www.sakshieducation.com

coming out of the fountain is v, the total area around the fountain that gets wet is

1) $\frac{\pi}{2} \frac{v^{4}}{g^{2}}$
2) $\pi \frac{v^{2}}{g^{2}}$
3) $\pi \frac{v^{2}}{g}$
4) $\pi \frac{v^{4}}{g^{2}}$

Sol: $\mathrm{R}_{\text {max }}=\frac{\mathrm{u}^{2}}{\mathrm{~g}} \Rightarrow$ and $\mathrm{A}=\pi \mathrm{R}_{\text {max }}^{2}=\frac{\pi \mathrm{v}^{4}}{\mathrm{~g}^{2}}$

Ans:4

66. Two particles are executing simple harmonic motion of the same amplitude A and frequency ω along the x-axis. Their mean position is separated by distance $x_{0}\left(x_{0}>A\right)$. If the maximum separation between them is $\left(\mathrm{X}_{0}+\mathrm{A}\right)$, the phase difference between their motion is
$\begin{array}{ll}\text { 1) } \pi / 4 & \text { 2) } \pi / 6\end{array}$
3) $\pi / 2$
4) $\pi / 3$

Ans: 3
67. This question has Statement-1 and Statement2. Of the four choices given after the statements, choose the one that best describes the two statements.
Statement-1
A metallic surface is irradiated by a monochromatic light of frequency $v>v_{0}$ (the threshold frequency). The maximum kinetic energy and the stopping potential are $\mathrm{K}_{\text {max }}$ and V_{0} respectively. If the frequency incident on the surface is doubled, both the $K_{\text {max }}$ and V_{0} are also doubled.

Statement-2

The maximum kinetic energy and the stopping potential of photoelectrons emitted from a surface are linearly dependent on the frequency of incident light

1) Statement- 1 is true, Statement- 2 is true, Statement-2 is not the cor-rect explanation of Statement-1.
2) Statement- 1 is false, Statement- 2 is true.
3) Statement- 1 is true, Statement- 2 is false
4) Statement-1 is true, Statement-2 is true, Statement-2 is the correct explanation of Statement-1.
Sol: $v>v_{0}$
$h v=\mathrm{k}_{\text {max }}+\phi$
$2 \mathrm{hv}=\mathrm{k}^{1}{ }_{\text {max }}+\phi \Rightarrow \mathrm{k}^{1}{ }_{\text {max }}>2 \mathrm{k}_{\text {max }}$
$k_{\text {max }}=e_{0}$
Statements 1 is incorrect
Statements 2 is correct
Ans : 2
68. Let the x-z plane be the boundary between two transparent media. Medium 1 in $z \geq 0$ has a refractive index of $\sqrt{ } 2$ and medium 2 with $z<0$ has a refractive index of $\sqrt{ } 3$. A ray of light in medium 1 given by the vector $\overrightarrow{\mathrm{A}}=6 \sqrt{3} \hat{\mathrm{i}}+8 \sqrt{3} \hat{\mathrm{j}}-10 \hat{\mathrm{k}}$
is incident on the plane of separation. The angle o refraction in medium 2 is
1) 60°
2) 75°
3) 30°
4) 45°

$\overrightarrow{\mathrm{A}}=6 \sqrt{3} \hat{\mathrm{i}}+8 \sqrt{3} \hat{\mathrm{j}}-10 \hat{\mathrm{k}}$
angle made by the incident ray with z axis
$\cos \mathrm{i}=\frac{\overrightarrow{\mathrm{A}} \cdot(\hat{\mathrm{k}})}{|\overrightarrow{\mathrm{A}}|}=\frac{10}{\sqrt{36 \times 3+64 \times 3+100}}=\frac{1 \theta}{2 \theta}$
$\therefore \mathrm{i}=60^{\circ}$
$\sqrt{ } 2 \cdot \sin 60=\sqrt{ } 3 \cdot \sin r$
$\sqrt{2} \cdot \frac{\sqrt{3}}{2}=\sqrt{3} \cdot \sin r \Rightarrow r=45^{\circ}$

