = 2y$$

$$\Rightarrow x = \frac{2y}{1 + 3y}$$

$$\Rightarrow 1 + 3y \neq 0$$

$$\Rightarrow 3y \neq -1$$

$$y \neq -\frac{1}{3}$$

$$\therefore \text{ Range of f is } \mathbf{R} - \left\{-\frac{1}{3}\right\}.$$

iii) f(x) = |x| + |1+x|Domain of f is R Range of f is $[1, \infty)$

32. Determine whether the function $f : \mathbf{R} \to \mathbf{R}$ defined by $f(x) = \begin{cases} x & \text{if } x > 2 \\ 5x - 2 & \text{if } x \le 2 \end{cases}$ is an injection or a

surjection or a bijection.

Sol. Since 3 > 2, we have f(3) = 3Since 1 < 2, we have f(1) = 5(1) - 2 = 3 \therefore 1 and 3 have same f image. Hence f is not an injection. Let $y \in R$ then y > 2 (or) $y \le 2$ If y > 2 take $x = y \in R$ so that f(x) = x = yIf $y \le 2$ take $x = \frac{y+2}{5} \in R$ and $x = \frac{y+2}{5} < 1$ $\therefore f(x) = 5x - 2 = 5\left(\frac{y+2}{5}\right) - 2 = y$

 \therefore f is a surjection

Since f is not an injection, it is not a bijection.

33. If $f : R \to R$, $g : R \to R$ are defined by f(x) = 4x - 1 and $g(x) = x^2 + 2$ then find

(i)
$$(gof)(x)$$
 (ii) $(gof)\left(\frac{a+1}{4}\right)$ (iii) $fof(x)$ (iv) $go(fof)(0)$
Sol. i) $(gof)(x) = g(f(x))$
 $= g(4x-1)$
 $= (4x-1)^2 + 2$
 $= 16x^2 + 1 - 8x + 2$
 $= 16x^2 - 8x + 3$
ii) $(gof)\left(\frac{a+1}{4}\right) = g\left[f\left(\frac{a+1}{4}\right)\right]$
 $= g\left[4\left(\frac{a+1}{4}\right) - 1\right]$
 $= g(a) = a^2 + 2$
iii) $fof(x) = f[f(x)]$

iii) fof(x) = f[f(x)] = f (4x - 1) = 4[4x - 1] - 1 = 16x - 4 - 1 = 16x - 5 iv) go(fof)(0) = go(fof)= $g[16 \times 0 - 5]$ = g[-5]= $(-5)^2 + 2$ = 25 + 2 = 27

34. If $f : Q \to Q$ is defined by f(x) = 5x + 4 for all $x \in Q$, show that f is a bijection and find f^{-1} . Sol. Let $x_1, x_2 \in Q$, $f(x_1) = f(x_2)$

$$\Rightarrow 5x_1 + 4 = 5x_2 + 4$$

$$\Rightarrow 5x_1 = 5x_2$$

$$\Rightarrow x_1 = x_2$$

$$\therefore \text{ f is an injection.}$$

Let $y \in Q$, then $x = \frac{y-4}{5} \in Q$ and
 $f(x) = f\left(\frac{y-4}{5}\right) = 5\left(\frac{y-4}{5}\right) + 4 = y$

$$\therefore \text{ f is a surjection, f is a bijection.}$$

$$\therefore f^{-1} : Q \to Q \text{ is a bijection.}$$

We have $fof^{-1}(x) = 1(x)$
 $f[f^{-1}(x)] = x$
 $5f^{-1}(x) + 4 = x$

$$f^{-1}(x) = \frac{x-4}{5}$$
 for all $x \in Q$

35. Find the domains of the following real valued functions.

i)
$$f(x) = \frac{1}{\sqrt{|x| - x}}$$
 ii) $f(x) = \sqrt{|x| - x}$
Sol. i) $f(x) = \frac{1}{\sqrt{|x| - x}} \in \mathbb{R}$
 $\Rightarrow |x| - x > 0$
 $\Rightarrow |x| > x$
 $\Rightarrow x \in (-\infty, 0)$
 \therefore Domain of f is $(-\infty, 0)$
ii) $f(x) = \sqrt{|x| - x}$
 $\Rightarrow |x| - x \ge 0$, which is true $\forall x \in \mathbb{R}$
 \therefore Domain of f is R.

www.sakshieducation.com 36. If $f = \{(4, 5), (5, 6), (6, -4)\}$ and $g = \{(4, -4), (6, 5), (8, 5)\}$ then find (ii) f - g (iii) 2f + 4g (iv) f + 4 (v) fg (vi) $\frac{f}{f}$ (i) f + g(viii)√f $(ix) f^2$ $(\mathbf{x})\mathbf{f}^{3}$. (vii) |f| Sol. Domain of $f = A = \{4, 5, 6\}$ Domain of $g = B = \{4, 6, 8\}$ Domain of $f \pm g = A \cap B = \{4, 6\}$ i) f + g $= \{(4, 5-4), (6, -4+5)\}$ $= \{(4, 1), (6, 1)\}$ (ii) f – g $= \{(4, 5+4), (6, -4-5)\}$ $= \{(4, 9), (6, -9)\}$ (iii) 2f $= \{(4, 2 \times 5), (5, 6 \times 2), (6, -4 \times 2)\}$ $= \{(4, 10), (5, 12), (6, -8)\}$ $= \{(4, -4 \times 4), (6, 5 \times 4), (8, 5 \times 4)\}$ 4g $= \{(4, -16), (6, 20), (8, 20)\}$ Domain of $2f + 4g = \{4, 6\}$ $\therefore 2f + 4g = \{(4, 10, -16), (6, -8 + 20)\}$ $= \{(4, -6), (6, 12)\}$ (iv) $f + 4 = \{(4, 5+4), (5, 6+4), (6, -4+4)\}$ $= \{(4, 9), (5, 10), (6, 0)\}$ (v) fg $= \{(4, (5 \times -4)), (6, -4 \times 5)\}$ $= \{(4, -20), (6, -20)\}$ $(vi)\frac{f}{g}$ $=\left\{\left(4,\frac{-5}{4}\right),\left(6,\frac{-4}{5}\right)\right\}$ $= \{(4, |5|), (5, |6|), (6, |-4|)\}$ (vii) | f | $= \{(4, 5), (5, 6), (6, 4)\}$ $= \left\{ (4,\sqrt{5}), (5,\sqrt{6}) \right\}$ (viii)√f

