FUNCTIONS

Def 1: A relation f from a set A into a set B is said to be a function or mapping from A into B if for each $x \in A$ there exists a unique $y \in B$ such that $(x, y) \in f$. It is denoted by $f: A \rightarrow B$.

Note: Example of a function may be represented diagrammatically. The above example can be written diagrammatically as follows.

Def 2: A relation f from a set A into a set B is a said to be a function or mapping from a into B if
i) $x \in A \Rightarrow f(x) \in B$
ii) $x_{1}, x_{2} \in A, x_{2} \Rightarrow f\left(x_{1}\right)=f\left(x_{2}\right)$

Def 3: If $f: A \rightarrow B$ is a function, then A is called domain, B is called codomain and $f(A)=\{f(x): x \in A\}$ is called range of f.

Def 4: A function $f: A \rightarrow B$ if said to be one one function or injection from A into B if different element in A have different f-images in B.

Note: A function $f: A \rightarrow B$ is one one if $\mathrm{f}\left(x_{1}, y\right) \in f,\left(x_{2}, y\right) \in f \Rightarrow x_{1}=x_{2}$.
Note: A function $f: A \rightarrow B$ is one one iff $x_{1}, x_{2} \in A, x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$
Note: A function $f: A \rightarrow B$ is one one iff $x_{1}, x_{2} \in A, f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$
Note: A function $f: A \rightarrow B$ which is not one one is called many one function

Note: If $f: A \rightarrow B$ is one one and A, B are finite then $n(A) \leq n(B)$.
Def 5: A function $f: A \rightarrow B$ is said to be onto function or surjection from A onto B if $\mathrm{f}(\mathrm{A})=\mathrm{B}$.
Note: A function $f: A \rightarrow B$ is onto if $y \in B \Downarrow \exists x \in A \ni f(x)=y$.
Note: A function $f: A \rightarrow B$ which is not onto is called an into function.
Note: If A, B are two finite sets and $f: A \rightarrow B$ is onto then $n(B) \leq n(A)$.
Note: If A, B are two finite sets and $n(B)=2$, then the number of onto functions that can be defined from A onto B is $2^{n(A)}-2$.

Def 6: A function $f: A \rightarrow B$ is said to be one one onto function or bijection from A onto B if $f: A \rightarrow B$ is both one one function and onto function.

Theorem: If $f: A \rightarrow B, g: B \rightarrow C$ are two functions then the composite relation $g o f$ is a function a into C.

Theorem: If $f: A \rightarrow B, g: B \rightarrow C$ are two one one onto functions then $g o f: A \rightarrow C$ is also one one be onto.

Sol: \quad i) Let $x_{1}, x_{2} \in A$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$.
$x_{1}, x_{2} \in A, f: A \rightarrow B \Rightarrow f\left(x_{1}\right), f\left(x_{2}\right) \in B$
$f\left(x_{1}\right), f\left(x_{2}\right) \in B, \rightarrow C, f\left(x_{2}\right) \Rightarrow g\left[f\left(x_{1}\right)\right]=g\left[f\left(x_{2}\right)\right] \Rightarrow(g o f)\left(x_{1}\right)=(g o f)\left(x_{2}\right)$
$x_{1}, x_{2} \in A,(g o f)\left(x_{1}\right)=(g o f): A \rightarrow C$ is one one $\Rightarrow x_{1}=x_{2}$
$\therefore x_{1}, x_{2} \in A, f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.
$\therefore f: A \rightarrow B$ Is one one.
ii) Proof: let $z \in C, g: B \rightarrow C$ is onto $\exists y \in B \exists: g(y)=z \quad y \in B f: A \rightarrow B$ is onto

$$
\begin{aligned}
& \therefore \exists x \in A \ni f(x)=y \\
& \mathrm{G}\{\mathrm{f}(\mathrm{x})\}=\mathrm{t} \\
& (\mathrm{~g} \circ \mathrm{f}) \mathrm{x}=\mathrm{t} \\
& \forall z \in C \exists x \in A \ni(\mathrm{gof})(x)=z .
\end{aligned}
$$

$\therefore g$ is onto.

Def 7: Two functions $f: A \rightarrow B, g: C \rightarrow D$ are said to be equal if
i) $\mathrm{A}=\mathrm{C}, \mathrm{B}=\mathrm{D}$
ii) $f(x)=g(x) \forall x \in A$. It is denoted by $\mathrm{f}=\mathrm{g}$

Theorem: If $f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D$ are three functions, then $h o(g \circ f)=(h o f) o f$
Theorem: if A is set, then the identify relation I on A is one one onto.
Def 8: If A is a set, then the function I on A defined by $I(x)=x \forall x \in A$, is called identify function on A. it is denoted by I_{A}.

Theorem: If $f: A \rightarrow B$ and I_{A}, I_{B} are identify functions on \mathbf{A}, \mathbf{B} respectively then $f o I_{A}=I_{B} o f=f$.

Proof: $I_{A}: A \rightarrow A, f: A \rightarrow B \Rightarrow f o I_{A}: A \rightarrow B$
$f: A \rightarrow B, I_{B}: B \rightarrow B \Rightarrow I_{B}$ of:A $\rightarrow B$
$\left(f o I_{A}\right)(x)=f\left\{I_{A}(x)\right\}=f(x), \forall x \in A . \quad \therefore f_{0} I_{A}=f$
$\left(I_{B} o f\right)(x)=I_{B}\{f(x)\}=f(x), \forall x \in A \quad \therefore I_{B} o f=f$
$\therefore f o I_{A}=I_{B}$ of $=f$
Def 9: If $f: A \rightarrow B$ is a function then $\{(y, x) \in B \times A:(x, y) \in f\}$ is called inverse of f . It is denoted by f^{-1}.

Def 10: If $f: A \rightarrow B$ is a bijection, then the function $f^{-1}: B \rightarrow A$ defined by $f^{-1}(y)=x$ iff $f(x)=y \forall y \in B$ is called inverse function of f .

Theorem: If $f: A \rightarrow B$ is a bijection, then f^{-1} of $=I_{A}, f o f^{-1}=I_{B}$
Proof: Since $f: A \rightarrow B$ is a bijection $f^{-1}: B \rightarrow A$ is also a bijection and $f^{-1}(y)=x \Leftrightarrow f(x)=y \forall y \in B$
$f: A \rightarrow B, f^{-1}: B \rightarrow A \Rightarrow f^{-1}$ of $: A \rightarrow A$
Clearly $I_{A}: A \rightarrow A$ such that $I_{A}(x)=x, \forall x \in A$.
Let $x \in A$
$x \in A, f: A \rightarrow B \Rightarrow f(x) \in B$
Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$
$y=f(x) \Rightarrow f^{-1}(y)=x$
$\left(f^{-1}\right.$ of $)(x)=f^{-1}\left[f(x)=f^{-1}(y)=x=I_{A}(x)\right.$
$\therefore\left(f^{-1}\right.$ of $)(x)=I_{A}(x) \forall x \in A \quad \therefore f^{1}$ of $=I_{A}$
$f^{1}: B \rightarrow A, f: A \rightarrow B \rightarrow f o f^{1}: B \rightarrow B$
Clearly $I_{B}: B \rightarrow B$ such that $I_{B}(y)=y \forall y \in B$
Let $y \in B$
$y \in B, f^{-1}: B \rightarrow A=f^{1}(y) \in A$
Let $f^{1}(y)=x$
$f^{1}(y)=x \Rightarrow f(x)=y$
$\left(f o f^{1}\right)(y)=f\left[f^{1}(y)\right]=f(x)=y=I_{B}(y)$
$\therefore\left(f \circ f^{-1}\right)(y)=I_{B}(y) \forall y \in B \quad \therefore f \circ f^{-1}=I_{B}$

Theorem: If $f: A \rightarrow B, g: B \rightarrow C$ are two bijections then $(g o f)^{-1}=f^{-1} o g^{-1}$.
Proof: $f: A \rightarrow B, g: B \rightarrow C$ are bijections $\Rightarrow g o f: A \rightarrow C$ is bijection $\Rightarrow(g o f)^{-1}: C \rightarrow A$ is a bijection.
$f: A \rightarrow B$ is a bijection $\Rightarrow f^{-1}: B \rightarrow A$ is a bijection

$$
g: B \rightarrow C \text { Is a bijection } \Rightarrow g^{-1}: C \rightarrow B \text { is a bijection }
$$

$g^{-1}: C \rightarrow B, g^{-1}: B \rightarrow A$ are bijections $\Rightarrow f^{-1} o g^{-1}: C \rightarrow A$ is a bijection
Let $z \in C$
$z \in C, g: B \rightarrow C$ is onto $\Rightarrow \exists y \in B \ni g(y)=z \Rightarrow g^{-1}(z)=y$
$y \in B, f: A \rightarrow B$ is onto $\Rightarrow \exists x \in A \ni f(x)=y \Rightarrow f^{-1}(y)=x$
$(g \circ f)(x)=g[f(x)]=g(y)=z \Rightarrow(g \circ f)^{-1}(z)=x$
$\therefore(g \circ f)^{-1}(z)=x=f^{-1}(y)=f^{-1}\left[g^{-1}(z)\right]=\left(f^{-1} o g^{-1}\right)(z) \quad \therefore(g o f)^{-1}=f^{-1} o g^{-1}$

Theorem: If $f: A \rightarrow B, g: B \rightarrow A$ are two functions such that $g o f=I_{A}$ and $f o g=I_{B}$ then $f: A \rightarrow B$ is a bijection and $f^{-1}=g$.