Ans: 4

69. A carnot engine operating between temperatures T_{1} and T_{2} has efficiency $1 / 6$. When T_{2} is lowered by 62 K , its efficiency increases to $1 / 3$. Then T_{1} adn T_{2} are, respectively:
1) 330 K and 268 K
2) 310 K and 248 K
3) 372 K and 310 K
4) 372 K and 330 K

Sol: $1-\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\frac{1}{6} \quad \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}=\frac{5}{6}$
$1-\left(\frac{\mathrm{T}_{2}-62}{\mathrm{~T}_{1}}\right)=\frac{1}{3}$
$1-\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}+\frac{62}{\mathrm{~T}_{1}}=\frac{1}{3} \Rightarrow \frac{1}{6}+\frac{62}{\mathrm{~T}_{1}}=\frac{1}{3}$
$\Rightarrow \frac{62}{\mathrm{~T}_{1}}=\frac{1}{6} \Rightarrow \mathrm{~T}_{1}=62 \times 6=372 \mathrm{k}$
$\mathrm{T}_{2}=62 \times 5=310 \mathrm{~K}$
Ans: 3
70. Energy required for the electron excitation in Li^{++}from the first to the third-Bohr orbit is

1) 108.8 eV
2) 122.4 eV
3) 12.1 eV
4) 36.3 eV

Sol: $\Delta \mathrm{E}=13.6 \times 3^{2}\left[1-\frac{1}{3^{2}}\right]$
$=13.6[9-1]=13.6 \times 8$
$=108.8 \mathrm{eV}$
Ans: 1
71. A resistor 'R' and $2 \mu \mathrm{~F}$ capacitor in series is connected through a switch to 200 V direct supply. Across the capacitor is a neon bulb that lights up at 120 V . Calculate the value of R to make the bulb light up 5 s after the switch has been closed. $\left(\log _{10} 2.5=0.4\right)$

$$
\begin{array}{ll}
\text { 1) } 2.7 \times 10^{6} \Omega & \text { 2) } 3.3 \times 10^{7} \Omega \\
\text { 3) } 1.3 \times 10^{4} \Omega & \text { 4) } 1.7 \times 10^{5} \Omega
\end{array}
$$

Sol: $q=120 \times 2=240 \mu \mathrm{C}$
$\mathrm{q}_{0}=400 \mu \mathrm{C}, \mathrm{q}=\mathrm{q}_{0}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right)$
$40=400\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right)$
$\frac{6}{10}=\frac{3}{5}=\left(1-\mathrm{e}^{-t / \tau}\right) \quad 1-\frac{3}{5}=\mathrm{e}^{-t / \tau}$
$\frac{2}{5}=\mathrm{e}^{-\mathrm{t} / \tau} \Rightarrow l \mu\left(\frac{5}{2}\right)=\frac{\mathrm{t}}{\tau}$
$\mathrm{t}=\tau \times l \mu(2.5)=$
$\mathrm{RC}^{\mathrm{RC}}=\frac{5}{l \mu(2.5)}=\frac{5}{\log (2.5)} \times \log \mathrm{e}$
$\mathrm{R}=\frac{2.5 \times \log \mathrm{e}}{\log (2.5)}=\frac{5}{\log (2.5)} \times \log \mathrm{e}$
$\frac{2.5 \times 0.43}{0.4} \times 10^{6} \approx 2.7 \times 10^{6}$
Ans:1
72. A thermal insulated vessel contains an ideal gas of molecular mass M and ratio of specific
heats γ. It is moving with speed v and is suddenly brought to rest. Assuming no heat is lost to the surroundings, its temperature increases by

1) $\frac{\gamma M v^{2}}{2 R} K$
2) $\frac{(\gamma-1)}{2 R} M v^{2}$
3) $\frac{(\gamma-1)}{2(\gamma+1) \mathrm{R}} \mathrm{Mv}^{2} \mathrm{~K} \quad$ 4) $\frac{(\gamma-1)}{2 \gamma \mathrm{R}} \mathrm{M} v^{2} \mathrm{~K}$