(ix)
$$f^2$$
 = {(4, 25), (5, 36), (6, 16)}
(x) f^3 = {(4, 125), (5, 216), (6, -64)}

37. Find the domain of the following real valued functions.

i)
$$f(x) = \frac{1}{\sqrt{[x]^2 - [x] - 2}}$$

ii) $f(x) = \log(x - |x|)$
iii) $f(x) = \sqrt{\log_{10}\left(\frac{3 - x}{x}\right)}$
iv) $f(x) = \sqrt{x + 2} + \frac{1}{\log(1 - x)}$
v) $f(x) = \frac{\sqrt{3 + x} + \sqrt{3 - x}}{x}$
Sol. i) $f(x) = \frac{1}{\sqrt{[x]^2 - [x] - 2}} \in \mathbb{R}$

www.sakshieducation.com

$$\Rightarrow [x]^{2} - [x] - 2 > 0$$

$$\Rightarrow [(x] + 1)[(x] - 2) > 0$$

$$\Rightarrow [x] < -1 (or) [x] > 0$$
But $[x] < -1$

$$\Rightarrow [x] = -2, -3, -4, \dots,$$

$$\Rightarrow x < -1$$

$$[x] > 2 \Rightarrow [x] = 3, 4, \dots,$$

$$\Rightarrow x \geq 3$$

$$\therefore Domain of f = (-\infty, -1) \cup [3, \infty) = R - [-1, 3)$$
ii) f (x) = log(x - |x|) \in R
$$\Rightarrow x - [x] > 0 \Rightarrow x > [x]$$

$$\Rightarrow x is a non-integer \therefore Domain of f is R - Z.$$
iii) f (x) = $\sqrt{\log_{10}(\frac{3-x}{x})} \in R$

$$\log_{10}(\frac{3-x}{x}) \ge 0 \text{ and } \frac{3-x}{x} > 0$$

$$\Rightarrow \frac{3-x}{x} \ge 10^{0} = 1 \text{ and } 3 - x > 0, x > 0$$

$$\Rightarrow 3 - x \ge x \text{ and } 0 < x < 3$$

$$\Rightarrow x \le \frac{3}{2} \text{ and } 0 < x < 3$$

$$\Rightarrow x \le (-\infty, \frac{3}{2}) \cap (0, 3) = [0, \frac{3}{2}]$$

$$\therefore Domain of f is $\left[0, \frac{3}{2}\right].$
iv) f (x) = $\sqrt{x+2} + \frac{1}{\log(1-x)} \in R$

$$x + 2 \ge 0 \text{ and } 1 - x > 0 \text{ and } 1 - x \ne 1$$$$

iii)
$$f(x) = \sqrt{\log_{10}\left(\frac{3-x}{x}\right)} \in R$$

 $\log_{10}\left(\frac{3-x}{x}\right) \ge 0 \text{ and } \frac{3-x}{x} > 0$
 $\Rightarrow \frac{3-x}{x} \ge 10^0 = 1 \text{ and } 3-x > 0, x > 0$
 $\Rightarrow 3-x \ge x \text{ and } 0 < x < 3$
 $\Rightarrow x \le \frac{3}{2} \text{ and } 0 < x < 3$
 $\Rightarrow x \in \left(-\infty, \frac{3}{2}\right] \cap (0,3) = \left(0, \frac{3}{2}\right]$
 $\therefore \text{ Domain of f is } \left(0, \frac{3}{2}\right].$

iv)
$$f(x) = \sqrt{x+2} + \frac{1}{\log(1-x)} \in \mathbb{R}$$

 $x+2 \ge 0$ and $1-x \ge 0$ and $1-x \ne 1$
 $\Rightarrow x \ge -2$ and $1 > x$ and $x \ne 0$
 $\Rightarrow x \in [-2, \infty) \cap (-\infty, 1) - \{0\}$
 $\Rightarrow x \in [-2, 1) - \{0\}$
 \therefore Domain of f is $[-2, 1) - \{0\}$.

v)
$$f(x) = \frac{\sqrt{3+x} + \sqrt{3-x}}{x} \in \mathbb{R}$$

 $\Leftrightarrow 3+x \ge 0, 3-x \ge 0, x \ne 0$
 $\Rightarrow -3 \le x \le 3, x \ne 0$
 $\Rightarrow x \in [-3,3] - \{0\}$
 \therefore Domain of f is $[-3,3] - \{0\}$.