CHEMICAL EQUILIBRIUM

Topic-2

Relationship between Kc and Kp, Le-Chatelier's principle, its application and numericals.

LONG ANSWER QUESTIONS

1. Derive relationship between Kc and Kp ?

Ans:

RELATION BETWEEN K_{P} AND K ${ }_{C}$

For a general equation,

$$
\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}
$$

Where, a, b, c and d are coefficients of the reacting substance

$$
\mathrm{K}_{\mathrm{p}}=\left(\mathrm{P}_{\mathrm{C}}\right)^{\mathrm{c}}\left(\mathrm{O}_{\mathrm{D}}\right)^{\mathrm{d}} /\left(\mathrm{P}_{\mathrm{A}}\right)^{\mathrm{a}}\left(\mathrm{P}_{\mathrm{B}}\right)^{\mathrm{b}}
$$

From gas equation

$$
\mathrm{PV}=\mathrm{nRT} \quad \Rightarrow \mathrm{P}=\mathrm{n} / \mathrm{VRT}
$$

So,

$$
\mathrm{P}_{\mathrm{A}}=[\mathrm{A}] R \mathrm{R}^{\prime} \mathrm{P}_{\mathrm{B}}=[\mathrm{B}] \mathrm{RT}
$$

$$
\mathrm{P}_{\mathrm{C}}=[\mathrm{C}] \mathrm{RT} ; \mathrm{P}_{\mathrm{D}}=[\mathrm{D}] \mathrm{RT}
$$

Hence,

$$
\mathrm{K}_{\mathrm{p}}=([\mathrm{C}] \mathrm{RT})^{\mathrm{c}} \cdot([\mathrm{D}] \mathrm{RT})^{\mathrm{d}} /([\mathrm{A}] \mathrm{RT})^{\mathrm{a}} /([\mathrm{B}] \mathrm{RT})^{\mathrm{b}}
$$

$$
\text { or, } \mathrm{K}_{\mathrm{p}}=[\mathrm{C}]^{\mathrm{d}}[\mathrm{D}]^{\mathrm{d}} /[\mathrm{A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}} \times(\mathrm{RT})^{[(\mathrm{c}+\mathrm{d})-(\mathrm{a}+\mathrm{b})]}
$$

Where $\Delta \mathrm{n}_{\mathrm{g}}=\{(\mathrm{c}+\mathrm{d})-(\mathrm{a}+\mathrm{b})\}=$ change in the numbers of gaseous moles.
Hence,

$$
\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c} \cdot} \cdot(\mathrm{RT})^{\Delta \mathrm{n}}{ }_{\mathrm{g}}
$$

$$
\text { When } \quad \Delta \mathrm{n}=0 ; \mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}
$$

$$
\begin{aligned}
& \Delta \mathrm{n}>0 ; \mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{c}} \\
& \Delta \mathrm{n}<0 ; \quad \mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{c}}
\end{aligned}
$$

Note: Similarly we can find equilibrium constant $\left(\mathrm{K}_{\mathrm{x}}\right)$ in terms of mole fraction and can find out its relation with K_{p} and K_{c}.
2. At $27^{\circ} \mathbf{C} K_{p}$ value for reaction is 0.1 atm , calculate its K_{c} value. ?

Solution: $\quad K_{P}=K_{c}(R T)^{D n}$

$$
\Delta \mathrm{n}=1
$$

$$
\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{P}} / \mathrm{RT}=0.1 / 0.82 \times 300=4 \times 10^{-3}
$$

Solid $\mathrm{NH}_{4} \mathrm{I}$ dissociates according to the reaction at 400 K
$\mathbf{N H}_{4} \mathbf{I}(\mathbf{s}) \rightleftharpoons \mathbf{N H}_{\mathbf{3}}(\mathrm{g})+\mathbf{H I}(\mathrm{g}) ; \mathrm{K}_{\mathrm{p}}=\mathbf{1 6} \mathbf{~ a t m}$. In presence of catalyst HI dissociates in H_{2} and I_{2} as $2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$. If partial pressure of H_{2} at this temp is 1 atm in the container when both the equilibrium exist simultaneously, calculate K_{p} value of second equilibrium (for the dissociation of HI).