Sol: $\frac{C_{p}}{C_{v}}=v$
$\frac{1}{2}\left(\mathrm{n} \times \mathrm{N}_{0} \mathrm{M}\right) v^{2}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{T}$
$\Rightarrow \Delta T=\frac{\mathrm{N}_{0} \mathrm{M} v^{2}}{2 \mathrm{C}_{\mathrm{v}}}-\frac{\mathrm{N}_{0} \mathrm{M} v^{2}}{2\left(\frac{\mathrm{R}}{\mathrm{r}-1}\right)}$
Ans: 2
73. Work done in increasing the size of a soap bubble from a radius of 3 cm to 5 cm is nearly (Surface tension of soap solution = $0.03 \mathrm{Nm}^{-1}$):

1) $2 \pi \mathrm{~mJ} 2) 0.4 \pi \mathrm{~mJ} 3) 4 \pi \mathrm{~mJ} 4) 0.2 \pi \mathrm{~mJ}$

Sol: Surface energy : $8 \pi \mathrm{r}^{2} \mathrm{~T}$
$\mathrm{W}=\Delta \mathrm{V}_{\mathrm{s}}=8 \pi \mathrm{~T}\left(6^{2}-9^{2}\right)=8 \quad \times \quad \pi 0.03(25-$
9) $\times 10^{-2} \simeq 0.4 \pi \mathrm{~mJ}$

Ans : 2
74. A fully charged capacitor C with initial q_{0} is connected to a coil of self inductance L at $t=$ 0 . The time at which the energy is stored equally between the electric and the magnetic field is

$$
\begin{array}{ll}
\text { 1) } 2 \pi \sqrt{\mathrm{LC}} & \text { 2) } \sqrt{\mathrm{LC}} \\
\text { 3) } \pi \sqrt{\mathrm{LC}} & \text { 4) } \frac{\pi}{4} \sqrt{\mathrm{LC}}
\end{array}
$$

Sol: $\mathrm{U}_{\mathrm{E}}=\frac{\mathrm{q}^{2}}{2 \mathrm{C}}, \mathrm{U}_{\mathrm{L}}=\frac{1}{2} \mathrm{LI}^{2}$,
$\mathrm{U}_{\mathrm{E}}=\mathrm{U}_{\mathrm{L}} \Rightarrow \frac{\mathrm{q}^{2}}{2 \mathrm{C}}=\frac{1}{2} \frac{\mathrm{q}_{0}^{2}}{2 \mathrm{C}} \Rightarrow \mathrm{q}=\frac{\mathrm{q}_{0}}{\sqrt{2}}$
$\therefore \omega \mathrm{t} \frac{\pi}{4} \Rightarrow \mathrm{t}=\frac{\pi}{4 \omega}=\frac{\pi}{4} \sqrt{\mathrm{LC}}$
Ans: 4
75. Direction: The question has a parag-raph followed by two statements, statement- $\mathbf{1}$ and statement-2 of the given four alternatives after the statement, choose the one that describes the statements.
A thin air film is formed by putting the convex surface of a plate. With monochromatic light, this film gives an interference pattern due to light reflected from the top (convex) surface and the bottom (glass plate) surface of the film.
Statement-1: When light reflects from the air-glass plate interface, the reflected wave suffers a phase change of π.
Statement-2: The centre of the interference pattern is dark.

1) Statement- 1 is true, statement- 2 is true and statement-2 is not the co-rrect explanation of statement-1
2) statement- 1 is false, statement- 2 is false
3) statement- 1 is true, statement- 2 is false
4) statement- 1 is true, statement- 2 is true and statement-2 is the correct explanation of statement-1
Sol: statement: 1 is true
(\therefore rarer to denser propatation)
statement : 2 is true

www.sakshieducation.com

at the centre $\Delta x=0, \Rightarrow \Delta \phi=\pi$
Ans: 4
76. A screw gauge gives following reading when used to measure the diameter of a wire. Main scale reading: 0 mm .
Circular scale reading: 52 divisions
Given that 1 mm on main scale corresponds to 100 divisions of the circular scale
The diameter of wire from the above data is