Proof: Let $x_{1}, x_{2} \in A, f\left(x_{1}\right)=f\left(x_{2}\right)$

$$
\begin{aligned}
& x_{1}, x_{2} \in A, f: A \rightarrow B \Rightarrow f\left(x_{1}\right), f\left(x_{2}\right) \in B \\
& f\left(x_{1}\right), f\left(x_{2}\right) \in B, f\left(x_{1}\right)=f\left(x_{2}\right), g=B \rightarrow A \Rightarrow g\left[f\left(x_{1}\right)\right]=g\left[f\left(x_{2}\right)\right] \\
& \Rightarrow(g o f)\left(x_{1}\right)=(g o f)\left(x_{2}\right) \Rightarrow I_{A}\left(x_{2}\right) \Rightarrow x_{1}=x_{2} \\
& \therefore x_{1}, x_{2} \in A, f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2} . \therefore f: A \rightarrow B \text { is one one }
\end{aligned}
$$

Let $y \in B$.
$y \in B, g: B \rightarrow A \Rightarrow g(y) \in A$
Def 11: A function $f: A \rightarrow B$ is said tobe a constant function if the range of f contain only one element i.e., $f(x)=c \forall x \in A$ where c is a fixed element of B

Def 12: A function $f: A \rightarrow B$ is said to be a real variable function if $A \subseteq R$.
Def 13: A function $f: A \rightarrow B$ is said to be a real valued function iff $B \subseteq R$.

Def 14: A function $f: A \rightarrow B$ is said to be a real function if $A \subseteq R, B \subseteq R$.
Def 15: If $f: A \rightarrow R, g: B \rightarrow R$ then $f+g: A \cap B \rightarrow R$ is defined as

$$
(f+g)(x)=f(x)+g(x) \forall x \in A \cap B
$$

Def 16: If $f: A \rightarrow R$ and $k \in R$ then $k f: A \rightarrow R$ is defined as $(k f)(x)=k f(x), \forall x \in A$
Def 17: If $f: A \rightarrow B, g: B \rightarrow R$ then $f g: A \cap B \rightarrow R$ is defined as $(f g)(x)=f(x) g(x) \forall x \in A \cap B$.

Def 18: If $f: A \rightarrow R, g: B \rightarrow R$ then $\frac{f}{g}: C \rightarrow R$ is defined as $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} \forall x \in C$ where $C=\{x \in A \cap B: g(x) \neq 0\}$.

Def 19: If $f: A \rightarrow R$ then $|f|(x)=|f(x)|, \forall x \in A$
Def 20: If $n \in Z, n \geq 0, a_{0}, a_{2}, a_{2}, \ldots \ldots \ldots a_{n} \in R, a_{n} \neq 0$, then the function $f: R \rightarrow R$ defined by $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots . .+a_{n} x^{n} \forall x \in R$ is called a polynomial function of degree n .

Def 21: If $f: R \rightarrow R, g: R \rightarrow R$ are two polynomial functions, then the quotient f / g is called a rational function.

Def 22: A function $f: A \rightarrow R$ is said to be bounded on A if there exists real numbers k_{1}, k_{2} such that $k_{1} \leq f(x) \leq k_{2} \forall x \in A$

Def 23: A function $f: A \rightarrow R$ is said to be an even function if $f(-x)=f(x) \forall x \in A$
Def 24: A function $f: A \rightarrow R$ is said to be an odd function if $f(-x)=-f(x) \forall x \in A$.

Def 25: If $a \in R, a>0$ then the function $f: R \rightarrow R$ defined as $f(x)=a^{x}$ is called an exponential function.

Def 26: If $a \in R$, a $>0, a \neq 1$ then the function $f:(0, \infty) \rightarrow R$ defined as $f(x)=\log _{a} x$ is called a logarithmic function.

Def 27: The function $f: R \rightarrow R$ defined as $\mathrm{f}(\mathrm{x})=\mathrm{n}$ where $n \in Z$ such that $n \leq x<n+1, \forall x \in R$ is called step function or greatest integer function. It is denoted by $\mathrm{f}(\mathrm{x})=[\mathrm{x}]$

Def 28: The functions $f(x)=\sin x, \cos x, \tan x, \cot x, \sec x$ or $\operatorname{cosec} x$ are called trigonometric functions.

Def 29: The functions $f(x)=\sin ^{-1} x, \cos ^{-1} x, \tan ^{-1} x, \cot ^{-1} x, \sec ^{-1} x$ or $\operatorname{cosec} x$ are called inverse trigonometric functions.
Def 30: The functions $f(x)=\sinh x, \cosh x, \operatorname{coth} x, \operatorname{sech} x$ or $\operatorname{cosech} x$ are called hyperbolic functions.

Def 31: The functions $f(x)=\sinh ^{-1} x, \cos ^{-1} x, \tanh ^{-1} x, \operatorname{coth}^{-1} x, \sec ^{-1} x$ or $\operatorname{cosech} x$ are called iverse hyperbolic functions

	Function	Domain	Range
1.	a^{x}	R	$(0, \infty)$
2.	$\log _{a} x$	$(0, \infty)$	R
3.	[X]	R	Z
4.	[X]	R	$[0, \infty)$
5.	\sqrt{x}	$[0, \infty)$	$[0, \infty)$
6.	$\sin x$	R	[-1, 1]
7.	$\cos x$	R	[-1, 1]
8.	$\tan x$	$R-\left\{(2 n+1) \frac{\pi}{2}: n \in Z\right\}$	R
9.	$\cot x$	$R-\{n \pi: n \in Z\}$	R
10.	$\sec x$	$R-\left\{(2 n+1) \frac{\pi}{2}: n \in Z\right\}$	$(-\infty,-1] \cup[1, \infty)$
11.	$\operatorname{cosec} x$	$R-\{n \pi: n \in Z\}$	$(-\infty,-1] \cup[1, \infty)$
12.	$\operatorname{Sin}^{-1} x$	[-1, 1]	$[-\pi / 2, \pi / 2]$
13.	$\operatorname{Cos}^{-1} x$	[-1, 1]	[0, π]
14.	$\operatorname{Tan}^{-1} x$	R	$(-\pi / 2, \pi / 2)$
15.	$\operatorname{Cot}^{-1} x$	R	$(0, \pi)$
16.	Sec $^{-1} x$	$(-\infty,-1] \cup[1, \infty)$	$[0, \pi / 2) \cup(\pi / 2, \pi]$
17.	$\operatorname{Cosec}^{-1} x$	$(-\infty,-1] \cup[1, \infty)$	$[-\pi / 2,0) \cup(0, \pi / 2]$
18.	$\sinh \mathrm{x}$	R	R
19.	$\cosh \mathrm{x}$	R	$[1, \infty)$
20.	$\tanh \mathrm{x}$	R	$(-1,1)$
21.	coth x	$(-\infty, 0) \cup(0, \infty)$	$(-\infty,-1) \cup(1, \infty)$
22.	$\operatorname{sech} \mathrm{x}$	R	(0, 1]
23.	$\operatorname{cosech} \mathrm{X}$	$(-\infty, 0) \cup(0, \infty)$	$(-\infty, 0) \cup(0, \infty)$

24. $\operatorname{Sinh}^{-1} x$
25. $\operatorname{Cosh}^{-1} x$ R
$[1, \infty)$
$(-1,1)$
R
$[0, \infty)$
26. $\operatorname{Tanh}^{-1} x$
$(-1,1)$
R
27. $\operatorname{Coth}^{-1} x$
$(-\infty,-1) \cup(1, \infty)$

$$
(-\infty, 0) \cup(0, \infty)
$$

28. $\operatorname{Sech}^{-1} x$
$(0,1]$
$[0, \infty)$
29. $\operatorname{Coseh}^{-1} x$
$(-\infty, 0) \cup(0, \infty)$ $(-\infty, 0) \cup(0, \infty)$

PROBLEMS

VSAQ'S

1. If : $R-\{0\} \rightarrow$ is defined by $f(x)=x^{3}-\frac{1}{x^{3}}$, then show that $f(x)+f\left(\frac{1}{x}\right)=0$.

Sol. Given that $f(x)=x^{3}-\frac{1}{x^{3}}$
$\mathrm{f}\left(\frac{1}{\mathrm{x}}\right)=\frac{1}{\mathrm{x}^{3}}-\mathrm{x}^{3}$
$\therefore \mathrm{f}(\mathrm{x})+\mathrm{f}\left(\frac{1}{\mathrm{x}}\right)=\mathrm{x}^{3}-\frac{1}{\mathrm{x}^{3}}+\frac{1}{\mathrm{x}^{3}}-\mathrm{x}^{3}=0$
2. If $f: \mathbf{R}-[\pm \mathbf{1}] \rightarrow \mathbf{R}$ is defined by $f(x)=\log \left|\frac{1+x}{1-x}\right|$, then show that $f\left(\frac{2 x}{1+x^{2}}\right)=2 f(x)$.

Sol. $\mathrm{f}(\mathrm{x})=\log \left|\frac{1+\mathrm{x}}{1-\mathrm{x}}\right|$

$$
\begin{aligned}
& f\left(\frac{2 x}{1+x^{2}}\right)=\log \left|\frac{1+\frac{2 x}{1+x^{2}}}{1-\frac{2 x}{1+x^{2}}}\right| \\
& =\log \left|\frac{x^{2}+1+2 x}{x^{2}+1-2 x}\right|=\log \left|\frac{(1+x)^{2}}{(1-x)^{2}}\right| \\
& =\log \left|\left(\frac{1+x}{1-x}\right)^{2}\right|=2 \log \left|\frac{1+x}{1-x}\right|=2 f(x)
\end{aligned}
$$

3. If $A=\{-2,-1,0,1,2\}$ and $f: A \rightarrow B$ is a surjection defined by $f(x)=x^{2}+x+1$, then find B.

Sol. Given that
$f(x)=x^{2}+x+1$
$f(-2)=(-2)^{2}-2+1=4-2+1=3$
$f(-1)=(-1)^{2}-1+1=1-1+1=1$
$f(0)=(0)^{2}-0+1=1$
$f(1)=1^{2}+1+1=3$
$\mathrm{f}(2)=2^{2}+2+1=7$
Thus range of $\mathrm{f}, \mathrm{f}(\mathrm{A})=\{1,3,7\}$
Since f is onto, $f(A)=B$
$\therefore B=\{3,1,7\}$
4. If $\mathbf{A}=\left\{\mathbf{1 , 2 , 3 , 4 \}}\right.$ and $\mathbf{f}: \mathbf{A} \rightarrow \mathbf{R}$ is a function defined by $f(x)=\frac{x^{2}-x+1}{x+1}$ then find the range of \mathbf{f}.