Solution: $\quad \mathrm{NH}_{4} \mathrm{I}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HI}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{P} 1}=16$
$2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{2}+\mathrm{I}_{2}$
$\mathrm{P}-\mathrm{x} \quad \mathrm{x} / 2 . \mathrm{x} / 2 \quad \mathrm{~K}_{\mathrm{P} 2}=$?
Here $\mathrm{x} / 2=1 \mathrm{~atm}$
$\mathrm{x}=2 \mathrm{~atm}$
$\mathrm{P}(\mathrm{P}-2)=16$
$\mathrm{P}=5.1$
3. A vessel at 1000 K contains CO_{2} with a pressure of 0.5 atm . Some of the $\mathbf{C O}_{2}$ is converted into CO on addition of graphite. What is the value of Kp if the total pressure at equilibrium is 0.8 atm ?

Solution:

$2 n$
or, 0.5-n

$$
0.5+n=0.8
$$

$$
\mathrm{n}=0.3
$$

$$
\mathrm{K}_{\mathrm{p}}=(2 \times 0.3)^{2} /(0.5-0.3)=1.8 \mathrm{~atm}
$$

4. Given that the equilibrium constant for the reaction, $\mathbf{H}_{2(\mathrm{~g})}+\mathbf{I}_{2(\mathrm{~g})} \rightleftharpoons \mathbf{2 H I}(\mathrm{g})$ is $\mathbf{5 0}$ at 700 K . Calculate the equilibrium constant for the reaction?

$$
\mathrm{HI}_{(\mathrm{g})} \rightleftharpoons 1 / 2 \mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{l}_{2(\mathrm{~g})}
$$

Solution: We have $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}$

$$
\mathrm{K}_{\mathrm{c}}=[\mathrm{Hl}]^{2} /\left[\mathrm{H}_{2}\right]\left[\mathrm{l}_{2}\right]=50
$$

The new equilibria is

5. One mole of \mathbf{N}_{2} is mixed with $\mathbf{3}$ moles of \mathbf{H}_{2} in a 4 litre container. If $\mathbf{2 5 \%}$ of $\mathbf{N}_{\mathbf{2}}$ is converted into NH_{3} by the following reaction
$\mathbf{N}_{2(\mathrm{~g})}+3 \mathbf{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$. Calculate K_{c} and K_{p} of the reaction.
(Temperature $=227^{\circ} \mathrm{C}$ and $\mathrm{R}=\mathbf{0 . 0 8 2 3 1}$).

Solution: \quad We have $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$
Percentage N_{2} reacted, 25%

$$
x=0.25
$$

Now, $(a-x)=1-0.25=0.75$

$$
b-3 x=3-0.75=2.25
$$

$$
\begin{aligned}
& \therefore \frac{(a-x)}{V}=\frac{0.75}{4}=0.1875 \\
& \left(\frac{b-3 x}{V}\right)=\frac{2.25}{4}=0.5625 \\
& \left(\frac{2 x}{V}\right)=\frac{0.50}{4}=0.125 \\
& \therefore \mathrm{~K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=\frac{(0.125)^{2}}{(0.1875)(0.5625)^{3}} \\
& =1.48 \times 10^{-5} \mathrm{~L}^{2} \mathrm{~mol} l^{-2} \\
& \text { Now, } \mathrm{K}_{\mathrm{p}}=\mathrm{Kc}^{2} \cdot(\mathrm{RT})^{\Delta \mathrm{n}}=1.48 \times 10^{-5} \times[0.0821] \times(227+273)^{-2} \\
& 1.48 \times 10^{-5} /\{0.082 \times(500)\}^{2} \\
& =8.78 \times 10^{-9}
\end{aligned}
$$

6. Explain Lechatelier principle with suitable examples?

Ans:
Lechattelier's principle and its application to industrial processes;
The effect of change of pressure, concentration and temperature on equilibrium was studied by Henry Lewis Lechatterlier in 1885 and F. Brawn. So this is called Lechattelier- Brawn Principle or simply Lechattelier's principle.

If a system at equilibrium is subjected to a stress, the system shifts the equilibrium in such a way to reduce or nullify the stress.

