
Chapter 2 Page 1

Top Down Parsing
Introduction:
• In computer science, top-down parsing is a parsing strategy where one first looks at the

highest level of the parse tree and works down the parse tree by using the rewriting rules
of a formal grammar. LL parsers are a type of parser that uses a top-down parsing
strategy.

• Top-down parsing is a strategy of analyzing unknown data relationships by hypothesizing
general parse tree structures and then considering whether the known fundamental
structures are compatible with the hypothesis. It occurs in the analysis of both
natural languages and computer languages.

• Top-down parsing can be viewed as an attempt to find left-most derivations of an input-
stream by searching for parse-trees using a top-down expansion of the given formal
grammar rules. Tokens are consumed from left to right. Inclusive choice is used to
accommodate ambiguity by expanding all alternative right-hand-sides of grammar rules.

• Simple implementations of top-down parsing do not terminate for left-
recursive grammars, and top-down parsing with backtracking may have exponential time
complexity with respect to the length of the input for ambiguous CFGs. However, more
sophisticated top-down parsers have been created by Frost, Hafiz, and Callaghan which
do accommodate ambiguity and left recursion in polynomial time and which generate
polynomial-sized representations of the potentially exponential number of parse trees as
shown in Fig 1.

Fig 1

• A parser is top-down if it discovers a parse tree top to bottom. A top-down parse
corresponds to a preorder traversal of the parse tree. A leftmost derivation is applied at
each derivation step.

• Top-down parsers come in two forms

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 2 Page 2

o Predictive Parsers- Predict the production rule to be applied using lookahead
tokens.

o Backtracking Parsers-Will try different productions, backing up when a parse
fails. Predictive parsers are much faster than backtracking ones. Predictive parsers
operate in linear time. Backtracking parsers operate in exponential time.

• Two kinds of top-down parsing techniques will be studied. Recursive-descent parsing and
LL parsing.

• Many programming language constructs have an inherently recursive structure that can be
defined by context-free grammars.
e.g., conditional statement defined by a rule such as;
 if S1 and S2 are statements and E is an expression, then
 “if E then S1 else S2” is a statement

• This form of conditional statement cannot be specified using the notation of regular
expressions.

• CFG consists of terminals, nonterminals, a start symbol, and productions.
1. Terminals are basic symbols from which strings are formed.

 e.g., in programming language; if, then, and else is a terminal.
2. Non-terminals are syntactic variables that denote set of strings.

 e.g., in production: stmt → if expr then stmt else stmt, expr and stmt are nonterminals.
The non terminals define sets of strings that define the language generated by the
grammar. They also impose hierarchical structure on the language that is useful for both
syntax analysis and translation. In a grammar, one non terminal is distinguished as
the start symbol, and the set of strings it denotes is the language defined by the grammar.
3. The production of a grammar specifies the manner in which the terminals and
nonterminals are combined to form strings.
Each production consists of a nonterminal, followed by an arrow, followed by a string of
nonterminals and terminals.

Exercise 1:
In the following grammar find terminals, nonterminals, start symbols, and productions:
expr → expr op expr
expr → (expr)
expr → - expr
expr → id
op → +
op → -
op → *
op → /

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 2 Page 3

op → ^

Notational Conventions:
To avoid having to state that “these are terminals” and “these are nonterminals”, the
following notational conventions with regard to grammars are used:
1. These symbols are terminals:

• Lower-case letters early in the alphabet such as a, b, c
• Operator symbols such as +, -, etc.,
• Punctuation symbols such as parenthesis, comma, etc.,
• Boldface strings such as id or if

 2. These symbols are nonterminals:
• Upper-case letters early in the alphabet such as A, B, C.
• The letter S, when it appears, is usually the start symbol.
• Lower-case italic names such as expr or stmt.

3. Upper-case letters late in the alphabet, such as X, Y, Z represent grammar symbols,
i.e., either nonterminals or terminals.
4. Lower-case Greek letters, α, β, γ, for example, represent strings of grammar symbols.
5. If A → α1, A → α2, …, A → αk are all productions with A on the left (A-productions),
then we can write as; A → α1| α2 | … | αk. (α1, α2, … , αk, the alternatives for A).
e.g., A sample grammar:
 E → E A E | (E) | - E | id
 A → + | - | * | / | ^

Derivations:
• Derivation gives a precise description of the top-down constructions of a parse tree.
• In derivation, a production is treated as a rewriting rule in which the nonterminal on the

left is replaced by the string on the right side of the production.
e.g. E → E + E | E * E | - E | (E) | id
tell us we can replace one instance of an E in any string of grammar symbols by E + E or
E * E or – E or (E) or id
E => - E read as “E derives – E”

• Take single E and repeatedly apply productions in any order to obtain a sequence of
replacements.
e.g., E => - E => - (E) => - (id)
Such a sequence of replacements is called as derivation of – (id) from E.
Symbol => means “derive in one step”.