Sol. Given that
$f(x)=\frac{x^{2}-x+1}{x+1}$
$\mathrm{f}(1)=\frac{1^{2}-1+1}{1+1}=\frac{1}{2}$
$f(2)=\frac{2^{2}-2+1}{2+1}=\frac{3}{3}=1$
$\mathrm{f}(3)=\frac{3^{2}-3+1}{3+1}=\frac{7}{4}$
$f(4)=\frac{4^{2}-4+1}{4+1}=\frac{13}{5}$
\therefore Range of f is $\left\{\frac{1}{2}, 1, \frac{7}{4}, \frac{13}{5}\right\}$
5. If $f(x+y)=f(x y) \forall x, y \in R$ then prove that f is a constant function.

Sol. $f(x+y)=f(x y)$
Let $f(0)=k$
then $\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}+0)=\mathrm{f}(\mathrm{x} \cdot 0)=\mathrm{f}(0)=\mathrm{k}$
$\Rightarrow \mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{k}$
$\therefore \mathrm{f}$ is a constant function.
6. Which of the following are injections or surjections or bijections? Justify your answers.
i) $\mathbf{f}: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=\frac{2 x+1}{3}$
ii) f: $\mathbf{R} \rightarrow(0, \infty)$ defined by $f(x)=2^{x}$.
iii) $\mathrm{f}:(0, \infty) \rightarrow \mathbf{R}$ defined by $f(x)=\log _{\mathrm{e}} x$
iv) $f:[0, \infty) \rightarrow[0, \infty)$ defined by $f(x)=x^{2}$
v) $f: R \rightarrow[0, \infty)$ defined by $f(x)=x^{2}$
vi) $f: R \rightarrow R$ defined by $f(x)=x^{2}$
i) $\mathbf{f}: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=\frac{2 x+1}{3}$ is a bijection.

Sol. i) $f: R \rightarrow R$ defined by $f(x)=\frac{2 x+1}{3}$
a) To prove $f: R \rightarrow R$ is injection

Let $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{R}$ and $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$

$$
\begin{aligned}
& \Rightarrow \frac{2 \mathrm{x}_{1}+1}{3}=\frac{2 \mathrm{x}_{2}+1}{3} \\
& \Rightarrow 2 \mathrm{x}_{1}+1=2 \mathrm{x}_{2}+1 \\
& \Rightarrow 2 \mathrm{x}_{1}=2 \mathrm{x}_{2} \\
& \Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2} \\
& \Rightarrow \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R} \text { is injection }
\end{aligned}
$$

b) To prove $\mathbf{f}: \mathbf{R} \rightarrow \mathbf{R}$ is surjection

Let $\mathrm{y} \in \mathrm{R}$ and $\mathrm{f}(\mathrm{x})=\mathrm{y}$
$\Rightarrow \frac{2 \mathrm{x}+1}{3}=\mathrm{y}$
$\Rightarrow 2 \mathrm{x}+1=3 \mathrm{y}$
$\Rightarrow 2 \mathrm{x}=3 \mathrm{y}-1$
$\Rightarrow \mathrm{x}=\frac{3 \mathrm{y}-1}{2}$
Thus for every $\mathrm{y} \in \mathrm{R}, \exists$ an element $\frac{3 \mathrm{y}-1}{2} \in \mathrm{R}$ such that
$f\left(\frac{3 y-1}{2}\right)=\frac{2\left(\frac{3 y-1}{2}\right)+1}{3}=\frac{3 y-1+1}{3}=y$
$\therefore \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is both injection and surjection
$\therefore \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is a bijection.
ii) $\mathbf{f}: \mathbf{R} \rightarrow(\mathbf{0}, \infty)$ defined by $f(x)=\mathbf{2}^{\mathbf{x}}$.
a) To prove $f: R \rightarrow R^{+}$is injection

Let $x_{1}, x_{2} \in R$ and
$\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$
$\Rightarrow 2^{x_{1}}=2^{x_{2}}$
$\Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}$
$\therefore \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}^{+}$is injection.
b) To prove $f: R \rightarrow R^{+}$is surjection

Let $\mathrm{y} \in \mathrm{R}^{+}$and $\mathrm{f}(\mathrm{x})=\mathrm{y}$
$\Rightarrow 2^{\mathrm{x}}=\mathrm{y}$
$\Rightarrow \mathrm{x}=\log _{2} \mathrm{y} \in \mathrm{R}$
Thus for every $\mathrm{y} \in \mathrm{R}^{+}, \exists$ an element
$\log _{2} y \in$ such that
$\mathrm{f}\left(\log _{2} \mathrm{y}\right)=2^{\log _{2} \mathrm{y}}=\mathrm{y}$
$\therefore \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}^{+}$is a surjection
Thus $f: R \rightarrow R^{+}$is both injection and surjection.
$\therefore \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}^{+}$is a bijection.
iii) $\mathbf{f}:(0, \infty) \rightarrow \mathbf{R}$ defined by $f(\mathbf{x})=\log _{\mathrm{e}} \mathrm{X}$

Explanation:
a) To prove $f: R^{+} \rightarrow R$ is injection

Let $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{R}^{+}$and
$\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$
$\Rightarrow \log _{\mathrm{e}} \mathrm{x}_{1}=\log _{\mathrm{e}} \mathrm{x}_{2}$
$\Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}$
$\therefore \mathrm{f}: \mathrm{R}^{+} \rightarrow \mathrm{R}$ is injection.
b) To prove $f: R^{+} \rightarrow R$ is surjection

Let $y \in R$ and $f(x)=y$
$\Rightarrow \log _{\mathrm{e}} \mathrm{x}=\mathrm{y}$
$\Rightarrow x=e^{y} \in R^{+}$
Thus for every $y \in R, \exists$ an element
$\mathrm{e}^{\mathrm{y}} \in \mathrm{R}^{+}$such that
$f\left(e^{y}\right)=\log _{e} e^{y}=y \log _{e} e=y$
$\therefore \mathrm{f}: \mathrm{R}^{+} \rightarrow \mathrm{R}$ is surjection
Thus $f: R^{+} \rightarrow R$ is both injection and surjection.
$\therefore \mathrm{f}: \mathrm{R}^{+} \rightarrow \mathrm{R}$ is a bijection.
iv) $f:[0, \infty) \rightarrow[0, \infty)$ defined by $f(x)=x^{2}$

Explanation:
a) To prove $\mathrm{f}: \mathbf{A} \rightarrow \mathbf{A}$ is injection

Let $x_{1}, x_{2} \in A$ and
$\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$
$\Rightarrow \mathrm{x}_{1}^{2}=\mathrm{x}_{2}^{2}$
$\Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}\left(\because \mathrm{x}_{1} \geq 0, \mathrm{x}_{2} \geq 0\right)$
$\therefore \mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ is injection
b) To prove $\mathbf{f}: \mathbf{A} \rightarrow \mathbf{A}$ is surjection

Let $\mathrm{y} \in \mathrm{A}$ and $\mathrm{f}(\mathrm{x})=\mathrm{y}$
$\Rightarrow \mathrm{x}^{2}=\mathrm{y}$
$\Rightarrow \mathrm{x}=\sqrt{\mathrm{y}} \in \mathrm{A}$
Thus for every $y \in A, \exists$ an element $\sqrt{y} \in A$
Such that $\mathrm{f}[\sqrt{\mathrm{y}}]=(\sqrt{\mathrm{y}})^{2}=\mathrm{y}$
$\therefore \mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ is a surjection
Thus $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ is both injection and surjection.
$\therefore \mathrm{f}:[0, \infty) \rightarrow[0, \infty)$ is a bijection.
v) $\mathbf{f}: \mathbf{R} \rightarrow[0, \infty)$ defined by $f(x)=\mathbf{x}^{2}$

Explanation:
a) To prove $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{A}$ is not a injection

Since distinct elements have not having distinct f-images
For example :
$\mathrm{f}(2)=2^{2}=4=(-2)^{2}=\mathrm{f}(-2)$
But $2 \neq-2$
b) To prove $\mathbf{f}: \mathbf{R} \rightarrow \mathbf{A}$ is surjection

Let $\mathrm{y} \in A$ and $\mathrm{f}(\mathrm{x})=\mathrm{y}$
$\Rightarrow \mathrm{x}^{2}=\mathrm{y}$
$\Rightarrow \mathrm{x}= \pm \sqrt{\mathrm{y}} \in \mathrm{R}$
Thus for every $y \in A, \exists$ an element $\pm \sqrt{y} \in R$ such that
$f(\pm \sqrt{y})=(\pm \sqrt{y})^{2}=y$
$\therefore \mathrm{f}: \mathrm{R} \rightarrow \mathrm{A}$ is a surjection
Thus $f: R \rightarrow A$ is surjection only.
vi)f: $\mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=x^{2}$
a) To prove $f: R \rightarrow R$ is not a injection

Since distinct element in set R are not having distinct f-images in R .
For example :
$f(2)=2^{2}=4=(-2)^{2}=f(-2)$
But $2 \neq-2$
$\therefore \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is not a injection.
b) To prove $f: R \rightarrow R$ is not surjection
$-1 \in R$, suppose $f(x)=-1$

$$
\begin{aligned}
& x^{2}=-1 \\
& x=\sqrt{-1} \notin R
\end{aligned}
$$

$\therefore \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is not surjection.
7. If $\mathrm{g}=\{(1,1),(2,3),(3,5),(4,7)\}$ is a function from $A=\{1,2,3,4\}$ to $B=\{1,3,5,7\}$? If this is given by the formula $g(x)=a x+b$, then find a and b.
Sol. Given that
$A=\{1,2,3,4\}$ and $B=\{1,3,5,7\}$ and
$\mathrm{g}=\{(1,1),(2,3),(3,5),(4,7)\} \ldots(1)$
Clearly every element in set A has unique g-image in set B.

$$
\begin{aligned}
& \therefore g: A \rightarrow B \text { is a function. } \\
& \text { Consider, } g(x)=a x+b \\
& g(1)=a+b \\
& g(2)=2 a+b \\
& g(3)=3 a+b \\
& g(4)=4 a+b
\end{aligned}
$$

$\therefore g=\{(1, a+b),(2,2 a+b),(3,3 a+b),(4,4 a+b)\} \ldots(2)$
Comparing (1) and (2)
$\mathrm{a}+\mathrm{b}=1 \Rightarrow \mathrm{a}=1-\mathrm{b} \Rightarrow \mathrm{a}=1+1=2$
$2 \mathrm{a}+\mathrm{b}=3 \Rightarrow 2[1-\mathrm{b}]+\mathrm{b}=3$
$\Rightarrow 2-2 \mathrm{~b}+\mathrm{b}=3 \Rightarrow 2-\mathrm{b}=3 \Rightarrow \mathrm{~b}=-1$
8. If $f(x)=2, g(x)=x^{2}, h(x)=2 x$ for all $x \in R$, then find $[f(g o h)(x)]$.

