MULTIPLE PRODUCTS

SYNOPSIS

1. Scalar triple product: If \bar{a}, \bar{b} and \bar{c} non-zero vectors then the scalar product of these vectors is given by $\bar{a} \cdot(\bar{b} \times \bar{c})$ or $(\bar{a} \times \bar{b}) \cdot \bar{c} \operatorname{Or}(\bar{c} \times \bar{a}) \cdot \bar{b}$ etc..
i. $\quad[\bar{a} \bar{b} \bar{c}]=\left[\begin{array}{lll}\bar{b} & \bar{c} & \bar{a}\end{array}\right]=\left[\begin{array}{ll}\bar{c} & -\bar{a} \\ b\end{array}\right]=-\left[\begin{array}{l}\bar{a} \\ \bar{c} \\ \bar{b}\end{array}\right]=\left[\begin{array}{ll}\bar{b} & \bar{a} \bar{c}\end{array}\right]=-\left[\begin{array}{ll}\bar{c} & \bar{b} \\ \bar{a}\end{array}\right]$
ii. If $\bar{a}=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right)=\mathrm{a}_{1} \bar{i}+\mathrm{a}_{2} \bar{j}+\mathrm{a}_{3} \bar{k}, \quad \bar{b}=\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right)=\mathrm{b}_{1} \bar{i}+\mathrm{b}_{2} \bar{j}+\mathrm{b}_{3} \bar{k}$, $\bar{c}=\left(\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}\right)=\mathrm{c}_{1} \bar{i}+\mathrm{c}_{2} \bar{j}+\mathrm{c}_{3} \bar{k}$. Then $[\bar{a} \bar{b} \bar{c} \bar{c}]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$.

Note: All of the above relations hold for all non zero or some of non zero vectors.
iii. $[\bar{a} \bar{b} \bar{c}]=0$ if $\bar{a}=\bar{b}$ or $\bar{b}=\bar{c}$ or $\bar{c}=\bar{a}$
iv. If $[\bar{a} \bar{b} \bar{c}]=$ then vectors \bar{a}, \bar{b} and \bar{c} are coplanar.
v. if $[\bar{a} \bar{b} \bar{c}] \neq 0$ then vectors \bar{a}, \bar{b} and \bar{c} are non coplanar.
vi. $[\bar{a} \bar{b} \bar{c}]>0$ then vectors \bar{a}, \bar{b} and \bar{c} triad of right handed system.
vii. $[\bar{a} \bar{b} \bar{c}]<0$ then vectors \bar{a}, \bar{b} and \bar{c} triad of left handed system.
viii.If \bar{a}, \bar{b} and \bar{c} are the coterminous edges of a parallelepiped then its volume is given as $\overline{\mathrm{V}}|[-\bar{b} \bar{b} \bar{c}]| \mathrm{cu}$ units.
ix. If $\overline{\mathrm{OA}}=\bar{a}, \overline{\mathrm{OB}}=\bar{b}$, and $\overline{\mathrm{OC}}=\bar{c}$ then the volume of tetrahedron
$\mathrm{OABC}=\frac{1}{6}|[\bar{a} \bar{b} \bar{c}]| \mathrm{cu}$ units.