1) 0.26 cm
2) 0.005 cm
3) 0.52 cm
4) 0.052 cm

Sol:Reading

$=0+52 \times \frac{1}{100} \mathrm{~mm}=0.52 \mathrm{~mm}=0.052 \mathrm{~cm}$

Ans: 4

77. Three perfect gases at absolute temparatures $\mathrm{T}_{1}, \mathrm{~T}_{2}$ and T_{3} are mixed. The masses of molecules are m_{1}, m_{2} and m_{3} and the number of molecules are n_{1}, n_{2} and n_{3} respectively. Assuming no loss of energy, the final temparature of the mixture is
1) $\frac{n_{1} T_{1}^{2}+n_{2} T_{2}^{2}+n_{3} T_{3}^{2}}{n_{1} T_{1}+n_{2} T_{2}+n_{3} T_{3}}$
2) $\frac{n_{1}^{2} T_{1}^{2}+n_{2}^{2} T_{2}^{2}+n_{3}^{2} T_{3}^{2}}{n_{1} T_{1}+n_{2} T_{2}+n_{3} T_{3}}$
3) $\frac{\left(T_{1}+T_{2}+T_{3}\right)}{3}$ 4) $\frac{n_{1} T_{1}+n_{2} T_{2}+n_{3} T_{3}}{n_{1}+n_{2}+n_{3}}$

Sol: ${ }^{n_{1} C_{v_{1}} T_{1}+n_{2} C_{v 2} T_{2}+n_{3} C_{v 3} T_{3}=}$
$\left(n_{1}+n_{2}+n_{3}\right) C_{V_{\text {mix }}} \cdot T$
Ans: 4
78. The electrostatic potential inside a charged spherical ball is given by $\phi=\mathrm{ar}^{2}+\mathrm{b}$ where r is the distance from the centre; a, b are constants. Then the charge density inside the ball is
$\begin{array}{ll}\text { 1) }-24 \pi a \varepsilon_{0} & \text { 2) }-6 a \varepsilon_{0} \\ \text { 3) }-24 \pi a \varepsilon_{0} r & \text { 4) }-6 a \varepsilon_{0} r\end{array}$
Sol: $\phi=a r^{2}+b$
$\mathrm{E}=\frac{-\partial \phi}{\mathrm{dr}}=-2 \mathrm{ar} \quad \oint \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{s}}=\frac{\mathrm{q}_{\text {in }}}{\epsilon_{0}}$
$-2 \mathrm{ar} \times 4 \pi \mathrm{r}^{2}=\int \frac{\mathrm{f} 4 \pi \mathrm{r}^{2} \mathrm{dr}}{\epsilon_{0}}$
$=-2 \mathrm{ar}^{3} \epsilon_{0}=\int \mathrm{fr}^{2} \mathrm{dr}$
$=-6 \mathrm{ar}^{3} \epsilon_{0}=\mathrm{sr}^{2} \Rightarrow \mathrm{f}=-6 \mathrm{a} \epsilon_{0}$
Ans: 2
79. The question has Statement-1 and Statement-2 of the four choices giv-en after the Statements, choose the one that best describes the statements.
Statement-1: Sky wave signals are used for long distance radio commu-nication. These signals are in general, less stable than ground wave signals.
Statement-2: The state of ionosphere varies from hour to hour, day to day and season to season.

1) Statement-1 is true,Statement-2 is true and Statement-2 is not the co-rrect explanation of Statement-1
2) Statement-1 is false, Statement- 2 is true.
3) Statement- 1 is true, Statement- 2 is false
4) Statement-1 is true, Statement-2 is true and Statement-2 is the co-rrect explanation of Statement-1.

Ans: 4

80. A mass m hangs with the help of a string wrapped around a pulley on frictionless
bearing. The pulley has mass m and radius R. Assuming pul-ley to be a perfect uniform circular disc. the acceleration of the mass m, if the string not slip on the pulley, is

$$
\begin{array}{llll}
\text { 1) } 2 / 3 g & \text { 2) } g / 3 & \text { 3) } 3 / 2 g & \text { 4) } g
\end{array}
$$

Sol:

$\mathrm{F}_{\text {Net }}=\mathrm{ma}, \mathrm{Mg}-\mathrm{T}=\mathrm{Ma} \ldots \ldots . . .$. (1)
$\mathrm{T}_{\text {net }}=\mathrm{I} \propto \quad \mathrm{TR}=\frac{\mathrm{MR}^{2}}{2} \frac{\mathrm{a}}{\mathrm{R}}$
$\Rightarrow \mathrm{T}=\frac{\mathrm{Ma}}{2}$.
Solving 1 and $2 \Rightarrow a=2 \mathrm{~g} / 3$
Ans: 1
81. A current I flows in a infinitely long wire with cross section in the form of a semicircular ring of radius R.The magnitude of the magnetic induction along its axis is

1) $\frac{\mu_{0} I}{2 \pi R}$	2) $\frac{\mu_{0} I}{4 \pi R}$
3) $\frac{\mu_{0} I}{\pi^{2} R}$	4) $\frac{\mu_{0} I}{2 \pi^{2} R}$

Sol: $\mathrm{dI}=\frac{\mathrm{I}}{\pi R^{\prime}} \cdot \mathrm{R}^{\prime} \mathrm{d} \theta=\frac{\mathrm{I}}{\pi} \mathrm{d} \theta$

$\mathrm{dB}_{\mathrm{y}}=\mathrm{dB} \operatorname{Cos}=\frac{\mu_{0} \mathrm{I}}{2 \pi^{2} \mathrm{R}} \cdot \operatorname{Cos} \theta \cdot \mathrm{d} \theta$,
$\mathrm{dB}_{\mathrm{x}}=\frac{\mu_{0} \mathrm{I}}{2 \pi^{2} \mathrm{R}} \sin \theta \cdot \mathrm{d} \theta$
$B_{y}=2 \int_{\theta}^{\pi}\left(\frac{\mu_{0} I}{2 \pi^{2} R}\right) \cos \theta \cdot d \theta=$ zero
$B_{x}=\int \mathrm{dB}_{\mathrm{x}}=2 \frac{\mu_{0} \mathrm{I}}{2 \pi^{2} \mathrm{R}} \int_{0}^{\pi / 2} \sin \theta \cdot d \theta=$
$\left(\frac{\mu_{0} I}{2 \pi^{2} R}\right) \times 2 \times(\cos \theta) \int_{0}^{\pi / 2}=\frac{\mu_{0} I}{\pi^{2} R}$
$B=\sqrt{B x^{2}+B y y^{2}}=\frac{\mu_{0} I}{\pi^{2} R}$
Ans: 3
82. If a wire is streched to make it 0.1% longer, its resistance will:

1) decrease by 0.2%
2) decrease by 0.05%
3) increase by 0.05%
4) increase by 0.2%

Sol: $\mathrm{R}=\frac{l \mathrm{~L}}{\mathrm{~A}}=\frac{l \mathrm{~L}^{2}}{\mathrm{v}}$ where v is the volume

$$
\mathrm{R} \propto \mathrm{~L}^{2} \frac{\Delta \mathrm{R}}{\mathrm{R}}=2 \frac{\Delta \mathrm{~L}}{\mathrm{~L}}
$$

$\Rightarrow \%$ change in resistance of wire $=2(\%$ change in L)
$=2(0.1 \%),=+0.2 \%$
Ans: 4
83. A thin horizontal circular disc is rotating about a vertical axis passing through its centre. An insect is at rest at a point near the rim of the disc. The insect now moves along a diameter of the disc to reach its other end. During the journey of the insect, the angular
speed of the disc?

1) Continuously increase
2) first increase and then decrease
3) remains unchanged
4) continuously decrease

Sol:Since there is no external torque acting on system, angular momentum of the system is constant. As the insect moves from A to B, moment of inertia of system first decreases then increases. Since $\omega=\mathrm{L} / \mathrm{I}, \omega$ first increases then decreases.