Sol. $\mathrm{fo}(\mathrm{goh})(\mathrm{x})=\mathrm{fog}[\mathrm{h}(\mathrm{x})]$

$$
\begin{aligned}
& =\mathrm{fog}(2 \mathrm{x}) \\
& =\mathrm{f}[\mathrm{~g}(2 \mathrm{x})] \\
& =\mathrm{f}\left(4 \mathrm{x}^{2}\right)=1
\end{aligned}
$$

$\therefore \mathrm{fo}(\mathrm{goh})(\mathrm{x})=2$.
9. Find the inverse of the following functions.
i) If $\mathbf{a}, \mathrm{b} \in \mathbf{R}, \mathbf{f}: \mathbf{R} \rightarrow \mathbf{R}$ defined $\mathrm{by} \mathbf{f}(\mathbf{x})=\mathbf{a x}+\mathrm{b}(\mathbf{a} \neq \mathbf{0})$
ii) f: $\mathbf{R} \rightarrow(0, \infty)$ defined by $f(x)=5^{x}$
iii)f: $(0, \infty) \rightarrow R$ defined by $f(x)=\log _{2} x$.

Sol. i) Let $f(x)=a x+b=y$

$$
\Rightarrow \mathrm{ax}=\mathrm{y}-\mathrm{b} \Rightarrow \mathrm{x}=\frac{\mathrm{y}-\mathrm{b}}{\mathrm{a}}
$$

Thus $f^{-1}(x)=\frac{x-b}{a}$
ii) Let $f(x)=5^{x}=y$
$\Rightarrow \mathrm{x}=\log _{5} \mathrm{y}$
Thus $\mathrm{f}^{-1}(\mathrm{x})=\log _{5} \mathrm{X}$
iii) Let $\mathrm{f}(\mathrm{x})=\log _{2} \mathrm{x}=\mathrm{y}$

$$
\begin{aligned}
& \Rightarrow \mathrm{x}=2^{\mathrm{y}} \\
& \Rightarrow \mathrm{f}^{-1}(\mathrm{x})=2^{\mathrm{x}}
\end{aligned}
$$

10. If $f(x)=1+x+x^{2}+\ldots \ldots$ for $|x|<1$ then show that $f^{-1}(x)=\frac{x-1}{x}$.

Sol. $f(x)=1+x+x^{2}+\ldots .$. for $|x|<1$
$=(1-x)^{-1}$ by Binomial theorem for rational index

$$
=\frac{1}{1-x}=y
$$

$$
1=y-x y
$$

$$
x y=y-1
$$

$$
x=\frac{y-1}{y}
$$

$$
\mathrm{f}^{-1}(\mathrm{x})=\frac{\mathrm{x}-1}{\mathrm{x}}
$$

11. If $\mathrm{f}:[1, \infty) \rightarrow[1, \infty)$ defined by
$f(x)=2^{x(x-1)}$ then find $f^{-1}(x)$.
Sol. $f(x):[1 \ldots \ldots \infty) \rightarrow[1 \ldots \ldots \infty)$
$f(x)=2^{x(x-1)}$
$f(x)=2^{x(x-1)}=y$
$\mathrm{x}(\mathrm{x}-1)=\log _{2} \mathrm{y}$
$x^{2}-x-\log _{2} y=0$
$\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$\mathrm{x}=\frac{1 \pm \sqrt{1+4 \log _{2} \mathrm{y}}}{2}$
$\mathrm{f}^{-1}(\mathrm{x})=\frac{1 \pm \sqrt{1+4 \log _{2} \mathrm{x}}}{2}$
12. $f(x)=2 x-1, g(x)=\frac{x+1}{2}$ for all $x \in R$, find $\operatorname{gof}(x)$.

Sol. $\operatorname{gof}(x)=g[f(x)]=g(2 x-1)$

$$
=\frac{2 \mathrm{x}-1+1}{2}=\frac{2 \mathrm{x}}{2}=\mathrm{x}
$$

$\therefore \operatorname{gof}(x)=x$
13. Find the domain of the following real valued functions.
i) $f(x)=\frac{2 x^{2}-5 x+7}{(x-1)(x-2)(x-3)}$
ii) $f(x)=\frac{1}{\log (2-x)}$
iii) $f(x)=\sqrt{4 x-x^{2}}$
iv) $f(x)=\frac{1}{\sqrt{1-x^{2}}}$
v) $f(x)=\sqrt{x^{2}-25}$
vi) $f(x)=\sqrt{x-[x]}$
vii) $f(x)=\sqrt{[x]-x}$

Sol. i) $f(x)=\frac{2 x^{2}-5 x+7}{(x-1)(x-2)(x-3)}$

$$
\begin{aligned}
& (x-1)(x-2)(x-3) \neq 0 \\
& \Rightarrow x-1 \neq 0, x-2 \neq 0, x-3 \neq 0 \\
& \Rightarrow x \neq 1, x \neq 2, x \neq 3 \\
& \Rightarrow x \in R-\{1,2,3\} \\
& \therefore \text { Domain of } \mathrm{f} \text { is } \mathrm{R}-\{1,2,3\}
\end{aligned}
$$

ii) $f(x)=\frac{1}{\log (2-x)}$
$2-x>0$ and $2-x \neq 1$
$2>x$ and $2-1 \neq x$
$\mathrm{x}<2$ and $\mathrm{x} \neq 1$
\therefore Domain of f is $(-\infty, 1) \cup(1,2)$
iii) $f(x)=\sqrt{4 x-x^{2}}$
$4 x-x^{2} \geq 0$
$x(4-x) \geq 0$
$\Rightarrow 0 \leq x \leq 4$
Since the coefficient of x^{2} is -ve
\therefore Domain of f is $[0,4]$
iv) $f(x)=\frac{1}{\sqrt{1-x^{2}}}$
$1-x^{2}>0$
$\Rightarrow(1-\mathrm{x})(1+\mathrm{x})>0$
$\Rightarrow-1<x<1$
Since the coefficient of x^{2} is $-v e$
\therefore Domain of f is $(-1,1)$.
v) $f(x)=\sqrt{x^{2}-25}$
$x^{2}-25 \geq 0$
$\Rightarrow(\mathrm{x}-5)(\mathrm{x}+5) \geq 0$
$\Rightarrow \mathrm{x} \leq-5$ or $\mathrm{x} \geq 5$
Since the coefficient of x^{2} is +ve
\therefore Domain of f is $(-\infty,-5] \cup[5, \infty)$
vi) $f(x)=\sqrt{x-[x]}$
$x-[x] \geq 0 \Rightarrow x \geq[x]$
It is true for all $x \in R$
\therefore Domain of f is R .
vii) $f(x)=\sqrt{[x]-x}$
$\Rightarrow[x]-x \geq 0$
$\Rightarrow[x] \geq x$
It is true only when x is an integer
\therefore Domain of f is Z .
14. Find the ranges of the following real valued functions.
i) $\log \left|4-x^{2}\right|$
ii) $\sqrt{[x]-x}$
iii) $\frac{\sin \pi[\mathrm{x}]}{1+[\mathrm{x}]^{2}}$
iv) $\frac{x^{2}-4}{x-2}$
v) $\sqrt{9+x^{2}}$

Sol. i) $f(x)=\log \left|4-x^{2}\right|$
Domain of f is $\mathrm{R}-\{-2,2\}$
\therefore Range $=\mathrm{R}$
ii) $f(x)=\sqrt{[x]-x}$

Domain of f is Z
Range of f is $\{0\}$
iii) $\frac{\sin \pi[\mathrm{x}]}{1+[\mathrm{x}]^{2}}$

Domain of f is R
Range of f is $\{0\}$
Since $\sin \mathrm{n} \pi=0, \forall \mathrm{n} \in \mathrm{Z}$.
iv) $f(x)=\frac{x^{2}-4}{x-2}$

Domain of f is $R-\{2\}$
Range of f is $R-\{4\}$
v) $f(x)=\sqrt{9+x^{2}}$
$9+x^{2}>0, \forall x \in R$
Domain of f is R
Range of f is $[3, \infty)$

SAQ'S

15. If the function $\mathbf{f}: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=\frac{3^{x}+3^{-x}}{2}$, then show that $f(x+y)+f(x-y)=2 f(x) f(y)$.
Sol. Given that
$f(x)=\frac{3^{x}+3^{-x}}{2}$ and $f(y)=\frac{3^{y}+3^{-y}}{2}$.
We have $f(x+y)=\frac{3^{x+y}+3^{-(x+y)}}{2}$
$f(x-y)=\frac{3^{x-y}+3^{-(x-y)}}{2}$
L.H.S. $=f(x+y)+f(x-y)$

$$
\begin{aligned}
& =\frac{3^{x+y}+3^{-(x+y)}}{2}+\frac{3^{x-y}+3^{-(x-y)}}{2} \\
& =\frac{1}{2}\left[3^{x+y}+3^{-(x+y)}+3^{x-y}+3^{-(x-y)}\right] \ldots(1)
\end{aligned}
$$

R.H.S. : $2 f(x) f(y)=2\left[\frac{3^{x}+3^{-x}}{2} \cdot \frac{3^{y}+3^{-y}}{2}\right]$

$$
\begin{align*}
& =\frac{1}{2}\left[3^{x+y}+3^{x-y}+3^{y-x}+3^{-x-y}\right] \\
& =\frac{1}{2}\left[3^{x+y}+3^{-(x-y)}+3^{x-y}+3^{-(x+y)}\right] . . \tag{2}
\end{align*}
$$