Symbol
*
⇒ means “derives in zero or more step”

Symbol
+

⇒ means “derives in one or more steps”

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 2 Page 4

Given a grammar G with start symbol S, then α relation to define L(G), the language
generated by G.
Strings in L(G) may contain only terminal symbols of G.
When string of terminals w is in L(G) if and only if S(w). The string w is called
a sentence of G.

• A language that can be generated by a grammar is said to be context-free language.
If two grammar generated by the same language, the grammars are said to be equivalent.

• If S (α), where α may contain nonterminals, then α is a sentential form of G.
A sentence is a sentential form with no nonterminals.
Example: using the grammar, the string – (id + id) is a sentence of grammar.

 E => - E => - (E) => - (E + E) => - (id + E) => - (id + id),
The strings E, - E, - (E + E), - (id + E), - (id + id) appearing in the derivation are all
sentential form of the grammar

• It can be written as E
*
⇒ - (id + id) to indicate – (id + id) can be derived from E.

There are two types of derivations: leftmost derivation and rightmost derivation;
The derivation in which only the leftmost nonterminal in any sentential form is replaced
at each step. Such derivation is called leftmost derivation.
Example: E

lm
⇒ - E

lm
⇒ - (E)

lm
⇒ - (E + E)

lm
⇒ - (id + E)

lm
⇒ - (id + id)

 If S
*

lm
⇒ α, then α is a left-sentential form of the grammar at hand.

The derivation in which only the rightmost nonterminal in any sentential form is replaced
at each step. Such derivation is called rightmost derivation or canonical derivation.
Example: E

rm
⇒ - E

rm
⇒ - (E + E)

rm
⇒ - (E + id)

rm
⇒ - (id + id)

If S
*

rm
⇒ α, then α is a right-sentential form of the grammar at hand.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 2 Page 5

Parse Trees and Derivations:
A parse tree may be viewed as a graphical representation for a derivation that filters out
the choice regarding replacement order.
Each interior node of a parse tree is labeled by some nonterminal A, and that the children
of the node are labeled, from left to right, by the symbols in the right side of the
production by which this A was replaced in the derivation.
The leaves of the parse tree are labeled by nonterminals or terminals and, read for left to
right; they constitute a sentential form, called the yield or frontier of the tree.

Example 1: parse tree for – (id + id),

Ambiguity:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 2 Page 6

A grammar that produces more than one parse tree for some sentence is said to
be ambiguous.
An ambiguous grammar is one that produces more than one leftmost or more than one
rightmost derivation for the same sentence.

Example: from the grammar example 1, the sentence id + id * id has two distinct
leftmost derivations.

Top-Down Parsing
Parsing is the process of determining if a string of tokens can be generated by a grammar.
For any context-free grammar there is a parser that takes at most Ο(n3) time to parse a
string of n tokens. Top-down parsers build parse trees from the top (root) to the bottom
(leaves).

Recursive Descent Parsing
Recursive descent is a top-down parsing technique that constructs the parse tree from the
top and the input is read from left to right. It uses procedures for every terminal and non-
terminal entity. This parsing technique recursively parses the input to make a parse tree,
which may or may not require back-tracking. But the grammar associated with it (if not
left factored) cannot avoid back-tracking. A form of recursive-descent parsing that does
not require any back-tracking is known as predictive parsing.
This parsing technique is regarded recursive as it uses context-free grammar which is
recursive in nature.

Back-tracking

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 2 Page 7

Top- down parsers start from the root node (start symbol) and match the input string
against the production rules to replace them (if matched). To understand this, take the
following example of CFG:

S → rXd | rZd
X → oa | ea
Z → ai

For an input string: read, a top-down parser, will behave like this:

It will start with S from the production rules and will match its yield to the left-most
letter of the input, i.e. ‘r’. The very production of S (S → rXd) matches with it. So the
top-down parser advances to the next input letter (i.e. ‘e’). The parser tries to expand
non-terminal ‘X’ and checks its production from the left (X → oa). It does not match
with the next input symbol. So the top-down parser backtracks to obtain the next
production rule of X, (X → ea).

Now the parser matches all the input letters in an ordered manner. The string is accepted.

Predictive Parser
Predictive parser is a recursive descent parser, which has the capability to predict which
production is to be used to replace the input string. The predictive parser does not suffer
from backtracking.
 To accomplish its tasks, the predictive parser uses a look-ahead pointer, which points
to the next input symbols. To make the parser back-tracking free, the predictive parser
puts some constraints on the grammar and accepts only a class of grammar known as
LL(k) grammar.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 2 Page 8

Predictive parsing uses a stack and a parsing table to parse the input and generate a parse
tree. Both the stack and the input contains an end symbol $to denote that the stack is
empty and the input is consumed. The parser refers to the parsing table to take any
decision on the input and stack element combination.