Ans: 2
84. 100 g of water is heated from $30^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ Ignoring the slight expansion of the water, the change in its internal energy is (specific heat of water is $418 \mathrm{~J} / \mathrm{Kg} / \mathrm{K}$)

1) 84 kj 2) 2.1 kJ 3$) 4.2 \mathrm{kj} \mathrm{4}) 8.4 \mathrm{~kJ}$

Sol. $\mathrm{M}=0.1 \mathrm{~kg}$
$\mathrm{d} \theta=2 \theta, \quad \mathrm{du}=\mathrm{MCd} \theta$
$=0.1$ (4184) (20), $=8368 \mathrm{~J}$
$=8.4 \mathrm{KJ}$
Ans: 4
85. An object, moving with a speed of $6.25 \mathrm{~m} / \mathrm{s}$, is decelerated at a rate give-n by $\mathrm{dv} / \mathrm{dt}=-2.5 \sqrt{ } \mathrm{v}$. Where v is the in-stantaneous speed. The time taken by the object, to come to rest, would be

1) $4 \mathrm{~s} \quad 2) 8 \mathrm{~s}$
2) 1 s
3) 2 s

Sol: $u=6.25 \mathrm{~ms}^{-1}$
$\frac{\mathrm{dv}}{\mathrm{dt}}=-2.5 \sqrt{\mathrm{~V}} \quad \int \frac{\mathrm{du}}{\sqrt{\mathrm{V}}}=-2.5 \int \mathrm{dt}$
$2\left[\mathrm{~V}^{\frac{1}{2}}\right]_{\mathrm{v}=.25}^{0}=-2.5[\mathrm{t}]_{t=0}^{=T}$
$2[0-2.5]=-2.5[\mathrm{~T}], \mathrm{T}=2 \mathrm{sec} \quad$ Ans: 4
86. Water is flowing continuously from a tap having an internal diameter $8 \times 10^{-3} \mathrm{~m}$. The water velocity as it leaves the tap is $0.4 \mathrm{~ms}-1$.
The diameter of the water stream at a distance
$2 \times 10^{-3} \mathrm{~m}$ below the tap is close to

1) $9.6 \times 10^{-3} \mathrm{~m} \quad$ 2) $3.6 \times 10^{-3} \mathrm{~m}$
2) $5.0 \times 10^{-3} \mathrm{~m} \quad$ 4) $7.5 \times 10^{-3} \mathrm{~m}$

Sol: $\mathrm{r}_{1}=8 \times 10^{-3} \mathrm{~m}$
$\mathrm{v}_{1}=0.4 \mathrm{~ms}^{-1}, \quad \mathrm{~h}=0.2 \mathrm{~m}$
$l \mathrm{gh}+\frac{1}{2} l \mathrm{v}_{1}^{2}=\frac{1}{2} l \mathrm{~V}_{2}^{2}$
$\mathrm{V}_{2}^{2}=\mathrm{V}_{1}^{2}+2 \mathrm{gh}=4.16$
from principle of continuity $\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}$
$r_{1}^{2} v_{1}=r_{2}^{2} v_{2} \quad \frac{r_{1} \sqrt{v_{1}}}{\sqrt{v_{2}}}=r_{2}$
$\Rightarrow r_{2}=3.6 \times 10^{-3} \mathrm{~m}$
Ans: 2
87. Two identical charged spheres suspended from a common point by two massless strings of length l are initially a distance $\mathrm{d}(\mathrm{d} \ll l)$ apart because of their mutual repulsion. The charge begins to leak from both the spheres at a constant rate. As a result the charges approach each other with a velocity u. Then as a function of distance x between them,
$\begin{array}{ll}\text { 1) } v \propto x^{1 / 2} & \text { 2) } v \propto x \\ \text { 3) } v \propto x^{-1 / 2} & \text { 4) } v \propto x^{-}\end{array}$

Sol: $\mathrm{TCos} \theta=\mathrm{mg}, \mathrm{T} \sin \theta=\mathrm{Fe}$
$\tan \theta=\mathrm{Fe} / \mathrm{mg} \Rightarrow \mathrm{Fe}=\mathrm{mg} \tan \theta$
$\frac{\mathrm{kq}^{2}}{\mathrm{x}^{2}}=\mathrm{mg}=\frac{\mathrm{xx} / 2}{l}$
$\therefore \mathrm{q}^{2} \propto \mathrm{x}^{3}$
$-\left(\frac{d q}{d t}\right) \cdot 2 q \propto 3 x^{2}\left(-\frac{d x}{d t}\right)$
$V \propto\left(-\frac{\mathrm{dq}}{\mathrm{dt}}\right) \cdot \frac{\mathrm{q}}{\mathrm{x}^{2}} \propto \mathrm{x}^{3 / 2-2} \propto \mathrm{x}^{-1 / 2}$
Ans: 3
88. A mass M , attached to a horizontal spring, excutes S.H.M. with amplitude A_{1}. When the mass M passes through its mean position then a smaller mass m is placed over it and both of them move together with amplitude A_{2}. The ratio of $\left(\mathrm{A}_{1} / \mathrm{A}_{2}\right)$ is