From (1) and (2)
\therefore L.H.S. $=$ R.H.S.
$f(x+y)+f(x-y)=2 f(x) f(y)$
16. If the function $f: R \rightarrow \mathbf{R}$ defined by $f(x)=\frac{4^{x}}{4^{x}+2}$, then show that
$f(1-x)=1-f(x)$, and hence deduce the value of $f\left(\frac{1}{4}\right)+2 f\left(\frac{1}{2}\right)+f\left(\frac{3}{4}\right)$.
Sol. Given that $f(x)=\frac{4^{x}}{4^{x}+2}$
We obtain, $f(1-x)=\frac{4^{1-x}}{4^{1-x}+2}$

$$
\begin{aligned}
= & \frac{\frac{4}{4^{x}}}{\frac{4}{4^{x}}+2}=\frac{4}{4+2 \cdot 4^{x}}=\frac{2}{2+4^{x}} \ldots(1) \\
1- & f(x)=1-\frac{4^{x}}{4^{x}+2} \\
& =\frac{4^{x}+2-4^{x}}{4^{x}+2}=\frac{2}{2+4^{x}} \ldots(2)
\end{aligned}
$$

From (1) and (2) : $f(1-x)=1-f(x)$

We have $f(1-x)=1-f(x)$

Now, $f(1-x)+f(x)=1$
Put $\mathrm{x}=1 / 4$, then $\mathrm{f}(1-1 / 4)+\mathrm{f}(1 / 4)=1$
$\mathrm{f}(3 / 4)+\mathrm{f}(1 / 4)=1$
$f(1-x)+f(x)=1$ put $x=1 / 2$ then
$\mathrm{f}(1-1 / 2)+\mathrm{f}(1 / 2)=1$
$\mathrm{f}(1 / 2)+\mathrm{f}(1 / 2)=1 \quad \Rightarrow \quad 2 \mathrm{f}(1 / 2)=1$
$(3)+(4) \Rightarrow f(3 / 4)+f(1 / 4)+2 f(1 / 2)=2$

Therefore, $\mathrm{f}\left(\frac{1}{4}\right)+2 \mathrm{f}\left(\frac{1}{2}\right)+\mathrm{f}\left(\frac{3}{4}\right) .=\mathbf{2}$.
17. If the function $f:\{-1,1\} \rightarrow\{0,2\}$, defined $b y f(x)=a x+b$ is a surjection, then find a and b.
Sol. Domain of f is $\{-1,1\}$ and
$\mathrm{f}(\mathrm{x})=\mathrm{ax}+\mathrm{b}$
$f(-1)=-a+b$
$f(1)=a+b$

Case I : Suppose f $=\{(-1,0),(1,2)\}$
and $\mathrm{f}=\{(-1,(-\mathrm{a}+\mathrm{b})),(1,(\mathrm{a}+\mathrm{b}))\}$
Comparing (1) and (2)
$-\mathrm{a}+\mathrm{b}=0 \Rightarrow \mathrm{a}=\mathrm{b}$
$\mathrm{a}+\mathrm{b}=2 \Rightarrow \mathrm{~b}+\mathrm{b}=2(\because \mathrm{a}=\mathrm{b})$
$\Rightarrow 2 \mathrm{~b}=2 \Rightarrow \mathrm{~b}=1 ; \mathrm{a}=1$.

Case II : Suppose f $=\{(-1,2),(1,0)\}$
and $\mathrm{f}=\{(-1,(-\mathrm{a}+\mathrm{b})),(1,(\mathrm{a}+\mathrm{b}))\}$
Comparing (3) and (4) we get
$-\mathrm{a}+\mathrm{b}=2 \Rightarrow \mathrm{a}=\mathrm{b}-2$
$\mathrm{a}+\mathrm{b}=0 \Rightarrow \mathrm{~b}=-\mathrm{a}$
Thus $-\mathrm{a}-\mathrm{a}=2$
$\Rightarrow-2 \mathrm{a}=2 \Rightarrow \mathrm{a}=-1$
$\Rightarrow \mathrm{b}=-(-1)=1$
Thus $\mathrm{a}=-1, \mathrm{~b}=1$.
18. If $f(x)=\cos (\log \mathbf{x})$, then show that $f\left(\frac{1}{x}\right) f\left(\frac{1}{y}\right)-\frac{1}{2}\left[f\left(\frac{x}{y}\right)+f(x y)\right]=0$.

Sol. Given that $\mathrm{f}(\mathrm{x})=\cos (\log \mathrm{x})$
Consider,

$$
\begin{align*}
f\left(\frac{1}{x}\right) f\left(\frac{1}{y}\right) & =\cos \left(\log \frac{1}{x}\right) \cos \left(\log \frac{1}{y}\right) \\
& =\cos \left(\log x^{-1}\right) \cos \left(\log y^{-1}\right) \\
& =[-\cos (\log x)][-\cos (\log y)] \\
& =\cos (\log x) \cos (\log y) \tag{1}
\end{align*}
$$

$\therefore f\left(\frac{1}{x}\right) f\left(\frac{1}{y}\right)=\cos (\log x) \cos (\log y)$
Again
$\frac{1}{2}\left[f\left(\frac{x}{y}\right)+f(x y)\right]=\frac{1}{2}\left[\cos \left(\log \frac{x}{y}\right)+\cos \log (x y)\right]$
$=\frac{1}{2}[\cos (\log x-\log y)+\cos (\log x+\log y)]$
$=\frac{1}{2} \cdot 2 \cos (\log \mathrm{x}) \cos (\log \mathrm{y})$
$=\cos (\log \mathrm{x}) \cos (\log \mathrm{y}) \quad[\because \cos (\mathrm{A}-\mathrm{B})+\cos (\mathrm{A}+\mathrm{B})=2 \cos \mathrm{~A} \cos \mathrm{~B}]$
$\therefore \frac{1}{2}\left[f\left(\frac{x}{y}\right)+f(x y)\right]=\cos (\log x) \cos (\log y)$
(1) $-(2)$:
$f\left(\frac{1}{x}\right) f\left(\frac{1}{y}\right)-\frac{1}{2}\left[f\left(\frac{x}{y}\right)+f(x y)\right]=0$.
19. If $\mathrm{f}(\mathrm{y})=\frac{\mathrm{y}}{\sqrt{1-\mathrm{y}^{2}}}$ and $\mathrm{g}(\mathrm{y})=\frac{\mathrm{y}}{\sqrt{1+\mathrm{y}^{2}}}$ then show that $(\mathbf{f o g})(\mathbf{y})=\mathbf{y}$.

Sol. Given that

$$
\begin{aligned}
& \mathrm{f}(\mathrm{y})=\frac{\mathrm{y}}{\sqrt{1-\mathrm{y}^{2}}} \text { and } \mathrm{g}(\mathrm{y})=\frac{\mathrm{y}}{\sqrt{1+\mathrm{y}^{2}}} \\
& \therefore \mathrm{fog}(\mathrm{y})=\mathrm{f}[\mathrm{~g}(\mathrm{y})]=\mathrm{f}\left[\frac{\mathrm{y}}{\sqrt{1-\mathrm{y}^{2}}}\right] \\
& =\frac{\mathrm{y}}{\sqrt{1+\mathrm{y}^{2}}} / \sqrt{1-\left(\frac{\mathrm{y}}{\sqrt{1+\mathrm{y}^{2}}}\right)^{2}} \\
& =\frac{\mathrm{y}}{\sqrt{1+\mathrm{y}^{2}}} \times \frac{\sqrt{1+\mathrm{y}^{2}}}{1+\mathrm{y}^{2}-\mathrm{y}^{2}}=\mathrm{y} \\
& \therefore \mathrm{fog}(\mathrm{y})=\mathrm{y}
\end{aligned}
$$

20. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined by $f(x)=2 x^{2}+3$ and $g(x)=3 x-2$ then find
(i) $(\mathbf{f o g})(\mathbf{x})$
(ii) $\operatorname{gof}(\mathbf{x})$
(iii) fof (0)
(iv) go(fof)(3)

Sol.i) $\operatorname{fog}(x)=f[g(x)]$

$$
\begin{aligned}
& =f(3 x-2) \\
& =2(3 x-2)^{2}+3 \\
& =2\left[9 x^{2}+4-12 x\right]+3 \\
& =18 x^{2}+8-24 x+3 \\
& =18 x^{2}-24 x+11
\end{aligned}
$$

$\therefore(f o g)(x)=18 x^{2}-24 x+11$
ii) $\operatorname{gof}(\mathrm{x})=\mathrm{g}[\mathrm{f}(\mathrm{x})]$

$$
\begin{aligned}
& =g\left(2 x^{2}+3\right) \\
& =3\left(2 x^{2}+3\right)-2 \\
& =6 x^{2}+9-2
\end{aligned}
$$

$$
=6 x^{2}+7
$$

$$
\therefore(\mathrm{gof})(\mathrm{x})=6 \mathrm{x}^{2}+7
$$

iii) $\operatorname{fof}(0)=\mathrm{f}[\mathrm{f}(0)]$

$$
\begin{aligned}
& =\mathrm{f}\left[2(0)^{2}+3\right] \\
& =\mathrm{f}(3)=2(3)^{2}+3 \\
& =2 \times 9+3=18+3=21
\end{aligned}
$$

$\therefore \mathrm{fof}(0)=21$
iv) $\operatorname{go}(\mathrm{fof})(3)=\operatorname{gof}[f(3)]$

$$
\begin{aligned}
& =\operatorname{gof}(21) \\
& =\mathrm{g}[\mathrm{f}(21)] \\
& =\mathrm{g}\left[2(21)^{2}+3\right] \\
& =\mathrm{g}[2(441)+3] \\
& =\mathrm{g}[882+3] \\
& =\mathrm{g}(885)=3(885)-2 \\
& =2655-2=2653
\end{aligned}
$$

\therefore go(fof)(3) $=2653$.
21. If $f: R \rightarrow R, g: R \rightarrow R$ are defined by
$f(x)=3 x-1, g(x)=x^{2}+1$, then find
(i) $\operatorname{fof}\left(x^{2}+1\right)$ (ii) fog(2), (iii) $\operatorname{gof}(2 a-3)$.