www.sakshieducation.com

x. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are the vectors of a tetrahedron whose P.V.s are $\bar{a}, \bar{b}, \bar{c}$ and \bar{d} then its volume (V) is given as $\frac{1}{6}|[\overline{\mathrm{AB}} \overline{\mathrm{AC}} \overline{\mathrm{AD}}]|$ cu units.
$\mathrm{V}=\frac{1}{6}|[\bar{a}-\bar{b} \bar{a}-\bar{c} \bar{a}-\bar{d}]| \mathrm{cu}$ units.
xi. If points $\bar{a}, \bar{b}, \bar{c}$ and \bar{d} are coplanar then $[\bar{a} \bar{b} \bar{c}]=[\bar{b} \bar{c} \bar{d}]+[\bar{c} \bar{a} \bar{d}]+[\bar{a} \bar{b} \bar{d}]$.
xii. If \bar{a}, \bar{b} and \bar{c} are coplanar then $[\bar{a} \times \bar{b} \bar{b} \times \bar{c} \bar{c} \times \bar{a}]=0$.
xiii. If $\bar{a}+\bar{b}+\bar{c}=\overline{\mathrm{O}}$ then $\bar{a}, \bar{b}, \bar{c}$ are coplanar.
xiv. If \bar{a}, \bar{b} and \bar{c} are three mutually perpendicular unit vectors then $[\bar{a} \bar{b} \bar{c}]= \pm 1$.
xv. $[\bar{i} \bar{j} \bar{k}]=[\bar{j} \bar{k} \bar{i}]=[\bar{k} \bar{i} \bar{j}]=1$
$[\bar{i} \bar{k} \bar{j}]=[\bar{k} \bar{j} \bar{i}]=[\bar{j} \bar{i} \bar{k}]=-1$
2. Cross Product of Three Vectors: For any three vectors \bar{a}, \bar{b} and \bar{c} then cross product or vector product of these vectors are given as $\bar{a} \times(\bar{b} \times \bar{c}),(\bar{a} \times \bar{b}) \times \bar{c}$ or $(\bar{b} \times \bar{c}) \times \bar{a} \quad$ etc.
i. $\bar{a} \times(\bar{b} \times \bar{c})$ is vector quantity and $|\bar{a} \times(\bar{b} \times \bar{c})|=|(\bar{b} \times \bar{c}) \times \bar{a}|$
ii. In general $\bar{a} \times(\bar{b} \times \bar{c}) \neq(\bar{a} \times \bar{b}) \times . \bar{c}$
iii. $\bar{a} \times(\bar{b} \times \bar{c})=(\bar{a} \times \bar{b}) \times \bar{c}$ if \bar{a} and \bar{c} are collinear
iv. $\bar{a} \times(\bar{b} \times \bar{c})=-(\bar{b} \times \bar{c}) \times \bar{a}$
v. $(\bar{a} \times \bar{b}) \times \bar{c}=-\bar{c} \times(\bar{a} \times \bar{b})=(\bar{a} \cdot \bar{c}) \bar{b}-(\bar{a} \cdot \bar{b}) \bar{c}=\bar{a} \times(\bar{b} \times \bar{c})$
vi. If \bar{a}, \bar{b} and \bar{c} are non zero vectors and $\bar{a} \times(\bar{b} \times \bar{c})=\overline{\mathrm{O}}$ then \bar{b} and \bar{c} are parallel (or collinear) vectors.
vii. If \bar{a}, \bar{b} and \bar{c} are non zero and non parallel vectors then $\bar{a} \times(\bar{b} \times \bar{c}), \bar{b} \times(\bar{c} \times \bar{a})$ and $\bar{c} \times(\bar{a} \times \bar{b})$ are non collinear vectors.
viii. If \bar{a}, \bar{b} and \bar{c} are any three vectors then $\bar{a}(\bar{b} \times \bar{c})+\bar{b} \times(\bar{c} \times \bar{a})+\bar{c} \times(\bar{a} \times \bar{b})=\overline{\mathrm{O}}$
ix. If \bar{a}, \bar{b} and \bar{c} are any three vectors then $\bar{a}(\bar{b} \times \bar{c})+\bar{b} \times(\bar{c} \times \bar{a})+\bar{c} \times(\bar{a} \times \bar{b})$ are coplanar. [Since sum of these vectors is zero]
x. $\bar{a}(\bar{b} \times \bar{c})$ is vector lies in the plane of \bar{b} and \bar{c} or parallel to the plane of \bar{b} and \bar{c}.
3. Dot product of four vectors: The dot product of four vectors $\bar{a}, \bar{b}, \bar{c}$ and \bar{d} is given as $(\bar{a} \times \bar{b}) \cdot(\bar{c} \times \bar{d})=(\bar{a} \cdot \bar{c})(\bar{b} \cdot \bar{d})-(\bar{a} \cdot \bar{d})(\bar{b} \cdot \bar{c})$
$=\left|\begin{array}{ll}\bar{a} \cdot \bar{c} & \bar{a} \cdot \bar{d} \\ \bar{b} \cdot \bar{c} & \bar{b} \cdot \bar{d}\end{array}\right|$
Some Meaning Less Products: $\bar{a} \cdot(\bar{b} \cdot \bar{c}), \bar{a} \times \bar{b} \cdot(\bar{c} \cdot \bar{d}) \bar{a} \times(\bar{b} \cdot \bar{c})$ and $(\bar{a}, \bar{b}) \times(\bar{c}, \bar{d})$ Etc.
4. Cross Product Of Four Vectors: If $\bar{a}, \bar{b}, \bar{c}$ and \bar{d} are any four vectors then $(\bar{a} \times \bar{b}) \times(\bar{c} \times \bar{d})=[\bar{a} c \bar{d}] \bar{b}-[\bar{b} \bar{c} \bar{d}] \bar{a}=\left[\begin{array}{l}\bar{a} \bar{b} \\ \bar{d}\end{array}\right] \bar{c}-[\bar{a} \bar{b} \bar{c}] \bar{d}$
i. $\quad\left[\begin{array}{l}\bar{a} \\ \bar{b}\end{array} \bar{c}\right]\left[\begin{array}{lll}\bar{l} & \bar{m} & \bar{n}\end{array}\right]=\left|\begin{array}{lll}\bar{a} \cdot \bar{l} & \bar{b} \cdot \bar{l} & \bar{c} \cdot \bar{l} \\ \bar{a} \cdot m & \bar{b} \cdot \bar{m} & \bar{c} \cdot \bar{m} \\ \bar{a} \cdot \bar{n} & \bar{b} \cdot \bar{n} & \bar{c} \cdot \bar{n}\end{array}\right|$
5. Reciprocal System Of Vectors: If \bar{a}, \bar{b} and \bar{c} are non coplanar vectors then the triad $\bar{a}^{1}, \bar{b}^{1}, \bar{c}^{1}$ of vectors given by $\bar{a}^{1}=\frac{\bar{b} \times \bar{c}}{[\bar{a} \bar{b} \bar{c}]}, \bar{b}^{1}=\frac{\bar{c} \times \bar{a}}{[\bar{a} \bar{b} \bar{c}]}, \quad \bar{c}^{1}=\frac{\bar{a} \times \bar{b}}{[\bar{a} \bar{b} \bar{c}]}$ is called reciprocal system vector triad of \bar{a}, \bar{b} and \bar{c}.

