MATHEMATICS PAPER IB.- MARCH 2010.

COORDINATE GEOMETRY (2D \&3D) AND CALCULUS.

SECTION A

VERY SHORT ANSWER TYPE QUESTIONS.

$10 \times 2=20$
Noe : Attempt all questions. Each question carries 2 marks.

1. Find the condition for the points $(a, 0),(h, k)$ and $(0, b)$ where $\mathrm{ab} \neq 0$ to be collinear.
2. Find k, if the straight lines $y-3 k x+4=0, \quad(2 k-1) x-(8 k-1) y-6=0$ are perpendicular.
3. Find the ratio in which the point $\mathrm{C}(6,-17,-4)$ divides the line segment joining the points $\mathrm{A}(2,3,4)$ and $B(3,-2,2)$.
4. Find the equations of the plane whose intercepts on $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes are respectively 1,2,4.
5. Compute ${ }_{x \rightarrow 0}^{\mathrm{lt}} \frac{1-\cos 2 \mathrm{mx}}{\sin ^{2} \mathrm{nx}}(\mathrm{m}, \mathrm{n} \in \mathrm{z})=2\left(\frac{\mathrm{~m}}{\mathrm{n}}\right)^{2}$
6. Compute $\lim _{\mathrm{x} \rightarrow \infty}\left(\sqrt{\mathrm{x}^{2}+1}-\mathrm{x}\right)$
7. Find the value of ' a ' so that $f(x)=\left\{\begin{array}{l}a x+3 \text { if } x<3 \\ 3-x+2 x^{2} \text { if } x \geq 3\end{array}\right.$
8. Find the derivative of $\log \left(\sin ^{-1} \mathrm{e}^{\mathrm{x}}\right)$
9. if $\mathrm{y}=\mathrm{e}^{\mathrm{x}}$, when $\mathrm{x}=0$ and $\delta x=0.1$ then find $\Delta \mathrm{y}$ and $\Delta \mathrm{x}$.
10. Show that at any point $\mathrm{p}(\mathrm{x}, \mathrm{y})$ on the curve $y=b e^{x / a}$, the length of subtangent is a constant.

SECTION B

SHORT ANSWER TYPE QUESTIONS.

5X4 $=20$
Note : Answer any FIVE questions. Each question carries 4 marks.
11. Find the equation of locus of a point, the sum of whose distances from $(0,2)$ and $(0,-2)$ is 6 units.
12. When the origin is shifted to the point $(2,3)$, the transformed equation of a curve is $x^{2}+3 x y-2 y^{2}+17 x-7 y-11=0$. Find the original equation of the curve.
13. find the equation of the line perpendicular to the line $3 x+4 y+6=0$ and making an intercept -4 on the X -axis.
14. find the derivative of $x \sin x$ from the first principle.
15. If $\mathrm{x}=3 \cos \mathrm{t}-2 \cos ^{3} \mathrm{t}, \mathrm{y}=3 \sin \mathrm{t}-2 \sin ^{3} \mathrm{t}$ then find $\frac{\mathrm{dy}}{\mathrm{dx}}$.
16. Show that the curves $4 x^{2}+8 y^{2}=3$ and $6 x^{2}-5 x y+2 y=0$ touch each other at $p\left(\frac{1}{2}, \frac{1}{2}\right)$
17. If $u=\operatorname{Sin}^{-1}(\sqrt{x}+\sqrt{y})$, then $x u_{x}+y u_{y}=\frac{1}{2} \tan \mathrm{u}$

SECTION C

LONG ANSWER TYPE QUESTIONS.

$$
5 \times 7=35
$$

Note: Answer any Five of the following. Each question carries 7 marks.
18. Find the orthocentre of the triangle formed by the lines $x+2 y=0,4 x+3 y-5=0$ and $3 x+y=0$.
19. If $S \equiv a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of parallel lines then prove that $\boldsymbol{h}^{\mathbf{2}}=\boldsymbol{a b}$ and $\boldsymbol{b g}^{\mathbf{2}}=\boldsymbol{a} \boldsymbol{f}^{\mathbf{2}}$. Also the distance between the two parallel
lines is $2 \sqrt{\frac{g^{2}-a c}{a(a+b)}}$.
20. If the staraight lines joining the origin to the points of intersection of the curve $3 x^{2}-x y+3 y^{2}+2 x-3 y+4=0$ and the line $2 x+3 y=k$ are perpendicular, prove that $6 k^{2}-5 k+52=0$
21. Find the angle between the lines whose direction cosines are given by the equations $31+m+5 n=0$ and $6 m n-2 n l+51 m=0$
22. If $y=\operatorname{Tan}^{-1}\left[\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right]$ for $0<|x|<1$ find $\frac{d y}{d x}$.
23. If the tangent at any point P on the curve $x^{m} y^{n}=a^{m+n}(m n \neq 0)$ meets the coordinate axes in A, B, then show that AP : BP is a constant.
24. Find the rectangle of maximum perimeter that can be inscribed in a circle