Sol. i) $\operatorname{fof}\left(\mathrm{x}^{2}+1\right)=\mathrm{f}\left[\mathrm{f}\left(\mathrm{x}^{2}+1\right)\right]$

$$
\begin{aligned}
& =\mathrm{f}\left[3\left(\mathrm{x}^{2}+1\right)-1\right] \\
& =\mathrm{f}\left[3 \mathrm{x}^{2}+3-1\right] \\
& =\mathrm{f}\left[3 \mathrm{x}^{2}+2\right] \\
& =3\left(3 \mathrm{x}^{2}+2\right)-1 \\
& =9 \mathrm{x}^{2}+6-1 \\
& =9 \mathrm{x}^{2}+5
\end{aligned}
$$

$$
\operatorname{fof}\left(x^{2}+1\right)=9 x^{2}+5
$$

ii) $\log (2) \quad=\mathrm{f}[\mathrm{g}(2)]$

$$
=f\left(2^{2}+1\right)
$$

$$
=f(5)
$$

$$
=3(5)-1
$$

$$
=15-1=14
$$

$$
\therefore \operatorname{fog}(2)=14
$$

iii) $($ gof $)(2 a-3)=g[f(2 a-3)]$

$$
\begin{aligned}
& =g[3(2 a-3)-1] \\
& =g[6 a-9-1] \\
& =g[6 a-10] \\
& =(6 a-10)^{2}+1 \\
& =36 a^{2}+100-120 a+1 \\
& =36 a^{2}-120 a+101
\end{aligned}
$$

$$
(\text { gof })(2 a-3)=36 a^{2}-120 a+101
$$

22. If $f(x)=\frac{x-1}{x+1}, x \neq \pm 1$, show that fof $^{-1}(x)=x$.

Sol. Given that $f(x)=\frac{x-1}{x+1}$

$$
\text { Let } \mathrm{y}=\mathrm{f}(\mathrm{x})
$$

$$
\Rightarrow y=\frac{x-1}{x+1} \Rightarrow x=\frac{1+y}{1-y}
$$

$$
\mathrm{f}^{-1}(\mathrm{y})=\frac{1+\mathrm{y}}{1-\mathrm{y}}
$$

$$
\therefore \mathrm{f}^{-1}(\mathrm{x})=\frac{1+\mathrm{x}}{1-\mathrm{x}}
$$

$$
\therefore \mathrm{fof}^{-1}(\mathrm{x})=\mathrm{f}\left[\mathrm{f}^{-1}(\mathrm{x})\right]
$$

$$
=\mathrm{f}\left[\frac{1+\mathrm{x}}{1-\mathrm{x}}\right]=\frac{\frac{1+\mathrm{x}}{1-\mathrm{x}}-1}{\frac{1+\mathrm{x}}{1-\mathrm{x}}+1}
$$

$$
=\frac{1+x-1+x}{1+x+1-x}=\frac{2 x}{2}=x
$$

$$
\therefore \mathrm{fof}^{-1}(\mathrm{x})=\mathrm{x}
$$

23. If $f: R \rightarrow R, g: R \rightarrow R$ defined by $f(x)=3 x-2, g(x)=x^{2}+1$ then find (i) $\operatorname{gof}^{-1}(2)$, (ii) gof(x-1).

Sol. i) Given that $f(x)=3 x-2$

$$
\begin{aligned}
& \text { Let } \mathrm{y}=\mathrm{f}(\mathrm{x}) \\
& \mathrm{y}=3 \mathrm{x}-2 \\
& \mathrm{x}=\frac{\mathrm{y}+2}{3} \\
& \therefore \mathrm{f}^{-1}(\mathrm{x})=\frac{\mathrm{x}+2}{3} \\
& \therefore \operatorname{gof}^{-1}(2)=\mathrm{g}\left[\mathrm{f}^{-1}(2)\right] \\
& \quad=\mathrm{g}\left(\frac{2+2}{3}\right)=\mathrm{g}\left(\frac{4}{3}\right) \\
& \quad=\left(\frac{4}{3}\right)^{2}+1=\frac{16}{9}+1=\frac{25}{9}
\end{aligned}
$$

ii) $\operatorname{gof}(x-1)=g[f(x-1)]$

$$
\begin{aligned}
& =g[3(x-1)-2] \\
& =g[3 x-3-2] \\
& =g[3 x-5] \\
& =(3 x-5)^{2}+1 \\
& =9 x^{2}+25-30 x+1 \\
& =9 x^{2}-3-x+26
\end{aligned}
$$

24. Let $f=\{(1, a),(2, c),(4, d),(3, b)\}$ and $g^{-1}=\{(2, a),(4, b),(1, c),(3, d)\}$, then show that $(\mathrm{gof})^{-1}=\mathbf{f}^{-1} \mathrm{og}^{-1}$.
Sol. Given that,
$\mathrm{f}=\{(1, \mathrm{a}),(2, \mathrm{c}),(4, \mathrm{~d}),(3, \mathrm{~b})\}$
$\Rightarrow \mathrm{f}^{-1}=\{(\mathrm{a}, 1),(\mathrm{c}, 2),(\mathrm{d}, 4),(\mathrm{b}, 3)\}$
$\mathrm{g}^{-1}=\{(2, \mathrm{a}),(4, \mathrm{~b}),(1, \mathrm{c}),(3, \mathrm{~d})\}$
$\Rightarrow \mathrm{g}=\{(\mathrm{a}, 2),(\mathrm{b}, 4),(\mathrm{c}, 1),(\mathrm{d}, 3)\}$
L.H.S. : gof $=\{(1,2),(2,1),(4,3),(3,4)\}$

$$
(\mathrm{gof})^{-1}=\{(2,1),(1,2),(3,4),(4,3)\}
$$

R.H.S. :

$$
\mathrm{f}^{-1} \mathrm{og}^{-1}=\{(2,1),(4,3),(1,2),(3,4)\}
$$

L.H.S. = R.H.S.
25. Let $f: \mathbf{R} \rightarrow \mathbf{R}, \mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$ are defined by
$f(x)=2 x-3, g(x)=x^{3}+5$ then find $(\mathbf{f o g})^{-1}(\mathbf{x})$.
Sol. Given that,

$$
\begin{aligned}
& f(x)=2 x-3 \text { and } g(x)=x^{3}+5 \\
& \mathrm{fog}(\mathrm{x})=\mathrm{f}[\mathrm{~g}(\mathrm{x})] \\
& =f\left(x^{3}+5\right) \\
& =2\left(x^{3}+5\right)-3 \\
& =2 \mathrm{x}^{3}+10-3 \\
& =2 x^{3}+7 \\
& \therefore f o g(x)=2 x^{3}+7 \\
& \text { Let } \quad y=f o g(x) \\
& y=2 x^{3}+7 \\
& x^{3}=\frac{y-7}{2} \\
& x=\sqrt[3]{\frac{y-7}{2}} \\
& \therefore(f \circ g)^{-1}(x)=\sqrt[3]{\frac{x-7}{2}} \\
& \therefore(\mathrm{fog})^{-1}(\mathrm{x})=\left(\frac{\mathrm{x}-7}{2}\right)^{1 / 3}
\end{aligned}
$$

26. If $f(x)=\frac{x+1}{x-1}(x \neq \pm 1)$ then find (fofof)(x) and (fofofof)(x).

Sol. Given that, $f(x)=\frac{x+1}{x-1}$
$($ fofof $)(x)=(f o f)[f(x)]$

$$
\begin{aligned}
& =\mathrm{fof}\left(\frac{\mathrm{x}+1}{\mathrm{x}-1}\right)=\mathrm{f}\left[\mathrm{f}\left(\frac{\mathrm{x}+1}{\mathrm{x}-1}\right)\right] \\
& =\mathrm{f}\left[\frac{\frac{\mathrm{x}+1}{\mathrm{x}-1}+1}{\frac{\mathrm{x}+1}{\mathrm{x}-1}-1}\right]=\mathrm{f}\left[\frac{\mathrm{x}+1+\mathrm{x}-1}{\mathrm{x}+1-\mathrm{x}+1}\right] \\
& =\mathrm{f}\left(\frac{2 \mathrm{x}}{2}\right)=\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}+1}{\mathrm{x}-1}
\end{aligned}
$$

$\therefore($ fofof $)(x)=\frac{x+1}{x-1}$
$($ fofofof $)(x)=f[($ fofof $)(x)]$

$$
\begin{aligned}
& =f\left(\frac{1+x}{1-x}\right) \\
& =\frac{\frac{x+1}{x-1}+1}{\frac{x+1}{x-1}-1}=\frac{x+1+x-1}{x+1-x+1}=\frac{2 x}{2}=x
\end{aligned}
$$

\therefore (fofofof) $(\mathrm{x})=\mathrm{x}$
27. If f and g are real valued functions defined by $f(x)=2 x-1$ and $g(x)=x^{2}$ then find
(i) $(3 f-2 g)(x)$
(ii) $(\mathbf{f g})(\mathbf{x})$
(iii) $\left(\frac{\sqrt{f}}{g}\right)(x)$
(iv) $(\mathbf{f}+\mathrm{g}+2)(\mathrm{x})$

Sol. Given that $f(x)=2 x-1, g(x)=x^{2}$
i) $3 f=3(2 x-1)=6 x-3$

$$
\begin{aligned}
& g(x)=x^{2} \Rightarrow 2 g
\end{aligned}=2 x^{2}, \begin{aligned}
\therefore(3 f-2 g)(x) & =3 f(x)-2 g(x) \\
& =6 x-3-2 x^{2} \\
& =-2 x^{2}+6 x-3 \\
& =-\left[2 x^{2}-6 x+3\right]
\end{aligned}
$$

ii) $(f g)(x)=f(x) g(x)=(2 x-1) x^{2}=2 x^{3}-x^{2}$
iii) $\left(\frac{\sqrt{f}}{g}\right)(x)=\frac{\sqrt{f(x)}}{g(x)}=\frac{\sqrt{2 x-1}}{x^{2}}$
iv) $(f+g+2)(x)=f(x)+g(x)+2$

$$
\begin{aligned}
& =2 x-1+x^{2}+2 \\
& =x^{2}+2 x+1 \\
& =x^{2}+x+x+1 \\
& =x(x+1)+1(x+1) \\
& =(x+1)(x+1)=(x+1)^{2}
\end{aligned}
$$