If \bar{a}^{1}, \bar{b}^{1} and \bar{c}^{1} is reciprocal system of vectors triad of \bar{a}, \bar{b} and \bar{c} then
i. $\quad \bar{a} \cdot \bar{a}^{1}=\bar{b} \cdot \bar{b}^{1}=\bar{c} \cdot \bar{c}^{1}=1$
ii. $\quad \bar{a} \cdot \bar{b}^{1}=\bar{b} \cdot \bar{c}^{1}=\bar{c} \cdot \bar{a}^{1}=0$.
6. Self Reciprocal System: Let $\bar{a}, \bar{b}, \bar{c}$ be three vectors. If the reciprocal system of these vectors \bar{a}, \bar{b} and \bar{c} is \bar{a}, \bar{b} and \bar{c} itself then the system of vectors \bar{a}, \bar{b} and \bar{c} is called self reciprocal system of vectors.
7. Vector Equation of a Plane Using Scalar Triple Product:

- Vector equation of a plane passing through three non-collinear points having position vectors \bar{a}, \bar{b} and \bar{c} is

$$
\begin{aligned}
& |\bar{r}-\bar{a} \bar{b}-\bar{a} \bar{c}-\bar{a}|=0 \text { (or) } \\
& \bar{r} \cdot(\bar{b} \times \bar{c}+\bar{c} \times \bar{a}+\bar{a} \times \bar{b})=[\bar{a} \bar{b} \bar{c}]
\end{aligned}
$$

- Vector equation of a plane passing through a given point with P.V. \bar{a} and parallel to \bar{b}, \bar{c} is $[\bar{r}-\bar{a} \bar{b} \bar{c}]=0$ (or) $[\bar{r} \bar{b} \bar{c}]=[a \vec{b} \bar{c}]$
- Vector equation of a plane passing through the points \bar{a}, \bar{b} and parallel to \bar{c} is $[\bar{r}-\bar{a} \bar{b}-\bar{a} \bar{c}]=0$.
- Length of perpendicular from origin to the plane containing the points \bar{a}, \bar{b} and \bar{c} is $\frac{|[\overline{a b c}]|}{|\bar{b} \times \bar{c}+\bar{c} \times \bar{a}+\bar{a} \times \bar{b}|}$.
- Vector equation of a plane passing through origin and points \bar{b}, \bar{c} is $[\bar{r} \bar{b} \bar{c}]=0$.
- The shortest distance between the skew lines

$$
\bar{r}=\bar{a}+\mathrm{t} \bar{b} \text { and } \bar{r}=\bar{c}+\mathrm{s} \bar{d} \text { is } \frac{|[\bar{a}-\bar{c}, \bar{b}, \bar{d}]|}{|\bar{b} \times \bar{d}|}
$$