In recursive descent parsing, the parser may have more than one production to choose
from for a single instance of input, whereas in predictive parser, each step has at most
one production to choose. There might be instances where there is no production
matching the input string, making the parsing procedure to fail.

LL Parser
An LL Parser accepts LL grammar. LL grammar is a subset of context-free grammar but
with some restrictions to get the simplified version, in order to achieve easy

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 2 Page 9

implementation. LL grammar can be implemented by means of both algorithms namely,
recursive-descent or table-driven.

LL parser is denoted as LL(k). The first L in LL(k) is parsing the input from left to right,
the second L in LL(k) stands for left-most derivation and k itself represents the number
of look aheads. Generally k = 1, so LL(k) may also be written as LL(1).

LL Parsing Algorithm
We may stick to deterministic LL(1) for parser explanation, as the size of table grows
exponentially with the value of k. Secondly, if a given grammar is not LL(1), then
usually, it is not LL(k), for any given k.

Given below is an algorithm for LL(1) Parsing:

 Input:
 string ω
 parsing table M for grammar G

 Output:
 If ω is in L(G) then left-most derivation of ω,
 error otherwise.

 Initial State : $S on stack (with S being start symbol)
 ω$ in the input buffer

 SET ip to point the first symbol of ω$.

 repeat
 let X be the top stack symbol and a the symbol pointed by ip.

 if X Vt or $
 if X = a
 POP X and advance ip.
 else
 error()

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 2 Page 10

 endif

 else /* X is non-terminal */
 if M[X,a] = X → Y1, Y2,... Yk
 POP X
 PUSH Yk, Yk-1,... Y1 /* Y1 on top */
 Output the production X → Y1, Y2,... Yk
 else
 error()
 endif
 endif
 until X = $ /* empty stack */

A grammar G is LL(1) if A → α | β are two distinct productions of G:
• for no terminal, both α and β derive strings beginning with a.
• at most one of α and β can derive empty string.
• if β → t, then α does not derive any string beginning with a terminal in FOLLOW(A).

Recursive - Descent Parsing

This is general form of top-down parsing , called recursive descent parsing where
backtracking may be involved. This is a bad type of parsing which involves repeated trying to
get the correct output.This can also be termed as brute-force type of parsing. Presently, this
type of parsing is outdated ,just because there are much better methods of parsing which we
will be discussing later.

Consider the grammar:
S -> cAd | bd
A -> ab | a
 and the input string is “cad”.

To construct the tree, we create an initial tree of just one node S.
The input pointer points to c , and we use the first production, for s to get the expanded tree.
 S

 c A d

The leftmost leaf labeled c matches the fist symbol of the input and hence we advance the
pointer to the second symbol of the input which is a. we now expand A by its first production
to obtain the following tree.

 S

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 2 Page 11

 c A d

 a b

 Now we have a match for the second symbol of the input and hence advabce the pointer to d
, and compare it with the next leaf b, which does not match , we report failure and go back to
see whether there is an alternative production for A.
 In going back to A ,we must backtrack the input pointer to a. Finding another
production , we try out the next configuration.

 S

 c A d

 a

Now the leaf a matches with the second symbol of the input and the the third leaf d matches
with the third symbol of the input.
And because the input string is consumed , we halt and denote the successful completion of
parsing.

Predictive Parsing:
This is a top down parsing method where we execute a set of recursive set of procedures to
process the input. A procedure is associated with a nonterminal of a grammar. Here the
lookahead symbol unambiguously determines the procedure selected for each nonterminal .
The sequence of procedures called in processing the input implicitly defines a parse tree for
the input.
Consider the grammar:
S -> cAd | bd
A -> ab | e

PSEUDO CODE for a predictive parser
 function match(token t)
 {
 if lookahead = t then
 lookahead = nexttoken()
 else error
 }

 function S
 {
 if lookahead is in { c }
 match(c) , A(),match (d);

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 2 Page 12

 else if lookahead is in {b }
 match(b) , match(d);
 else if lookahead is in {a,e}
 A();
 else error
 }

 function A
 {
 if lookahead is in { a }
 match(a) , match(b);
 else if lookahead is in { e }
 match(e);
 else if error
 }

 input string: “ced”

The function match() compares the current lookahead symbol with the argument token and
if matched changes the lookahead symbol by advancing the input pointer.
 Parsing begins with a call to the procedure for the starting nonterminal S in our
grammar. Because the lookahead 'c' is in the set { c } , the function S executes the code:
 if lookahead is in { c }
 match(c) , A(),match (d);

once it matched 'c' , the function A() is called and checks out that the next input symbol 'e' is
then in the set { e } , it executes the code :
 else if lookahead is in { e }
 match(e);

After the matching of 'e' is over it returns from the function A() and matches the next token
with 'd'.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