Effect of concentration: Increase in concentration of reactants or decrease in concentration of products favours the shift of equilibrium towards products side and rate of forward reaction is increased.

Increase in the concentration of the products or decrease in the concentration of reactants favours the shift of equilibrium towards the reactant side and rate of backward reaction is increased.

- Effect of pressure :

Pressure has no effect on equilibrium if Δv or $\Delta n=0,\left(n_{p}=n_{r}\right)$.
$\mathrm{Eg}: \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{HI}_{(\mathrm{g})}$
Pressure has effect on equilibrium if $\Delta \mathrm{v} \neq 0$ or $\Delta \mathrm{n} \neq 0$, $\left(\mathrm{n}_{\mathrm{p}} \neq \mathrm{n}_{\mathrm{r}}\right)$. When pressure increases, equilibrium shifts in a direction of decrease of volume or towards less mole number and vice vessa.
Eg: $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
When pressure increases, equilibrium shifts towards right and forward reaction rate increases.
Pressure does not show any marked effect on equilibrium reactions taking place in the solution phase or in the solid phase.
Effect of temperature: increase of temperature of the equilibrium system favours endothermic reactions, and decrease of temperature of the equilibrium system favours exothermic reactions.

- Effect of Catalyst: Catalyst has no net effect on equilibrium. It helps the system to attain equilibrium at a faster rate by increasing the rate of forward as well as backward reaction to the same extent.
Eg:(1) Synthesis of ammonia by Haber's process:
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$, heat $\mathrm{H}=-92.0 \mathrm{~K} . \mathrm{J}$
Favourable conditions for high yield of NH_{3} :
High pressure: 200atm, Catalyst: Fe as catalyst
Low temperature: 773 K , Promoter: small amount of molybdenum or $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{K}_{2} \mathrm{O}$.
(2) Manufacture of $\mathrm{H}_{2} \mathrm{SO}_{4}$ by the contact process.
$2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}+$ Heat; $\quad \mathrm{H}=-189 \mathrm{~K} . \mathrm{j}$

Favourable conditions for higher yield of SO_{3}.

I) High pressure : $1.5-1.7 \mathrm{~atm}$.
ii) Low temperature: 673 k
iii)Catalyst $\quad: \mathrm{V}_{2} \mathrm{O}_{5}$ or platinised asbestos
$\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g} \rightleftharpoons} \rightleftharpoons 2 \mathrm{NO}_{(\mathrm{g})}$ - heat
i) High temperature
ii) No effect of pressure

Melting of ice:

$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}+$ heat $\rightleftharpoons \mathrm{H}_{2} \mathrm{O}$
I) high temperature ii) high pressure

7. Explain the affect of temperature and Concentration on equilibrium?

Ans:

Effect of Concentration

Let us have a general reaction,

$$
\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}
$$

at a given temperature, the equilibrium constant,

$$
\mathrm{Kc}=[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}} /[\mathrm{A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}
$$

again if α, β, γ and δ are the number of mole of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are at equilibrium then, $\mathrm{K}_{\mathrm{c}}=[\gamma]^{\mathrm{c}}[\delta]^{\mathrm{d}} /[\alpha]^{\mathrm{a}}[\beta]^{\mathrm{b}}$
If any of product will be added, to keep the K_{c} constant, concentration of reactants will increase i.e. the reaction will move in reverse direction. Similarly if any change or disturbance in reactant side will be done, change in product's concentration will take place to minimise the effect.

Temperature Effect

The effect of change in temperature on equilibrium cannot be immediately seen because on changing temperature the equilibrium constant itself changes. So first we must find out as to how the equilibrium constant changes with temperature.

