MATHEMATICS PAPER IB.- MAY 2010.

## COORDINATE GEOMETRY (2D\&3D \& CALCULUS.

Note: This question paper consists of three sections A,B and C.

## SECTION A

## VERY SHORT ANSWER TYPE QUESTIONS.

$10 \times 2=20$

## Noe : Attempt all questions. Each question carries 2 marks.

1. Find the equation of the straight line passing through $(-4,5)$ and cutting off equal nonzero intercepts on the coordinate axes.
2. Transform the equation $\mathrm{x}+\mathrm{y}+1=0$ into normal form.
3. Find the ratio in which YZ - plane divides the line joining $\mathrm{A}(2,4,5)$ and $\mathrm{B}(3,5,-4)$. Also find the point of intersection.
4. Find the equations of the plane passing through the point $(1,1,1)$ and parallel to the plane $x+2 y+3 z-7=0$
5. Find $\lim _{x \rightarrow 0}\left(\frac{\sqrt{1+x}-1}{x}\right)$
6. Find $\lim _{x \rightarrow \infty} \frac{8|x|+3 x}{3|x|-2 x}$
7. Show that the function $f(x)=\left\{\begin{array}{ll}\frac{\sin 2 x}{x} & \text { if } x \neq 0 \\ \text { if } x=0\end{array}\right.$ continuous at 0 .
8. If $\mathrm{f}(x)=x^{2} 2^{x} \log x$, find $\mathrm{f}^{1}(x)$
9. Find $\Delta \mathrm{y}$ and dy for the function $\mathrm{y}=\log \mathrm{x}$ when $\mathrm{x}=3$ and $\Delta \mathrm{x}=0.003$.
10. Find the equation of the normal to the curve $y=5 x^{4}$ at the point ( 1,5 )

## SECTION B

## SHORT ANSWER TYPE QUESTIONS.

$$
5 \times 4=20
$$

Note : Answer any FIVE questions. Each question carries 4 marks.
11. The ends of the hypotenuse of a right angled triangle are $(0,6)$ and $(6,0)$. Find the equation of locus of its third vertex.
12. When the axes are rotated through an angle $45^{\circ}$, the transformed equation of a curve is $17 x^{2}-16 x y+17 y^{2}=225$. Find the original equation of the curve.
13. If $3 a+2 b+4 c=0$, then show that the equation $a x+b y+c=0$ represents a family of concurrent straight lines and find the point of concurrency.
14. Find the derivatives of the following functions $f(x)=\sin 2 x$ from the first principles.
15. If $y=a x^{n+1}+b x^{-n}$ then Prove that $x^{2} y=n(n+1) y$.
16. The radius of a circular plate is increasing in length at $0.01 \mathrm{~cm} / \mathrm{sec}$. What is the rate at which the area is increasing, when the radius is 12 cm .
17. Show that for the function $f=\log \left(x^{2}+y^{2}\right), f_{x x}+f_{y y}=0$

## SECTION C

## LONG ANSWER TYPE QUESTIONS. <br> $$
5 \times 7=35
$$

Note: Answer any Five of the following. Each question carries 7 marks.
18. Find the circumcentre of the triangle whose sides are $x+y=0,2 x+y+5=0$ and $x-y=2$.
19. Show that the area of the triangle formed by the lines $a x^{2}+2 h x y+b y^{2}=0$ and $1 x+m y+n=0$ is $\frac{n^{2} \sqrt{h^{2}-a b}}{\left|a m^{2}-2 h l m+b l^{2}\right|}$ sq. units.
20. Find the values of $k$, if the lines joining the origin to the points of intersection of the curve $2 x^{2}-2 x y+3 y^{2}+2 x-y-1=0$ and the line $\mathrm{x}+2 \mathrm{y}=\mathrm{k}$ are mutually perpendicular.
21. show that the angle between the lines whose direction cosines are given by the equations $31+\mathrm{m}+$ $5 \mathrm{n}=0$ and $6 \mathrm{mn}-2 \mathrm{nl}+5 \mathrm{~lm}=0$ is $\cos ^{-1}\left(\frac{1}{6}\right)$.
22. Find the derivative $\frac{d y}{d x}$ of the function $y=\frac{(1-2 x)^{\frac{2}{3}}(1+3 x)^{\frac{-3}{4}}}{(1-6 x)^{\frac{5}{6}}(1+7 x)^{\frac{-6}{7}}}$
23. If the tangent at any point on the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ intersects the coordinate axes in A and B , then show that the length AB is a constant.
24. Show that when the curved surface of right circular cylinder inscribed in a sphere of radius R is maximum, then the height of the cylinder is $\sqrt{2} R$.