1) $\left(\frac{M}{M+m}\right)^{\frac{1}{2}}$
2) $\left(\frac{M+m}{M}\right)^{\frac{1}{2}}$
3) $\frac{M}{M+m}$
4) $\frac{M+m}{M}$

Sol: $\omega=\sqrt{\frac{K}{M}} \quad \frac{\omega_{1}}{\omega_{2}}=\sqrt{\frac{m+M}{M}}$
$\mathrm{P}_{1}=\mathrm{P}_{2}, \quad \mathrm{M}_{1} \mathrm{~A}_{1} \mathrm{~W}_{1}=\mathrm{M}_{2} \mathrm{~A}_{2} \mathrm{~W}_{2}$
$\frac{A_{1}}{A_{2}}=\frac{M+m}{M} \sqrt{\frac{M}{M+m}}=\sqrt{\frac{M+m}{M}}$
Ans: 2
89. Two bodes of masses m and 4 m are placed at a distance r. The gravitational potential at a point on the line joining them where the gravitational field is zero is

1) $-\frac{6 \mathrm{Gm}}{\mathrm{r}}$
2) $-\frac{9 \mathrm{Gm}}{\mathrm{r}}$
3) zero
4) $-\frac{4 \mathrm{Gm}}{\mathrm{r}}$

Sol: $\frac{G m}{x^{2}}=\frac{G(4 m)}{(r-x)^{2}} \quad \frac{1}{x}=\frac{2}{r-x}$
$x=r / 3$
$\mathrm{v}_{\text {netatp }}=\frac{-\mathrm{Gm}}{\mathrm{r} / 3}-\frac{\mathrm{G}(4 \mathrm{~m})}{2 \mathrm{r} / 3}$
$=-9 \mathrm{Gm} / \mathrm{r}$
Ans: 2
90. A pulley of radius 2 m is rotated about its axis by a force $\mathrm{F}=\left(20 \mathrm{t}-5 \mathrm{t}^{2}\right)$ newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is $10 \mathrm{~kg} \mathrm{~m}_{2}$, the number of rotations made by the pulley before its direction of motion if reversed, is

1) more than 6 but less than 9
2) more than $9 \quad 3$) less than 3
3) more than 3 but less than 6

Sol: Direction of motion is reversed \Rightarrow the pulley comes to momentary rest
$\tau=\mathrm{FR}=\left(20 \mathrm{t}-5 \mathrm{t}^{2}\right) \times 2=\mathrm{I} \alpha$
$\mathrm{t} \alpha=\frac{\left(20 \mathrm{t}-5 \mathrm{t}^{2}\right)}{5}=\frac{\mathrm{dw}}{\mathrm{dt}} \int_{\mathrm{t}=0}^{\mathrm{t}^{2}}\left(4 \mathrm{t}-\mathrm{t}^{2}\right) \mathrm{dt}=\int_{0}^{w} \mathrm{dw}$
$\mathrm{w}=\frac{4 \mathrm{t}^{2}}{2}-\frac{\mathrm{t}^{3}}{3} \quad$ When it comes to rest
$\mathrm{w}=0, \Rightarrow \mathrm{t}=0 \& \mathrm{t}=6 \mathrm{~s}$
$\frac{d \theta}{d t}=2 \mathrm{t}^{2}-\frac{\mathrm{t}^{3}}{3} \mathrm{~s} \quad \theta=2 \frac{\mathrm{t}^{3}}{3}-\frac{1}{12} \mathrm{t}^{4}$
$=2 \times 6^{2} \times 2-\frac{1}{12} \times 6^{2} \times 6 \times 6^{3}$
$=6^{2}(4-3)=6^{2}=36$
$=\frac{36}{2 \times 3.14}$ revolutions $=$