For the forward reaction, according to the Arrhenius equation,
$\mathrm{K}_{\mathrm{r}}=\mathrm{A}_{\mathrm{f}} \mathrm{e}^{-\mathrm{e} \alpha / R T}$
And for the reverse reaction,

$$
K_{p}=\frac{\left[p_{(\text {NOB } 1)}\right]^{2}}{\left[p_{(W)}\right]^{2}\left[p_{\left(B_{2}\right)}\right]}=\frac{\left(7.68 \times 10^{-2}\right)^{2}}{\left(5.26 \times 10^{-2}\right)^{2}\left(1.59 \times 10^{-2}\right)}=134 \mathrm{~atm}^{-1}
$$

It can be seen that

Reaction Coordinate

$\ln \frac{K_{T_{2}}}{K_{T}}=\frac{-\Delta H}{R}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]$ or $\quad \ln \frac{K_{T_{2}}}{K_{T}}=\frac{\Delta H}{R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$

From the equation,
$\log \mathrm{K}_{2} / \mathrm{K}_{1}=\Delta \mathrm{H}^{\mathrm{o}} / 2.303 \mathrm{R}\left(1 / \mathrm{T}_{1}-1 / \mathrm{T}_{2}\right)$ it is clear
that
(a) If ΔH^{0} is +ve (endothermic), an increase in temperature $\left(\mathrm{T}_{2}>\mathrm{T}_{1}\right)$ will make $\mathrm{K}_{2}>\mathrm{K}_{1}$, i.e., the reaction goes more towards the forward direction and vice-versa.
(b) If ΔH^{0} is -ve (exothermic), an increase in temperature $\left(T_{2}>T_{1}\right)$, will make $K_{2}<K_{1}$ i.e., the reaction goes in the reverse direction.
(i) Increase in temperature will shift the reaction towards left in case of exothermic reactions and right in endothermic reactions.
(ii) Increase of pressure (decrease in volume) will shift the reaction to the side having fewer moles of the gas; while decreases of pressure (increase in volume) will shift the reaction to the side having more moles of the gas.
(iii) If no gases are involved in the reaction higher pressure favours the reaction to shift towards higher density solid or liquid.

NUMERICALS

1. At $444^{\circ} \mathrm{C}, 15 \mathrm{~g}$ mole of hydrogen is mixed with 5.2 g mole of \mathbf{I}_{2} vapour. When equilibrium was established, 10 g mole of HI was formed. Calculate the equilibrium constant for the reaction?

Sol. $\quad \mathrm{H} 2(\mathrm{~g})+12(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Hl}$

$$
\begin{array}{lll}
a & b & 0 \\
a-x & b-x & 2 x \\
K_{E} & =\frac{[H \|]^{2}}{\left[H_{2}\right]\left[l_{2}\right]}=\frac{\left(\frac{2 x}{V}\right)^{2}}{\frac{(a-x)}{V} \times \frac{(b-x)}{V}}
\end{array}
$$

So,

$$
=4 \mathrm{x}^{2} /(\mathrm{a}-\mathrm{x})(\mathrm{b}-\mathrm{x})=4 \times 5^{2} / 10 \times 0.2=50
$$

2. The degree of dissociation is 0.4 at 400 K and 1 atm for the gaseous reaction

$$
\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}
$$

Assuming ideal behaviour of all the gases, calculate the density of equilibrium mixture at 400 K and 1 atm pressure.
(Atomic mass of $\mathrm{P}=31$ and $\mathrm{Cl}=35.5$)

Total no. of moles after dissociation $=0.6+0.4+0.4$

Now, $\mathrm{V}=\mathrm{nRT} / \mathrm{P}=1.4 \times 0.082 \times 400 / 1=45.92$ litres
So, density $=$ Molecular weight $/$ Volume $=208.5 / 45.92=4.54 /$ litre
3. When 3.06 g of solid $\mathrm{NH}_{4} \mathrm{HS}$ is introduced into a 2 litre evacuated flask at $27^{\circ} \mathrm{C}$, 30% of the solid decomposed into gaseous ammonia and hydrogen sulphide?
(i) Calculate K_{c} for reaction at $27^{\circ} \mathrm{C}$.
(ii) What would happen to the equilibrium when more solid $\mathrm{NH}_{4} \mathrm{HS}$ is introduced into the flask?