28. If $f=\{(1,2),(2,-3),(3,-1)\}$ then find (i) $2 f$, (ii) $2+f$, (iii) f^{2}, (iv) \sqrt{f}.

Sol. Given that
$\mathrm{f}=\{(1,2),(2,-3),(3,-1)\}$
i) $2 \mathrm{f}=\{(1,2 \times 2),(2,-3 \times 2),(3,-1 \times 2)\}$

$$
=\{(1,4),(2,-6),(3,-2)\}
$$

ii) $2+\mathrm{f}=\{(1,2+2),(2,-3+2),(3,-1+2)\}$
$=\{(1,4),(2,-1),(3,1)\}$
iii) $f^{2}=\left\{\left(1,2^{2}\right),\left(2,(-3)^{2}\right),\left(3,(-1)^{2}\right)\right\}$

$$
=\{(1,4),(2,9),(3,1)\}
$$

iv) $\sqrt{\mathrm{f}}=\{(1, \sqrt{2})\}$
29. Find the domains at the following real valued functions.
i) $f(x)=\sqrt{x^{2}-3 x+2}$
ii) $f(x)=\log \left(x^{2}-4 x+3\right)$
iii) $f(x)=\frac{\sqrt{2+x}+\sqrt{2-x}}{x}$
iv) $f(x)=\frac{1}{\sqrt[3]{x-2} \log _{(4-x)} 10}$
v) $f(x)=\sqrt{\frac{4-x^{2}}{[x]+2}}$
vi) $f(x)=\sqrt{\log _{0.3}\left(x-x^{2}\right)}$
vii) $f(x)=\frac{1}{x+|x|}$

Sol. i) $f(x)=\sqrt{x^{2}-3 x+2}$
$x^{2}-3 x+2 \geq 0$
$\Rightarrow(\mathrm{x}-1)(\mathrm{x}-2) \geq 0$
$\Rightarrow \mathrm{x} \leq 1$ or $\mathrm{x} \geq 2$
Since the coefficient of x^{2} is $+v e$
Domain of f is $(-\infty, 1] \cup[2, \infty)$
ii) $f(x)=\log \left(x^{2}-4 x+3\right)$
$x^{2}-4 x+3>0$
$(\mathrm{x}-1)(\mathrm{x}-3)>0$
$\mathrm{x}<1$ or $\mathrm{x}>3$
Since the coefficient of x^{2} is +ve
Domain of f is $R-[1,3]$
iii) $f(x)=\frac{\sqrt{2+x}+\sqrt{2-x}}{x}$

$$
\left.\Rightarrow \begin{array}{c|c}
2+x \geq 0 & 2-x \geq 0 \\
x \geq-2 & \Rightarrow 2 \geq x \neq 0 \\
\Rightarrow x \leq 2
\end{array} \right\rvert\,
$$

\therefore Domain of f is $[-2,2]-\{0\}$
iv) $f(x)=\frac{1}{\sqrt[3]{x-2} \log _{(4-x)} 10}$
$x-2 \neq 0 \Rightarrow x \neq 2$
$4-x>0 \& 4-x \neq 1 \Rightarrow 4-x \neq 1 \Rightarrow x \neq 3$
$\Rightarrow 4>x \Rightarrow x<4$
\therefore Domain of f is $(-\infty, 2) \cup(2,3) \cup(3,4)$
or
Domain of f is $(-\infty, 4)-\{2,3\}$
v) $f(x)=\sqrt{\frac{4-x^{2}}{[x]+2}}$

Case I :

$4-x^{2} \geq 0$
$(2+\mathrm{x})(2-\mathrm{x}) \geq 0$
$\Rightarrow \mathrm{x} \in[-2,2]$
Since the coefficient of x^{2} is $-v e$
Also
$[\mathrm{x}]+2>0$
$[x]>-2$
$\mathrm{x} \in[-1, \infty)$
From (1) and (2)
$\mathrm{x} \in[-1,2]$

Case II :

$4-x^{2} \leq 0$
$x^{2}-4 \leq 0$
$(x+2)(x-2) \geq 0$
$x \in(-\infty,-2] \cup[2, \infty) \ldots(3)$
Since the coefficient of x^{2} is +ve
Also $[\mathrm{x}]+2<0$
[x]<-2
$\mathrm{x} \in(-\infty,-2)$
From (3) and (4)
$\mathrm{x} \in(-\infty,-2)$
From case-I and case-II
Domain of f is $(-\infty,-2) \cup[-1,2]$
vi) $f(x)=\sqrt{\log _{0.3}\left(x-x^{2}\right)}$

$$
\begin{aligned}
& \log _{0.3}\left(\mathrm{x}-\mathrm{x}^{2}\right) \geq 0 \\
& \Rightarrow\left(\mathrm{x}-\mathrm{x}^{2}\right) \leq(0.3)^{0} \\
& \Rightarrow \mathrm{x}-\mathrm{x}^{2} \leq 1 \\
& \Rightarrow 0 \leq \mathrm{x}^{2}-\mathrm{x}+1 \\
& \Rightarrow \mathrm{x}^{2}-\mathrm{x}+1 \geq 0 \\
& \Rightarrow \mathrm{x}^{2}-\mathrm{x}+1>0, \forall \mathrm{x} \in \mathrm{R} \\
& \mathrm{x}-\mathrm{x}^{2}>0 \\
& \Rightarrow \mathrm{x}^{2}-\mathrm{x}<0 \\
& \Rightarrow \mathrm{x}(\mathrm{x}-1)<0 \\
& \Rightarrow 0<\mathrm{x}<1
\end{aligned}
$$

Since the coefficient of x^{2} is $+v e$
$\therefore \mathrm{x} \in(0,1)$
From (1) and (2)
Domain of f is $\mathrm{R} \cap(0,1)=(0,1)$
(or) Domain of f is $(0,1)$
vii) $f(x)=\frac{1}{x+|x|}$
$x+|x| \neq 0$
$x \neq-|x|$
It is not holds good when $x \in(-\infty, 0]$
\therefore Domain of f is $(0, \infty)=\mathrm{R}^{+}$.
30. Prove that the real valued function $f(x)=\frac{x}{e^{x}-1}-\frac{x}{2}+1$ is an even function on $\mathbf{R}-\{0\}$.

Sol. $f(x)=\frac{x}{e^{x}-1}-\frac{x}{2}+1$
Let $x \in R-\{0\}$
Consider

$$
\begin{align*}
f(x) & =\frac{-x}{e^{-x}-1}+\frac{x}{2}+1 \\
& =\frac{-x}{\frac{1}{e^{x}}-1}+\frac{x}{2}+1 \\
& =\frac{-\mathrm{xe}^{\mathrm{x}}}{1-\mathrm{e}^{\mathrm{x}}}+\frac{\mathrm{x}}{2}+1=\frac{-\mathrm{xe}^{\mathrm{x}}}{-\left(\mathrm{e}^{\mathrm{x}}-1\right)}+\frac{\mathrm{x}}{2}+1 \\
& =\frac{\mathrm{xe}^{\mathrm{x}}}{\mathrm{e}^{\mathrm{x}}-1}+\frac{\mathrm{x}}{2}+1 \tag{2}
\end{align*}
$$

Consider $\mathrm{f}(\mathrm{x})-\mathrm{f}(-\mathrm{x})$

$$
\left.\begin{array}{l}
\quad=\frac{x}{e^{x}-1}-\frac{x}{2}+1-\frac{x^{x}}{e^{x}-1}-\frac{x}{2}-1 \\
\quad=\frac{x-x e^{x}}{e^{x}-1}-\frac{2 x}{2} \\
\quad=\frac{x\left(e^{x}-1\right)}{\left(e^{x}-1\right)}-x \\
\quad=x-x=0 \\
f(x)-f(-x)=0 \\
\Rightarrow f(-x)=f(x)
\end{array}\right\}
$$

31. Find the domain and range of the following functions.
i) $\mathrm{f}(\mathrm{x})=\frac{\tan \pi[\mathrm{x}]}{1+\sin \pi[\mathrm{x}]+\left[\mathrm{x}^{2}\right]}$
ii) $f(x)=\frac{x}{2-3 x}$
iii) $f(x)=|x|+|1+x|$

Sol.i) $f(x)=\frac{\tan \pi[x]}{1+\sin \pi[x]+\left[x^{2}\right]}$
Domain of f is $\mathrm{R}(\because \tan \mathrm{n} \pi=0, \forall \mathrm{n} \in \mathrm{Z})$
Range of f is $\{0\}$
ii) $f(x)=\frac{x}{2-3 x}$
$2-3 x \neq 0$
$2 \neq 3 \mathrm{x}$
$\mathrm{x} \neq \frac{2}{3}$
Domain of f is $\mathrm{R}-\left\{\frac{2}{3}\right\}$

$$
\begin{aligned}
& \frac{x}{2-3 x}=y \\
& \Rightarrow x=y(2-3 x) \\
& \Rightarrow x=2 y-3 y x \\
& \Rightarrow x+3 y x=2 y \\
& \Rightarrow x(1+3 y)=2 y \\
& \Rightarrow x=\frac{2 y}{1+3 y} \\
& \Rightarrow 1+3 y \neq 0 \\
& \Rightarrow 3 y \neq-1 \\
& y \neq-\frac{1}{3}
\end{aligned}
$$

\therefore Range of f is $\mathrm{R}-\left\{-\frac{1}{3}\right\}$.
iii) $f(x)=|x|+|1+x|$