Sol. \quad Moles of $\mathrm{NH}_{4} \mathrm{HS}$ introduced into flask $=3.06 / 51=0.08$

$$
\mathrm{NH}_{4} \mathrm{HS}(\mathrm{~s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
$$

$$
0.06(1-x) \quad 0.06 x \quad 0.06 x
$$

$$
\text { as } \mathrm{x}=30 \%, \text { so, } \mathrm{x}=0.3
$$

So, $0.06 \times 0.7 \quad 0.06^{\prime} 0.30 \quad 0.6 \times 0.3$
So, $\mathrm{Kc}=\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{~S}\right]$
$0.018 \times 0.018=3.24 \times 10^{-2}$
Addition of $\mathrm{NH}_{4} \mathrm{HS}_{(\mathrm{s})}$ does not change position of equilibrium.
4. Determine K_{c} for the reaction $1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})+1 / 2 \mathrm{Br}_{2}(\mathrm{~g}) \longrightarrow \mathrm{NOBr}(\mathrm{g})$ from the following information (at $\mathbf{2 9 8}^{\mathbf{0}} \mathrm{K}$)?

$$
\mathrm{K}_{\mathrm{c}}=2.4 \times 10^{30} \text { for } 2 \mathrm{NO}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) ;
$$

$$
\mathrm{K}_{\mathrm{c}}^{\prime}=1.4 \text { for } \mathrm{NO}(\mathrm{~g})+1 / 2 \mathrm{Br}_{2}(\mathrm{~g}) \longrightarrow \operatorname{NOBr}(\mathrm{g})
$$

Sol.

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{~g})
$$

$$
\mathrm{K}_{\mathrm{c}}^{\prime}=1 / \mathrm{K}_{\mathrm{c}}=1 / 2.4 \times 10^{30}
$$

(i) $1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \mathrm{NO}(\mathrm{g})$

$$
K_{c}^{\prime \prime}=\sqrt{K_{E}^{\prime \prime}}=\sqrt{\frac{1}{2.4} \times 10^{-30}}=0.6455 \times 10^{-15}
$$

(ii) $\mathrm{NO}(\mathrm{g})+1 / 2 \mathrm{Br}_{2}(\mathrm{~g}) \mathrm{NOBr}(\mathrm{g})=1.4$.
(i) + (ii) gives the net reaction:

$$
\begin{aligned}
& 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})+1 / 2 \mathrm{Br}_{2}(\mathrm{~g}) \square \mathrm{NOBr}(\mathrm{~g}) \\
& \mathrm{K}=\frac{[\mathrm{NO}]}{\left[\mathrm{N}_{2}\right]^{\frac{1}{2}}\left[\mathrm{O}_{2}\right]^{\frac{1}{2}}} \times \frac{[\mathrm{NOBr}]}{[\mathrm{NO}]^{[}\left[\mathrm{Br}_{2}\right]^{\frac{1}{2}}}=\frac{[\mathrm{NOBr}]}{\left[\mathrm{N}_{2}\right]^{\frac{1}{2}}\left[\mathrm{O}_{2}\right]^{\frac{1}{2}}\left[\mathrm{Br}_{2}\right]^{\frac{1}{2}}} \\
&= \mathrm{K}_{\mathrm{c}}^{\prime \prime} \times \mathrm{K}_{\mathrm{c}}^{\prime \prime}=0.6455 \times 10^{-15} \times 1.4=9.037 \times 10^{-16}
\end{aligned}
$$

5. The heat of reaction at constant volume for an endothermic reaction in equilibrium is $\mathbf{1 2 0 0}$ cal more than at constant pressure at $\mathbf{3 0 0 K}$. Calculate the ratio of equilibrium constant K_{p} and K_{c}.

Sol. Given that $\Delta \mathrm{E}-\Delta \mathrm{H}=1200 \mathrm{cal}$
Also we have
$\mathrm{nRT}=-1200$
or $\Delta \mathrm{n}=-1200 / 2 \times 300=-2\left(\mathrm{R}=2 \mathrm{calK}^{-1} \mathrm{~mol}^{-1}\right)$
Now, $K_{p}=K_{c}(R T)^{\Delta n}$
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(0.0281 \times 300)=1.648 \times 10^{-3}$

6. The value of Kp , if the value of Kc is 2×10^{-3} for $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HI}(\mathrm{g})$ at $27^{0} \mathrm{c}$?

Sol: $\mathrm{Kp}=\mathrm{Kc}[\mathrm{RT}]^{\Delta \mathrm{n}}$