Domain of f is R
Range of f is $[1, \infty)$
32. Determine whether the function $\mathbf{f}: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=\left\{\begin{array}{l}x \text { if } x>2 \\ 5 x-2 \text { if } x \leq 2\end{array}\right.$ is an injection or a surjection or a bijection.
Sol. Since $3>2$, we have $f(3)=3$
Since $1<2$, we have $f(1)=5(1)-2=3$
$\therefore 1$ and 3 have same f image.
Hence f is not an injection.
Let $\mathrm{y} \in \mathrm{R}$ then $\mathrm{y}>2$ (or) $\mathrm{y} \leq 2$
If $y>2$ take $x=y \in R$ so that $f(x)=x=y$
If $y \leq 2$ take

$$
x=\frac{y+2}{5} \in R \text { and } x=\frac{y+2}{5}<1
$$

$\therefore f(x)=5 x-2=5\left(\frac{y+2}{5}\right)-2=y$
$\therefore \mathrm{f}$ is a surjection
Since f is not an injection, it is not a bijection.
33. If $f: R \rightarrow R, g: R \rightarrow R$ are defined by $f(x)=4 x-1$ and $g(x)=x^{2}+2$ then find
(i) $(\operatorname{gof})(x)$
(ii) $($ gof $)\left(\frac{a+1}{4}\right)$
(iii) $\mathbf{f o f}(\mathbf{x})(\mathbf{i v}) \mathbf{g o (f o f})(0)$

Sol. i) $(\mathrm{gof})(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x}))$

$$
\begin{aligned}
& =g(4 x-1) \\
& =(4 x-1)^{2}+2 \\
& =16 x^{2}+1-8 x+2 \\
& =16 x^{2}-8 x+3
\end{aligned}
$$

ii) (gof) $\left(\frac{a+1}{4}\right)=g\left[f\left(\frac{a+1}{4}\right)\right]$

$$
\begin{aligned}
& =g\left[4\left(\frac{a+1}{4}\right)-1\right] \\
& =g(a)=a^{2}+2
\end{aligned}
$$

iii) $\operatorname{fof}(\mathrm{x}) \quad=\mathrm{f}[\mathrm{f}(\mathrm{x})]$

$$
\begin{aligned}
& =f(4 x-1)=4[4 x-1]-1 \\
& =16 x-4-1 \\
& =16 x-5
\end{aligned}
$$

$$
\begin{aligned}
\text { iv) } g o(f o f)(0) & =g o(f o f) \\
& =g[16 \times 0-5] \\
& =g[-5] \\
& =(-5)^{2}+2 \\
& =25+2=27
\end{aligned}
$$

34. If $f: Q \rightarrow Q$ is defined by $f(x)=5 x+4$ for all $x \in Q$, show that f is a bijection and find f^{-1}.

Sol. Let $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{Q}, \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$
$\Rightarrow 5 \mathrm{x}_{1}+4=5 \mathrm{x}_{2}+4$
$\Rightarrow 5 \mathrm{x}_{1}=5 \mathrm{x}_{2}$
$\Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}$
$\therefore \mathrm{f}$ is an injection.
Let $y \in Q$, then $x=\frac{y-4}{5} \in Q$ and

$$
f(x)=f\left(\frac{y-4}{5}\right)=5\left(\frac{y-4}{5}\right)+4=y
$$

$\therefore \mathrm{f}$ is a surjection, f is a bijection.
$\therefore \mathrm{f}^{-1}: \mathrm{Q} \rightarrow \mathrm{Q}$ is a bijection.
We have fof $^{-1}(x)=1(x)$

$$
\begin{aligned}
& \mathrm{f}\left[\mathrm{f}^{-1}(\mathrm{x})\right]=\mathrm{x} \\
& 5 \mathrm{f}^{-1}(\mathrm{x})+4=\mathrm{x} \\
& \mathrm{f}^{-1}(\mathrm{x})=\frac{\mathrm{x}-4}{5} \text { for all } \mathrm{x} \in \mathrm{Q}
\end{aligned}
$$

35. Find the domains of the following real valued functions.
i) $f(x)=\frac{1}{\sqrt{|x|-x}}$
ii) $f(x)=\sqrt{|x|-x}$

Sol. i) $f(x)=\frac{1}{\sqrt{|x|-x}} \in R$
$\Rightarrow|x|-x>0$
$\Rightarrow|\mathrm{x}|>\mathrm{x}$
$\Rightarrow \mathrm{x} \in(-\infty, 0)$
\therefore Domain of f is $(-\infty, 0)$
ii) $f(x)=\sqrt{|x|-x}$
$\Rightarrow|x|-x \geq 0$, which is true $\forall x \in R$
\therefore Domain of f is R .
36. If $f=\{(4,5),(5,6),(6,-4)\}$ and $g=\{(4,-4),(6,5),(8,5)\}$ then find
(i) $\mathrm{f}+\mathrm{g}$
(ii) $f-g$
(iii) $2 \mathrm{f}+4 \mathrm{~g}$ (iv) $\mathrm{f}+4$
(v) $f g$ (vi) $\frac{f}{g}$
(vii) $|\mathbf{f}| \quad($ viii $) \sqrt{\mathrm{f}} \quad$ (ix) $\mathbf{f}^{2} \quad(\mathbf{x}) \mathbf{f}^{3}$.

Sol. Domain of $f=A=\{4,5,6\}$
Domain of $g=B=\{4,6,8\}$
Domain of $f \pm g=A \cap B=\{4,6\}$
i) $\mathrm{f}+\mathrm{g}=\{(4,5-4),(6,-4+5)]$

$$
=\{(4,1),(6,1)\}
$$

(ii) $\mathrm{f}-\mathrm{g}=\{(4,5+4),(6,-4-5)]$

$$
=\{(4,9),(6,-9)\}
$$

(iii) $2 \mathrm{f}=\{(4,2 \times 5),(5,6 \times 2),(6,-4 \times 2)\}$

$$
=\{(4,10),(5,12),(6,-8)\}
$$

$4 \mathrm{~g}=\{(4,-4 \times 4),(6,5 \times 4),(8,5 \times 4)\}$

$$
=\{(4,-16),(6,20),(8,20)\}
$$

Domain of $2 \mathrm{f}+4 \mathrm{~g}=\{4,6\}$
$\therefore 2 \mathrm{f}+4 \mathrm{~g}=\{(4,10,-16),(6,-8+20)\}$

$$
=\{(4,-6),(6,12)\}
$$

(iv) $\mathrm{f}+4=\{(4,5+4),(5,6+4),(6,-4+4)\}$

$$
=\{(4,9),(5,10),(6,0)\}
$$

(v) fg $=\{(4,(5 \times-4)),(6,-4 \times 5)\}$

$$
=\{(4,-20),(6,-20)\}
$$

(vi) $\frac{\mathrm{f}}{\mathrm{g}}=\left\{\left(4, \frac{-5}{4}\right),\left(6, \frac{-4}{5}\right)\right\}$
(vii) $|\mathrm{f}|=\{(4,|5|),(5,|6|),(6,|-4|)\}$
$=\{(4,5),(5,6),(6,4)\}$
(viii) $\sqrt{\mathrm{f}}=\{(4, \sqrt{5}),(5, \sqrt{6})\}$
(ix) $\mathrm{f}^{2}=\{(4,25),(5,36),(6,16)\}$
$(\mathrm{x}) \mathrm{f}^{3}=\{(4,125),(5,216),(6,-64)\}$
37. Find the domain of the following real valued functions.
i) $f(x)=\frac{1}{\sqrt{[x]^{2}-[x]-2}}$
ii) $\quad f(x)=\log (x-|x|)$
iii) $f(x)=\sqrt{\log _{10}\left(\frac{3-x}{x}\right)}$
iv) $\quad f(x)=\sqrt{x+2}+\frac{1}{\log (1-x)}$
v) $f(x)=\frac{\sqrt{3+x}+\sqrt{3-x}}{x}$

Sol. i) $f(x)=\frac{1}{\sqrt{[x]^{2}-[x]-2}} \in R$
$\Leftrightarrow[x]^{2}-[x]-2>0$
$\Rightarrow([x]+1)([x]-2)>0$
$\Rightarrow[\mathrm{x}]<-1$ (or) $[\mathrm{x}]>0$
But $[\mathrm{x}]<-1$
$\Rightarrow[x]=-2,-3,-4, \ldots \ldots$
$\Rightarrow \mathrm{x}<-1$
$[x]>2 \Rightarrow[x]=3,4, \ldots \ldots$
$\Rightarrow \mathrm{x} \geq 3$
\therefore Domain of $\mathrm{f}=(-\infty,-1) \cup[3, \infty)=\mathrm{R}-[-1,3)$
ii) $f(x)=\log (x-|x|) \in R$
$\Leftrightarrow x-[x]>0 \Leftrightarrow x>[x]$
$\Rightarrow \mathrm{x}$ is a non-integer $\quad \therefore$ Domain of f is $\mathrm{R}-\mathrm{Z}$.
iii) $f(x)=\sqrt{\log _{10}\left(\frac{3-x}{x}\right)} \in R$
$\log _{10}\left(\frac{3-x}{x}\right) \geq 0$ and $\frac{3-x}{x}>0$
$\Rightarrow \frac{3-x}{x} \geq 10^{0}=1$ and $3-x>0, x>0$
$\Rightarrow 3-\mathrm{x} \geq \mathrm{x}$ and $0<\mathrm{x}<3$
$\Rightarrow \mathrm{x} \leq \frac{3}{2}$ and $0<\mathrm{x}<3$
$\Rightarrow \mathrm{x} \in\left(-\infty, \frac{3}{2}\right] \cap(0,3)=\left(0, \frac{3}{2}\right]$
\therefore Domain of f is $\left(0, \frac{3}{2}\right]$.
iv) $f(x)=\sqrt{x+2}+\frac{1}{\log (1-x)} \in R$
$x+2 \geq 0$ and $1-x>0$ and $1-x \neq 1$
$\Rightarrow \mathrm{x} \geq-2$ and $1>\mathrm{x}$ and $\mathrm{x} \neq 0$
$\Rightarrow \mathrm{x} \in[-2, \infty) \cap(-\infty, 1)-\{0\}$
$\Rightarrow \mathrm{x} \in[-2,1)-\{0\}$
\therefore Domain of f is $[-2,1)-\{0\}$.
v) $f(x)=\frac{\sqrt{3+x}+\sqrt{3-x}}{x} \in R$
$\Leftrightarrow 3+x \geq 0,3-x \geq 0, x \neq 0$
$\Rightarrow-3 \leq x \leq 3, x \neq 0$
$\Rightarrow \mathrm{x} \in[-3,3]-\{0\}$
\therefore Domain of f is $[-3,3]-\{0\}$.

